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of the raising and lowering operators E+=Et&Es is
At =0, Am=0, and An = +1, and is shown on the weight
diagram in Fig. 1. The states

~
rttm), for fixed l and m,

form therefore a basis for an irreducible representation
D+& of this O(2, 1), the transition group, 4 characterized,
by the lowest eigenvalue of K3——S which is clearly
rt=t+1. The matrix elements for D+ of the finite
0(2,1) transformations are given by'

where 'U„„'+' is precisely the function introduced in
(A7). Equation (A10) has been proved in Ref. 4.
Therefore (A9) becomes

(rta1)'
(rt'tm

I
Dl„+»t„lit+1, lm)

(rt'tm~e "---&~lrt+1, tm). (A11)
sinh6„„

e "—x~
~

I'lm) =
~
rttm)u„. .'+'(tt),

' V. Barginann, Ann. Math. 48, 568 (1947).

(A10)
This equation inserted into (A1) gives finally Eq. (1.5).
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Dynamical equations are derived, which describe the space-time development of second-order coherence
tensors of a quantized electromagnetic field in @argo. With the help of these equations, laws for the con-
servation of correlations are obtained. Some new non-negative-de6niteness conditions which the coherence
tensors obey are also established.

I. INTRODUCTION
' N recent years many investigations have been
- carried out concerning the coherence properties of

the electromagnetic field. ' Most of these investigations
have been concerned with the quantum-mechanicaI
definition of coherence of arbitrary order, with the
properties of the so-called. coherent states, with the
differences in the statistical features of laser light and
therma] light, and with the relation between the class-
ical and the quantum-mechanical description of co-
herence. However, practically no studies have been
made as to the space-time development of the coherence
tensors that describe the correlation effects in a quan-
tized electromagnetic field. The main part of this paper
is concerned with this question.

In Secs. II and. III dynamical equations are derived
which describe the space-time development ie vacgo of
the second-order coherence tensors. In Sec. IV the
associated conservation laws are deduced and in Sec. V
some new non-negative-definiteness conditions, which
the coherence tensors obey, are established.

In Paper II of this investigation, these results will be
specialized to the case of the main practical importance,
namely, when the statistical behavior of the field is
describable by a stationary ensemble, and various
properties of such fields will be discussed.
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II. DYNAMICAL EQUATIONS FOR THE
CORRELATION TENSORS OF THE

ELECTROMAGNETIC FIELD

We begin with the operator form of Maxwell's
equations for the electromagnetic 6eld ie ~acuo. If
E'(r, t), H(r, t) denote the electric and the magnetic field
operators, ' respectively, at the point r, at time t, and if
subscripts i, j, 0 denote Cartesian components, the
equations may be expressed in the form

~Research supported by the U. S. Army Research Once
(Durham). Preliminary versions of the results described in
Papers I and II of this investigation were presented at the Second
Rochester Conference on Coherence and Quantum Optics,
Rochester, New York, June 1966 (unpublished).

t During the Academic year 1966—1967 Guggenheim Fellow and
Visiting Professor at the Department of Physics, University of
California, Berkeley, California.' For a review of these researches see, for example, L. Mandel
and K. Wolf, Rev. Mod. Phys. 37, 231 (1965).
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Here &)/Br; (2= 1, 2, 3) are the Cartesian components of
the operator V and e;JI, denotes the completely anti-
symrnetric unit tensor of Levi-Civita, i.e., e,;2=+1 or—1, according as the subscripts (i,j,k) are an even or
an odd permutation of (1,2,3) and e,js——0 when any
two suKxes are equal. Unless stated otherwise we
employ the usual summation convention, according to
which summation is implied over repeated dummy
indices.

Let us represent 8 as a Fourier integral with respect
to the time variable:

P(r, t) = tv(r V)e 2%'tvtdV (2 5)

and let 8&+& and l& & denote its positive- and negative-
frequency parts, respectively:

8&+& (r, t) = e~&+& (r V)e 2v t'vtdV— (2.6)

E&-&(r,t) = g &
—

& (r V)a+2r tv td V (2.7)

where
e&+&(r,v) = e(r, v), (v&~ 0),' '(, )=8(, —), ( &0).

(2 g)

(2.9)

Since the operator 8 is Hermitian, e(r, v)=et(r, —v)
and hence

P&-&(r,t) = {P&+&(r,t)}t. (2.10)

8Ãj&+' 1 &)82&+&

Br; c Bt
(2.11)

Similar notation will also be used for the corresponding
decomposition of the magnetic field operator.

It is readily seen that the pair of operators S'&+&, 8&+&

and also the pair of the operators'" &, 8& & are coupled
by equations of the form (2.1)—(2.4), i.e.,

form relations'
1 "Er t—t'

dt' (2.15)
(, )

8&+&(r,t) = lim
2X'Z oo &t —

Zg

Bj'(rl tl r2 t2) h 'j(r2 t2 rl tl)

Kj'(rl 4 r2 t2) X 'j(r2 f2 rl 4)

BRj (1'1 tl ' r2 t2) =K 'j(r2 t2 ' rl tl) .

(2.20)

(2.21)

(2.22)

We will now show that the four correlation tensors
8, K, 5K, and X are coupled by a set of erst-order
partial diGerential equations. To derive these equations,
let us first rewrite Eqs. (2.11)—(2.14) for the negative-
frequency parts in the form

and the corresponding relations for H&+&.

Now the basic correlation tensors (second-order
coherence tensors) of the quantized field are defined by
the following formulas:

6;;(r1,4; r2, f2) =tr{pS', '(r1,4)gj+ (r 2t )2}, (2.16)

xtt(r1, 4; rs, t2) =tr{pH;& &(r&,4)8j&+&(r2,t2)}, (2.17)

DR;t(rl tl, r2, f2) =tr{pl;& &(r&,4)8j&+&(r2,4)}, (2.18)

K;;(rt, tl, r2, t2) =tr{pH;& &(rl, fr)Ej&+&(r2,f2)}, (2.19)

where p is the density operator of the field. The cor-
relation tensor 8;; was introduced by Glauber4 and
corresponds to a tensor introduced previously (for
stationary fields) by Wolf' on the basis of classical
theory. The tensors K, BR, and K correspond to the
other three tensors of the classical theory (5K and K
correspond to 8 and &2, respectively, of Refs. 6 and 2).
The behavior of these tensors for blackbody radiation
was discussed by Mehta and Wolf. 7

If we make use of Eq. (2.10) and the corresponding
relation involving H&+& and 8& & and use also the fact
that p is a Hermitian operator, we obtain the relations

f)gj&+& ] &)ps&+&

7

Br; c Bt
(2.12)

8 8
e;j2 Pj& &(rl, tl) = —— 82&—'(rl, tl), (2.23)

Bfy; c Bty

g~, (+)
=0, (2 13)

a 8
'4jtHt' (rl tl) Ett (rl tl)

Dry; c Bty
(2.24)

=0) (2.14)

'Equation (2.15) follows immediately from the Fourier ron-
volution theorem and the relation

lim (1/2trt) l1/(at ett) }=b~(t)—
~+0

where it is understood that the equations hold sepa-
rately when either the upper or the lower signs are
taken. Equations (2.11)—(2.14) can be derived either
by taking the Fourier transform of Eqs. (2.1)—(2.4) and
then integrating the resulting equations over the
positive- or the negative-frequency range, or by apply-
ing to Eqs. (2.1)—(2.4) the well-known integral trans-

Cf. W. Heitler, The Qttarttttrtt Theory of RaCkateott (Clarendon
Press, Oxford, England, 1954), 3rd ed. , pp. 69—70.

4 R. J. Glauber, Phys. Rev. 130, 2529 (1963).
5 E. Wolf, Nuovo Cimento 12, 884 (1954).
6E. Wolf, in Proceedings of the Symposium on Astromonical

Optics and Related Subjects, edited by Z. Kopal (North-Holland
Publishing Company, Amsterdam, 1956), p. 177; P. Roman and
E. Wolf, Nuovo Cimento 17, 462 (1960).

2 C. L. Mehta and E.Wolf, Phys. Rev. 134, A1143 (1964); 134,
A1149 (1964).
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8
E;I—&(ri,ti) =0,

~r ji

8
H;&—

& (rt, tr) =0,
~rli

(2.25)

(2.26)

uzi= 0,
~r2i

1 8
&ij k Zj +Zk )

Br2i C Bt2

(2.30b)

(2.31b)

where 8/rtri;, (i = 1, 2, 3) are the Cartesian components
of the operator Vi (differentiation with respect to the
coordinates of ri). If we multiply each of these equations
by p from the left and by Et'+'(rs, ts) from the right and
take the trace we obtain the equations

8 1 8
&ijk Zj +Zk )

Br2i c Bt2

Xzi=0,
~roi

(2.32b)

(2.33b)

8 1 8
6ij k ~j'Z +kZ )

Brji c Bty
(2.27a) uzi=0.

~r2i
(2.34b)

8 1 tIII

6ijk XjZ SkZ )
Bragi c Ry

8;z ——0,

X;z=0.
~rli

(2.28a) This second set of equations ((2.27b)—(2.34b)) may be
derived in a strictly similar manner as the set (2.27a)—
(2.34a), by starting from Maxwell's equations for the

(2 29a) positive-frequency parts of the field operators, or
alternatively by applying to Eqs. (2.27a)—(2.34a) the
relations (2.20)—(2.22).

The equations (2.27)—(2.34) may be regarded as the
basic equations of the second-order coherence theory of
the quantized electromagnetic Geld.

8 1 8
6ijk Xjl WkZ )

0ryi c Otal

8 1 8
&ijk ~jZ +kZ )

Br~i c Bt~

(2.31a)

(2.32a)

Similarly, if we multiply each of the Eqs. (2.23)—(2.26)
by p from the left and by Ht&+I (rs, ts) from the right and
take the trace, we obtain the equations

III. SECOND-ORDER EQUATIONS

8'BnZ 1 a'bkZ—
~i&k~~n~

BrgiBrpm c' Btj'
(3 1)

From the basic 6rst-order differential equations
which we just derived, one may derive a number of
second-order equations, which are also of interest. For
example, if we apply the operator (1/c)rI/ctli to both
sides of Eq. (2.28a) and use (2.27a), we obtain the
equation

X;z——0, (2.33a)
If we now use the well-known identity'

mr;) ——0.
~r1~

(2.34a)

t9 1 8
bZj= —— 5RZk,

carpi c Bt2

In addition to the basic set of equations L(2.27a)—
(2.34a)] which we just derived, there is another set of
similar equations which involve derivatives with re-
spect to the second space-time point (r t,)srather than
with respect to the first one (rr, tt):

&;jk~mnj= ~km&ni —~kn&mi, (3.2)

where 8 is the Kronecker symbol and use also Eq.
(2.29a), we obtain a wave equation for h:

8
Vl ~kl ~kl ~ (3.3)

Here V~' is the I.aplacian operator with respect to the
coordinates of the point r&. In a strictly similar manner
one may also derive a second wave equation for 8 which
contains second-order derivatives with respect to the
second space-time point:

8 1 8
6ijk BRZj ~lk )

Br2i c Bt2
(2.28b)

1 8
V2 @kl ~kl ~

c' Bt2'
(3 4)

uzi=0
r2i

s H. JeIIreys and B. S. JeGreys, Methods of Mathematical
(2 29b) Physscs (Cambridge University Press, New York, 1950), 2nd ed. ,

p. 73.
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I et us now associate with the tensor U;j a scalar U
and a vector U(U1, U2, U2) defined as follows:

Moreover, one can also show, in an analogous manner,
that each of the other three tensors K, 5R, and K
satisfy such a pair of wave equations.

From our basic set of first-order equations, one may
also derive a number of second. -order equations which
couple some of the correlation tensors. For example, if
we operate on both sides of (2.28a) by (1/c)8/Bt2 and
if we use (2.31b) we find that

U(rl tl r2 t2) Ukk(rl tl r2 t2)

=(E (-rl, tl) E+ (r2, t2))
+(Hi &(rl, tl) Hi+&(r2, t2)), (4.7)

U '(rl tl r2 t2) E jkU 'k(11'tl r2 t2)

f(E&-&(r„t,)XP'+&(r„t,))
+ (H(—

& (rl, tl) XH i+& (r2, t2) );}. (4.8)1 ~'&ki
Gijk6mnl (3.5)

1 BXki
&ijk&mnl

Brhgr2 c BtiR2
(3 6) S(rl tl r2 t2) Skk(rl tl r2 t2)

= (Ei—& (rl, tl) H'"&(r2, t2) )
—(Hi-&(rl, tl) E&+&(r2,t2)),Further, if we operate on both sides of (2.27a) by

(1/c) 8/Bt2 and use (2.28b), we obtain the equation
(4.9)

S'(rl tl r2 t2) & 'kSjk(rl tl'r2 t2)

= ((E —
(rl, tl) XB+ (r, ,t,)),

—(Hi '(rl, tl) XE&+&(r2,t2));}. (4.10)

1 BXki

c2 BtqBt2
(3.7)~ijHmni

c2 Bt Bt In Eqs. (4.7) and (4.8) angular brackets denote the

In a similar way it follows from (2.32a) and (2.27b) that
quantum-mechanical expectation value.

We also associate a scalar and a vector with the
tensor S;;:

Finally, from (2.28a) and (2.27b) we obtain, in a
similar manner, the equation

If in Eqs. (4.3) and (4.4) we put tl = t and sum over t,
the resulting equations may be expressed in the form of
two scalar corjservatiorI, lars:

8 Xjn
Gijk6mnl

~ryi~r2m

1 8'5Kkg

c2 BtyBt2
(3.8) 8

g, U=- S,
c Bty

(4.11)

IV. CONSERVATION LAWS

In order to formulate various conservation laws which
involve second-order correlations of the electromagnetic
field, we introduce two tensors U;, (rl, tl, r2, t2) and
S;;(rl, tl, r2, t2) defined as follows:

1 8
gl S=—— U.

c Bty
(4.12)

Finally, if we multiply (4.3) by k kl and use the
identity (3.2) we readily find that

U;;= 8;1+X;;,

S,j=mr, j—X;,.

(4.1)

(4 2)

8 1 I9

LU~l —8~1Ukkh= — S .
~rl2 c Btq

On adding Eqs. (2.27a) and (2.31a) and on subtracting If we also make use of Eq. (4.5), the last equation may
(2.28a) from (2.32a), it follows that be expressed in the form of a vectorial coeservatiorI, lm

1 8
&ijk Ujh Skl p

Bragi c Bty
(4.3)

1 t9

T )
——— S,

c Bty
(4.13)

8 1 8
6ijk Sjl= UkZ ~

Brq; c Btq
(4 4)

where the tensor T l= T„l(rl,tl, r2, t2) is defined as

T 1= U l+ Ul —8 lUkk. (4 14)

Also, on adding Eqs. (2.29a) and (2.33a) and on sub-
tracting Eq. (2.30a) from (2.34a) it follows that

In a similar way, if we start from Eq. (4.4) we arrive
at the vectorial comservatiox late

S,j=o.
r1i

(4.6)

8 1 I9

Q l= —— U
c Rq

where Q l—=Q 1(rl,tl; r2, t2) is de6ned as

Q l=S 1+Sl —& lSkk.

(4.15)

(4.16)
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The four conservation laws which we just derived
involve derivatives with respect to the space-time point
(ri, ti). By starting from the appropriate equations of
the "b"set rather than of the "a"set in Sec. II, one may
derive, in a strictly similar manner, conservation laws
that involve the derivatives with respect to the space-
time point (r2,4). These conservation laws are similar
in form with those derived above. They are given by
Eqs. (4.11), (4.12), (4.13), and (4.15), with Vi, ij/ijri&,
and 8/Bti replaced by V2, ij/Br», and ij/&It2, respectively.

Some implications of these conservation laws will
become apparent in Paper II of this investigation, which
will deal with stationary electromagnetic fields.

equality (5.3). If we choose g, (r,t)—=0, (i=1, 2, 3), we
obtain from (5.3) the following non-negative-definite-
ness condition obeyed by the electric correlation tensor:

d'ridtid'rkdt2{ f,"'(ri, ti) 8;& (rk, ti, rk, t2) f;(rk, t2) }&~0.
(5 4)

Similarly, if we put f;=0 in—(5.3), we obtain the cor-
responding non-negative-definiteness condition which
the magnetic correlation tensor obeys:

d rldtld r2dt2{g ' (r1 tl)+ ''(rl, tl, r2, t2)g'(r2, t2)} ~& 0.

V. NON-NEGATIVE-DEFINITENESS CONDITIONS

In Sec. II we have noted some simple consequences

t Eqs. (2.20)—(2.22)) of the Hermiticity of the density
operator p. We will now briefly consider some conse-
quences of the fact that p is also non-negative-definite,
i.e., that for an arbitrary operator 2, for which
tr(pe%) is defined, the inequality

tr(pAtA) &~0

The non-negative-definiteness conditions (5.3), (5.4),
and (5.5) can easily be rewritten in a form that contains
summation rather than integration over the space-time
variables. For this purpose we choose

M N

f;(r,t)= Q Q u k,&I&2&(r„—r)b(tk —t), (5.6)
m=1 k=1

holds.
Let us choose

M N

g, (r, t) = P P P„k,l&&2&(r„—r)8(tk —t),
tn=l k=1

(5.7)

A. = d'rdt{ f, (r t)E;&+& (r,t)+g;(r, t)8;1+&(r,t)}, (5.2)

where f;(r, t) and g, (r, t), i=1, 2, 3, are arbitrary func-
tions of the space-time point r, t and the summation
convention is again implied. We then obtain from (5.1)
and the defining equations (2.16)—(2.19)

d'rkdtkd'r2dt2{ f;*(ri,ti) 8;;(ri,ti, r2, t2)fj (12 t2)

+g ' (rl tl)+ ''(r1 t1 r2 t2)gj(r2 t2)

+f,*(ri,ti)OR, j(xi,ti, r2, t2)g, (r2 t2)

+g,*(r,,t,)X;,(ri, ti, r2, t2)f, (r2, t2)}& 0. (5.3)

It is, of course, understood that the arbitrary functions
f, and g; are restricted to a class of functions for which
the integral on the left-hand side of (5.3) is well defined.

Let us consider some particular cases of the in-

mki@ij(rm&4 j rn&ti)&nij+P mki&ij(rm&4 j rn&tl)Pnlj

+&* k'OR'j(r, 4; r, ti)Pn&&

+P mkiOIij(rm&4 j rn&tl)&nlj ~ 0
&

~'mk, &;j(rm&4 &
r &ti)12.1i~& o,

(5.8)

(5.9)

P mki&Icij (rm&4 j r»&ti)Pnlj ~&0 ~ (5 10)

The summation convention is again implied here, i.e.,
summation over all the possible values of the dummy
indices i, j, m, n, k, and l is understood. Some special
cases of the inequality (5.9) have been found by
Glauber. 4

where M and S are arbitrary positive integers, o, ~;,
p„k; (r&2= 1, 2, ~ M; lt= 1, 2, X; 2= 1, 2, 3) are
arbitrary sets of constants, r are arbitrary points in
space, and tj, are arbitrary time instants. We then obtain
from (5.3), (5.4), and (5.5) the following non-negative-
definiteness conditions:


