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It is proved that the dipole operator in the hydrogen atom is the product of an element in the Lie algebra
and of a group element of the conformal group 0(4,2). A relativistic wave equation containing the total
momentum only is set up which describes the internal structure of the system purely group theoretically
and gives the correct mass spectrum. The diagonalization of this equation determines a new basis of states
in which the dipole operator is simply an element of the Lie algebra. The angle of transformation to the
new basis is evaluated to be O =2 tanh ' (1—4/44), or, |)= log (244/4), where n is the principal quantum number
and e is essentially the fine-structure constant.
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FIere e are the Pauli matrices, C=ia.2, I.„is the angular
momentum, 3f, the Lenz vector, and S gives the prin-
cipal quantum number m.

In I it was shown that the dipole operator x when
applied to states

~
n, nl, ns) can be written in terms of

the 0(4,2) generators as

(1V+1)'
D/// (/v —1)s (L4s zLis) +44S

(1V—1)'
+DÃ/(iv+1)s (L/li+zL4s) 4 (1.3)S

I. CURRENT OPERATORS IN O(4, &)

' 'N a recent paper' an irreducible unitary represen-
tation of the conformal group 0(4,2) was con-

structed on the Hilbert space of bound-state wave
functions of the II atom. First of all we now give a
realization of this representation in terms of boson
creation and annihilation operators which will be useful
in the following. In this representation the wave func-
tions in parabolic coordinates are identified as

~
rz,nl, ns) = (nl! (n +sm)!n !(snl+m)!7 '"

&&alt"'+"ast"'bit"'+ bst"'~O), for m)0 (1.1)

and the generators L, s of 0(4,2) as 1e2—e2
+ (1.6)

and the angle 8„„ofthe group transformation is given
by

S—S'
) ol 6'~&)2, = log

n+n" n'
(1.7)tanh-', g„.„=

The proof of (1.5) is given in the Appendix. Here we
shall discuss the meaning of this equation, its further
consequences, and how one can formulate the radiation
theory of the hydrogen atom group-theoretically from
the beginning.

First of all, if we insert Eq. (1.5) into the quantum
equation

P,= iLH, x;7= iL —(1/21VZ), x,7

and observe that the Lenz vector 1.,4 commutes with
JI, we find for the momentum operator the simpler
expression

1
(n'l'm'! p, ~

nlm) = (n'l'm'
~

e 'o"'"~4'L, s ) nlm) . (1.8)
me

For the calculation of D~~(~~~~ we used the position
representation of the wave functions and the question
remained whether and how such a typically spatial
operation could be cast into a group operation.

In this paper we show that the dilatation operator
can in fact be expressed as a finite group element in
0(4,2) so that the matrix elements of the dipole oper-
ators are given by

(n'l'm'! x, !nlnz) = (i/(o ~ ) (1/n'n)
&&(nVm'~e 4o-'-~44L„-s! rzlm)+(nVm'(L, , !nlm), (1.5)

where co„„is the Rydberg frequency for the transition
S R

where D, is defined, as the dilatation operator

D.f(x) = f(ux). (1.4)
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' A. O. Barut and Hagen Kleinert, Phys. Rev. 156, 1541 (1967);
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All operations on the right-hand side of (1.5) or (1.8)
are contained in the group 0(4,2). As a consequence
the conformal group contains the whole algebra of
observables on the Hilbert space of bound-state wave
functions and can thus indeed be called the dynamical
group of the H atom. Because we need the generators
L4s, I.,s, L&s of 0(4,2) this is in fact a minimal dynamical
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group. The states
~
nlm) themselves form an irreducible

representation of the subgroup 0(4,1); these are the
states in the rest frame.

(ir J'„yps —~) ~elm; p)=O. (2.1)

Here P„ is the four-vector generator in 0(4,2) which
can be chosen as

(L4s&Lss) & (2 2)

S is the remaining scalar (under the Poincare group)
generator

S=L46) (2.3)

and p and y are functions of the Poincare invariants.
We determine the new states

~
nlm) by the requirement

that in the rest frame Eq. (2.1) is diagonal and the rest
states ~nlm) have the mass m. If we apply a group

~ E. Majorana, Nuovo Cimento 9, 335 (1932).' Y. Nambu, Progr. Theoret. Phys. (Kyoto) 37, 368 (1966).
4 A. O. Barut and Hagen Kleinert, Phys. Rev. (to be published).

II. RELATIVISTIC WAVE EQUATION FOR THE
HYDROGEN ATOM CONSIDERED AS A

COMPOSITE PARTICLE

With Eqs. (1.5) and (1.8) the dynamics is completely
formulated in the group-theoretical language as follows:
Take the group 0(4,2), assign the "particles" to a
single irreducible representation of the subgroup 0(4,1);
the electromagnetic interactions are then described by
the currents e'~~45L;6. We shall see that the last sentence
can also be formulated: The electromagnetic inter-
actions are then described by the currents L;6 on the
mixed states e 4~4'~nlm). In. this way, the position
operators of the internal structure of the particle has
been eliminated. This is a necessary step if the same
formalism is to be applied to particle physics.

The problem that we have to solve now is how to
find the above dipole operator if one does not have a
Schrodinger equation and a correspondence principle.
Can one 6nd a relativistic description of the compound
system in terms of its total momentum E'„such that
the internal structure is described purely group-
theoretically' Isospin and SU(3) groups seem to be
manifestations of internal dynamics. Such a formu-
lation, in special cases, goes back to Majorana' and
has been the subject of the dynamical group theory in
recent years. The generalization of the Majorana
equations has been recently reconsidered by Nambu'
and the present authors. 4 Nambu's equation does not
solve the exact H-atom problem and has some un-

physical features. We now want to give a solution to
this problem.

We start from the states ~nlm) which are mixtures
of the 0(4,1) states. The form of the new states will be
determined. The boosted states

~
nlm; p) form a reducible

representation of the Poincare group. We then project
out deinite mass and spin values by the Majorana type
equations4

y(m) =mXL1 —(P/m)']"'.

Thus the new states in Eq. (2.1) are given by

~nlm) =e ""~44~nlm)

(2.5)

(2.6)

The constant P will be chosen in such a way that the
matrix elements of the current of Eq. (2.1), namely

&nVm ~~, ~nlm)
= (e/nn') (nVm'

) L,s ( nlm)
= (e/nn') (n'l'm'

~

e""'~4'L,se ""~"
) nlm), (2.7)

coincides with our Eq. (1.8). This equation is more
symmetric than (1.8). But because L4s commutes with
L;6 the exponential factor is e'&'"' '") " If we now
choose

then
P =m'= 1—(e'/ns) (2.8)

tanh-,'8= S ~

1+(1—ms) U' 1+e/n
Hence

tanh-', (0„,—0„)=(n—n')/(n+ n') = —tanh-,'e„.„(2.9)

and Eq. (2.7) is identical with (1.8).
Thus Eq. (2.1) describes the internal structure of the

system group-theoretically at least up to dipole approxi-
mation. It is important to note that the current oper-
ators are simple generators of the I.ie algebra, L,6, not
with respect to physical states, but with respect to
"rotated. " states ~nlm), whereas for ~nlm) we have to
use the "rotated" currents e ~44'~ l n)m. Because the
group is noncompact, the transformation is hyperbolic.
The angle 8 measures the deviation of the actual mass
of the hydrogen atom compared to the mass of the free
proton and electron. Another way of putting these
results is the following: If we keep the form of the cur-
rents 6xed then the electromagnetic interactions noix the
original states ~nlm) into ~nlm) up to dipole approxi-
mation; the system is now in a state which is a super-
position of all states ~nlm).

Equation (2.1) is relativistic, but in order that it
should describe the real relativistic hydrogen atom,
spin must be introduced as well as the correct form of
the boosting operations.

transformation to (2.1) in order to diagonalize it we get

ei8&L44[&POp +pS +pe
—48aA44

=m/cosht)„— (p/m) sinh8„)N

+ mL(P/m) coshe„—sinht) „7—y =0.
This expression is diagonal; if we choose

p/m
tanhg„= p/m, tanh-,'e„= , (2.4)

L1—(p/m)'j'"

then the function y(m) is determined from the mass
spectrum to be
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I—+ —N. If we use the identityAPPENDIX: PROOF OF EQ. (1.5) AND IDENTI-
FICATION OF THE "TRANSITION

GROUP" 0 (2, 1) (
F(a,b,c; s) = FI a, c b,—c;

(1—s)' 4 s—1)If one inserts intermediate states into (1.3) and
observes that L;5&iL,6 raises (lowers) nby , one unit,
one obtains sinh ~~6 = cosh28 =

(1—n&) &&& (1 N2)1/2
(n'l'm'

I
~'I «m& = (n'l'm'

I D(.+»i- I
ny 1, l'm')

X(n+1~ 1'~ m'I L'~—iL;6I nlm)l (n+1)'/2nj
+ (n'l'm'

I
D ( —» i„I

n —1, l', m')

X (n —1, l', m'I L;&+iL,6)L(n —1)'/2nj
+ (n'l'm'

I
L'4

I
nlm) (A1) with

to rewrite ds~+~" o~ in (A6) and define the functions

'+'(+) —=0'» (cosh-'8) —'"+"'(smh-'8) &~—"'&

XF(—n, ', —n' —l, 1+n n'—, —sinh'P8))

1 n „!(n+ l) !- '"
(n —n') ! n„'!(n'+ l) !

Hence we have only to 6nd group theoretical expressions
for the matrix elements of D&„+»~„.In I, Eqs. (26) and
(27), we expressed this matrix elements in terms of the we obtain finally
integrals over hypergeometric functions:

(A7)

(rr')'~'(n' n 1
'U„„'+'(8 .,), (A8)

&nn'& & r' r sinhe. ..(n lmlD(„~»~& I
n&1, lm)(n+1)2/n

=I n(n+1)jU d„2gg g, „,g" "', (A2)
where the angle 8...is determined by

n n )'"E-iX~ ~

TT „') sinh-,'8, ,=, cosh —',6,
2 (rr')'n( 2 2)

X82l+1&' "I n.,—;n. ',—,I, (A3)'r'j ' In particular then Eq. (A2) becomes

r+ r'

2&+& —(n+l) I

Ã„i=
ns(21+ 1) ! n, !

(na 1)'
(A4) (n'lmlD& +»i In+1 lm)

8, &' &(n„,k; n„',k') = 1(&+&')—tp+~ 'U„~g „'+'(8„.„). (A9)
sinh8 „

XF(—n p+1 kf)F(—n, p+] —r, k't). (A5) There is a good reason of introducing the functions
in (A7). Consider the noncompact group gen-

These integrals have been evaluated by Gordon' re- erators Kz ——L45, K2 L4, and K,=La&———1V of 0(4,2). ——
cursively with the result They form the algebra of 0(2,1) subgroup. The action

y2(~~&' '& (n „k;n„',k') = — (kr —k'r')

(A6)

Xs'+'u" "'F(—n„', n+1+l,
1+n—n', I')

k' —k (kk')"'
n=

k +.k k'yk

Xy„+,&00&(n„k; n„',k'),

(2l+ 1) !'n„! 1
y„+,~' '&(n„k; n, ',k') =-

(n —n')!(l+n')! (kk')'+' FzG. 1. Weight diagram
for the triangular represen-
tation of O(4, 1). Every ver-
tical line is a representation
of the transition subgroup
E, an 0(2,1) subgroup of
the conf ormal group O (4,2)
generated by L 45, —L 46, I56.

For n(n' one has to exchange n and n' in (A6) and

~ W. Gordon) Ann. Phys. (N. V.l 2, 10&~ (1929).
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of the raising and lowering operators E+=Et&Es is
At =0, Am=0, and An = +1, and is shown on the weight
diagram in Fig. 1. The states

~
rttm), for fixed l and m,

form therefore a basis for an irreducible representation
D+& of this O(2, 1), the transition group, 4 characterized,
by the lowest eigenvalue of K3——S which is clearly
rt=t+1. The matrix elements for D+ of the finite
0(2,1) transformations are given by'

where 'U„„'+' is precisely the function introduced in
(A7). Equation (A10) has been proved in Ref. 4.
Therefore (A9) becomes

(rta1)'
(rt'tm

I
Dl„+»t„lit+1, lm)

(rt'tm~e "---&~lrt+1, tm). (A11)
sinh6„„

e "—x~
~

I'lm) =
~
rttm)u„. .'+'(tt),

' V. Barginann, Ann. Math. 48, 568 (1947).

(A10)
This equation inserted into (A1) gives finally Eq. (1.5).
Q ED
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Dynamical equations are derived, which describe the space-time development of second-order coherence
tensors of a quantized electromagnetic field in @argo. With the help of these equations, laws for the con-
servation of correlations are obtained. Some new non-negative-de6niteness conditions which the coherence
tensors obey are also established.

I. INTRODUCTION
' N recent years many investigations have been
- carried out concerning the coherence properties of

the electromagnetic field. ' Most of these investigations
have been concerned with the quantum-mechanicaI
definition of coherence of arbitrary order, with the
properties of the so-called. coherent states, with the
differences in the statistical features of laser light and
therma] light, and with the relation between the class-
ical and the quantum-mechanical description of co-
herence. However, practically no studies have been
made as to the space-time development of the coherence
tensors that describe the correlation effects in a quan-
tized electromagnetic field. The main part of this paper
is concerned with this question.

In Secs. II and. III dynamical equations are derived
which describe the space-time development ie vacgo of
the second-order coherence tensors. In Sec. IV the
associated conservation laws are deduced and in Sec. V
some new non-negative-definiteness conditions, which
the coherence tensors obey, are established.

In Paper II of this investigation, these results will be
specialized to the case of the main practical importance,
namely, when the statistical behavior of the field is
describable by a stationary ensemble, and various
properties of such fields will be discussed.

r)Ãs 1 OH'
~'~'I

Bri t," Bt

c)Hs 1 l9Ps
~'~a

Bri c Bt

(2.1)

(2.2)

II. DYNAMICAL EQUATIONS FOR THE
CORRELATION TENSORS OF THE

ELECTROMAGNETIC FIELD

We begin with the operator form of Maxwell's
equations for the electromagnetic 6eld ie ~acuo. If
E'(r, t), H(r, t) denote the electric and the magnetic field
operators, ' respectively, at the point r, at time t, and if
subscripts i, j, 0 denote Cartesian components, the
equations may be expressed in the form

~Research supported by the U. S. Army Research Once
(Durham). Preliminary versions of the results described in
Papers I and II of this investigation were presented at the Second
Rochester Conference on Coherence and Quantum Optics,
Rochester, New York, June 1966 (unpublished).

t During the Academic year 1966—1967 Guggenheim Fellow and
Visiting Professor at the Department of Physics, University of
California, Berkeley, California.' For a review of these researches see, for example, L. Mandel
and K. Wolf, Rev. Mod. Phys. 37, 231 (1965).

i
=0,

=0

' All operators are indicated by a caret.

(2.3)

(2.4)


