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The theory of Raman scattering is extended to include electric-quadrupole radiation. The results obtained
are used to compute the elastic and Raman scattering cross sections of heavy deformed nuclei. The dipole
and quadrupole resonances are described by a previously developed theory which includes surface vibrations
and rotations. The computed cross sections are compared with experimental data for all those nuclei where
both absorption and scattering cross sections are available. Some discrepances still exist in certain details;
however, the over-all agreement between theory and experiment is very good.

I. INTRODUCTION

HE present paper has two parts. In the 6rst part,
the theory of elastic and Raman scattering is

extended to quadrupole radiation including dipole-
quadrupole interference. Together with the well-known
results for dipole radiation, ' ' the formulas obtained are
used to compute the photon-scattering cross sections
on the basis of the dynamic collective theory' ' of the
giant resonance in heavy deformed nuclei. In the second
part, we attempt to obtain as complete as possible
theoretical fits to the presently available high-resolution
experiments, taking together both absorption and
scattering data. In other words, our aim is to determine
how consistent is the totality of the information con-
cerning the nuclear giant resonance.

We believe that this is the correct time for such an
attempt. The development of both theory and experi-
ment of the photonuclear effect over the last 15 years
has led from a qualitative picture to a quantitative
description. ' Tn other words, the qualitative features
are quite well understood. The open questions are of a
quantitative nature; e.g., what fraction of the oscillator
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strength is associated with the giant resonance, or, to
what accuracy can the shape of the cross section be
quantitatively described, etc. It will be seen that very
few nuclei have been investigated with a sufhcient
accuracy for an analysis of the kind attempted here.
It would also be exceedingly desirable to have available
high-quality data concerning nuclei from the transition
region, i.e., from the region where the deformations
become small. Examples of such nuclei are neodymium,
samarium, and osmium. The data should include the
region above 20 MeV, i.e., the location of the giant
quadrupole resonance. "

The theoretical part of the paper is contained in
Secs. II through IV. The formulas for the electric
quadrupole elastic and Raman scattering including
interference with dipole radiation are developed in
Sec. II. The scattering amplitudes are given in terms of
reduced matrix elements of the multipole operators.
The 6nal formulas for the diverse scattering cross
sections are worked out for nonaligned targets. In a
description of experiments performed with aligned
targets, one would have to use directly the expressions
for the scattering amplitudes. A resume of the nuclear
theory is given in Sec. III, and the reduced matrix
elements needed in the formulas for the different cross
sections are evaluated in Sec. IV. The second part of
the paper, i.e., the detailed comparison between the
experimental data and the theoretical predictions, is
contained in Sec. V. We have analyzed the data of all
cases where both absorption and scattering cross
sections, i.e., a complete set of data, are available.
Section VI contains a summary and a discussion of the
results obtained.

8 E. Ambler, E. G. Fuller, and H. Marshak, Phys. Rev. 138,
B11I (1965).
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we obtain from (11)

2 2L 2K

IE,, I
= g Z P Z (2L'+1)(2E'+1)(»+1)(-) +"'I

L,K=1 J L'=0 E'=0 Ip M —M —pimp M —M—pi

I, I, E' I& I ~~L E I L E
X„„+M ) M, , IV"~-"P (-8) (16)

This is the final formula which can be written before
specifying the polarization of the beam and of the
target nucleus. In the general case where the nuclei may
be aligned or polarized one will have to use (16)
directly, e.g., in the density-matrix formalism, " to
describe the experimental situation. Ke shall, however,
at this time specialize to a nonaligned target. Then the
cross sections are obtained by an incoherent averaging
over the initial direction, i,e., summing over M;. We
also shall take the photons to be unpolarized. The cross
section then is given by averaging over both orientation
and polarization of the initial state of the nucleus and
the photon, M, and p, respectively, and summing over
the same quantities in the final state, M& and p'. In
this case we obtain

1A (e)d = —c (23)

g»2'= i'o (1—3 cos'8+4 cos48),

gi22= (1/20) (3+15cos'8 —16 cos48),

g2"= (1/28) (13—15 cos'8+16 cos48),

gP =-,' (3—cos'8),
g42' = (1/35) (24+3 cos'8+ cos'8),

go"=—(1/15"') cos'8,

gi"= —(1/20'") cos8(3—2 cos'8)

g2"=—(1/84'i') cos8 (3+2 cos'8) . (22)
We now turn to the multipole matrix elements. By

virtue of Siegert's theorem we have

1(L+1~'12 (kr) r

~LM»
kk L i (2L+1)!!

Introducing the multipole moment
where

,KI (8)

do. 1 k' where—Z Z g'"(8)V"0' *, (»)
dD 2I;+1 k ~.~=»'=0
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( )I+EL+i'g
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we Qnally have

QII pr YLMdr (25)

]L E j~' L E
xl PJ(cos8) . (18)—10i EL L'

Obviously there holds

gz '(8)=gz' (19)

The functions gl, irz(8) describe the diferent angular
distributions. So E=L= i describes the dipole photon
scattering. L' 0 is the scalar part, L'= i is the vector
part, and L'=2 is the tensor part. Similarly, E=L=2
describes the quadrupole scattering. L' here goes from
0 to 4. The dipole-quadrupole interference is given by
the terms E=i, L=2. These terms vanish at 0=90'.
We have explicitly

g,"=ia(1+cos'8),

gP = i4 (2+sm28)

gP =—,', (13+cos'8),

"U. Faiio, J, Opt. Soc. Am. 89, 859 (~9&9) i P!isa «v
577 (1953).

(L+1q'" 1
i Ai~(c)&r= &k 'I -—

I Qi~. (26)
I- i (2L+1)!!

The time derivative in (25) is simply

LrM & IM ~ (27)
k

We note that Qz~ in (25) is normalized differently
than usually in that FL,M is used instead of the usual
Legendre polynomial Ez,M.

Using Eqs. (26) and (2/), Eq. (12) becomes
L' Z, I,
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and

Ig I,~ (EE')2

15 (hc)' I„2 2

Here the dipole and the quadrupole cross sections are

E'I' E I(~tllQillt&l'D—
, (31)

2I,+1 3 Ac s (Es' E'+—sI"s')'+E'F„'

x &I,IIQ,III.&&I.IIQ, III,&

X +E„—E—-',tr„E„+E'+',zr„-(29)

and

t7 b
Q—

SX2 e2

2I,+1 75 (Ac)'
E'~.E.

I & IIQ.II'&IXQ, (32)
(E 2 E2+tP 2)2+E21' 2

'

The absorption cross section then is given by

o,b, =4 Atra ImE, ,(0=0, E=E')
p, je' 2 (2I~+ 1)

=0 abs mo sbs ~
D t.

do-D 1 8' 2 4X e2 L' If I—Z ai" — Z
dQ 2I;+1 E I'~ 3 (hc)' s I„1 1

respectively.
Writing for the scattering cross section

d0 dO D l&q dg Dq+ +
dQ dQ dQ dQ

one 6nally obtains explicit expressions for the partial
(30) cross sections by inserting (28) and (29) in (17).

EE'&fllQill~&&~IIQillt&

do-g 1 E'
g, 22

dQ 2I+1 E r'-p

(—)' 1 g2$2 2

+ . +b;~b'. (-)"'L3(»'+1)j'" (33)E„E ', zr „E„—+ E—'+—,'tr„- A3EC2

(34)
rre' (EE')' L' Iy I, (—)'

(fllQ2ll~&&~IIQ2llt&, . +
15 (hc)' s I„2 2 E„E ', tr„E„y—E'—+-,'tr„-

dog)o 2 E' 2 t'4s e' L' If I;—2 a~"«
I

——,2 EE'&fllQ ll~&&~IIQ lit&
dQ 2I;+1 E I'~ k3 bc' s I„1 1

1 Z2 2e+, . +bob~ o( )"L3(2I'+1—)3'"E„—E ', zr„E„+E'y-;—zr-„ AMc'I

(rre' (EE')' L' Ig I, (—)'xl, Z &fllQII && IIQII&, + . (35)
E 15 (hc)' s I„2 2 E„E ;tT„E„+E'+—;tr—„—-

In the special case I;=0 (even-even nuclei) only the term L'=Iy contributes. Here also only the scalar part
occurs in the elastic scattering.

IIL RCSUMC OF THE COLLECTIVE MODEL
In this section we give a short review of the dynamic collective model of the giant resonance which has been

developed in a series of earlier papers. ' '
The Hamjltonian for the collective surface degrees of freedom, the collective internal degrees of freedom, for the

odd particle, and the various interactions between these degrees of freedom is

IIrot+IIvib+IIpsrt+IIdip+IIqusd+IIdipvib+IIqusdvib

(I' IP j tm ds' gt')+ —
I

(I—s—j—s)'+—dt'+gt' —1j— (It—jt) (dt+qs)
16gg2 88g2

b' tr 8' 1 8')
+ — I+-,'CqP+CgP+II +Q ke i'&I 1+G„o&(g+pg+6)fb„o»b„i'&

28(BP 2 BrP)

+Q Aa&„&'&L1+G,"'($—pli(, )rj+6)lb„"&tb,"&+ha&"'(0) (0.284/V2) (bo"'tb2"&+b2 "&tboi'&)g (36)
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with
1+0.08(—2)-i~ iPp

happ&" = Ao) &'& (0)
1+(—2)

—
lpIPp

0.08
G l&l —( 2)

—lsl (3/47r)t/s +
1+(—2& i"i[i, 1+Q.08(—2& '"'tro)

(-'»' —1)0.284P p

1j(-,'u' —1)0.284&{lp

4= (5/4~)'"Pp

&zo&
&'& = bpp

"&(0)[1j(-,'p' —1)0.284Pp], Ao& "&(0)= (3.34/2. 08)htp&'& (0),

(37)

b&') and 5|') are the annihilation operators for the dipole and quadrupole giant resonances, respectively. For
H~„~ we use the Nilsson Hamiltonian

H„,g=-', F„(—V'jE'r') —F„Ppr'I'sp jC„1 sjC„'I'. (38)

The refinements included in this paper which go beyond the treatment of the earlier work are -the following.
Firstly, the differential equation for the p vibrations has been solved numerically since the accuracy of the perturba-
tion treatment used previously was not sufhcient. Secondly, the off-diagonal term

(&'/8&n') (Ip—Jp) (~sjV )

has been taken into account. "The first change resulted in a slight increase in the energy spacing of the upper
states and in a substantial change in the absorption strengths of the vibrational satellites. The second change
increases the spacing between the main upper lines by about 150 keV.

The wave functions for the Hamiltonian (36), excluding the off-diagonal term (39), are

(2Ij1 '&s

~
IME,nor, n eo,ms, sf) =

~
I„, , „,(k)([nMx'X, . (—)'+—' "+-** f+'+'(sgn&jS, p)n~ x X „.j

k 32~'

Xp &'&ll "&p x-o ~(
—n)j(—)""" "" '~[&~x'&~a.—(—)'+" '"+'*" "(sgn&j5 p)&~ x'X n.]

X4'm —a" 4'n (—l
'

g
' ' tp

~
K—0

~ nr, ms, nt ('0)), (40)
where

sgnlr=p/~&a~ for p/0, sgn0=0.

The meaning of the quantum numbers is the following: I, M, and E are the total spin and its projection on the
].aboratory and intrinsic axis, respectively; 0 and n are the quantum numbers of the Nilsson state' s2 Qnd Qp

describe the rf and f vibrations, respectively; r&z and m give the number of dipole and quadrupole giant resonance
phonons, respectively, and s and t are their Cartesian classifications. Since a Nilsson wave function does not have
a good angular momentum, the symbol (—)' is to be considered as an operator. The off-diagonal interaction (39)
mixes the Cartesian giant resonance components s and —s, and separately 3 and —t.

The symmetries contained in (40) impose the following conditions upon the states.
For m = 1, m= 0 we have"

&=fl—I~I, fl —I~I j2, fl —I~I j4, , I=[&/, [&[j1 f&[j2 "
and for m= 0, e= 1 we have

&=&—I&I, fl —I&I j2, &—
I&I j4 " I=I&I I&Ij1 [&[j2 ".

(41)

(42)

The energies corresponding to the wave functions (40) are

Era o. m. n~ ~ = [I(I+1)—&'—&'—&'—1)')E&tj(tr p js)Ep m(ko& "'—G "'/Et&)'

X3E&tpp' —rz(&~& ' 6&" /Ef&)'3E&tpp' jmho&, "j N&&&'&o&je&o jE)~ „(„, (43)

"Tlris term has also been considered by S.F. Semenko, Phys. Letters 13, 157 {1964);Yadernaya Fiz. 1, 414 (1965) LEnghsh transi .
Soviet J. Nucl. Phys. 1, 295 (1965)g. We thank her for a private communication.

» The selection rule, as given in Ref. 4, contains an error for 0= 2.
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The last term in (43) gives the energy of the s) vibrations. For s=0, 1=0, 2 it can be given explicitly:

EIK Ql s, p, „(={200+0)(E—Q)0+PE)s)E&. (44)

For the other cases this energy has been obtained by numerical solution of the equation for the q vibrations.
As final step we now consider the off-diagonal operator (39). That means that we still have to diagonalize a

two-by-two matrix which has diagonal elements given by (43) and off-diagonal elements which have to be com-

puted numerically. They are

(1) For one giant dipole phonon,

(I'E',Q'n', ss0'np', 1S',00—3Es(Es(I,—j,)
Pp' IE,Qn, sssssp, 1S,00)

16''

f)II'~KK'~QQ'~aa'~nonjj'~S, S's(3/—16)FBPO (E Q)S(psl K—Ql ns'1S'00
~

'g
) 'PI K Q I nslS—00) ~ (45a)

(2) For one giant quadrupole phonon,

3&sP009s(Is—js)
(I' E', Q' n', Ns' ssp', 00,1 !)— IE,Qn, sssss0, 00,1(')

16''

4I'f)KK'0QQ'oaa'f)none'~s, V(3/16—)EBpp (E Q) [r
~
((pl K 0

I
no(& 00 is(i ( s) [ 00IK Qlns pp ss). (45b)

This completes the computation of the energy spectrum.

IV. PHOTON-INTERACTION MATRIX ELEMENTS

In the computation of the reduced matrix elements of the multipole operators (25) needed in (30) and (32), two
steps can be distinguished: (i) The operators (25) have to be written in terms of the giant resonance and surface
coordinates in the intrinsic system. (ii) The matrix elements of these operators between the various states have to
be evaluated. After expressing the operators in the intrinsic system they can be expanded in terms of the surface
parameters. We shall limit ourselves to terms quadratic in the static deformation parameter Pp and to terms linear
in the vibrational amplitudes $ and s) This lead. s to the following expressions for the intrinsic components of the
dipole and quadrupole operator:

Q»=dl I"'(Cs'" (f'I I""+&I I"')—u(&-I I""+&-I I"')3
&&[1+S.")6+Cs'» (&l. l

""+&I»l"')+) (&-I»")"+&-I»l"))3(l~
I
V'6)S»")n), (46)

with
3 ÃZ (1+n) 1

dp(') =h— (0.925+0.33P0+0.323Pps)
8sr A M bo)0("I

f 3 XZ (1+n) 1
dl") =

i

—
i (—0.654+0.114P0—0.14P0')

(8sr A 3II h(op("I

S„(l)= (—2)
—l»10 349 (46')

Qs»
—

dl»I (0) ([ssj»l&(bl»I i+bi»I ))—sgnp, 0 j»ls($ I»I (s)t+tj I»I (0))j
)(2]+S» $j Essl»I'(f)s-I

I

( t+j)js—
I I )+sgnP (f) j»j-0 t+j)jl

I
— )j~2(so~3)pl»l&0 497))) (47)

with
t'6 EZ (1+n) 1

dp(" =Ai— I(.'00 311(1+0.497jtlp+ 1.21Pos),
M IS(op("I

3 XZ (1+n) 1
d (')= —k- I40.311(1+0.248/0+ 0.42Pp'),

A M j)s(do(s) i'

I3 XZ (1+n) 1
(Es(s) ——A~

—
~

I(.'00.311(1—0 497P0+0.29Pps),
4- A M )Sojp(s)l

2 p
5„(')= 0.497.

2
(47')
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The parameter n has been introduced originally to account for the exchange forces in terms of an eRective nuclear
mass. Here it is used strictly as a scaling factor to adjust the absolute magnitude of the cross sections in a giveo
nucleus.

The evaluation of the matrix elements of these operators using the wave functions (40) is lengthy but straight-
forward. The 6nal results are

(1) Even-even nuclei:
(2I'+1)(2I+1) ) I

(I'E',~,'I,', 1s,oo!IQ, IIIE,~»„00,00&=
I (—)'+ '+'di. &"'(i " &si. i

—»s,-i")
E8(1+tt')(1+& .o))

(I 1 I'l (I 1 I
XL~n+(—)'" '"]L1+(—)

'+ ']I,I+(—)'I
EE 1 E') — E E t——Et)

X((01K'nt'1Sool 00Knt0000)(ttnp'1Sool 1++v gllnpoooo&

+(—) ' '(pK 1soo! (It'l&6)& '
gl 00K toooo)(N o1soolg ooooo)) ~ (48)

Here x„ is the parity of pz~ pppp.

(I'E', N'~0000,1&IIQollIE»000»&

tt (2I'+1)(2I+1) ' ' 0 (I 2 I' ) I 2 I'
=(—)'+K'I E di. i"'

I , I+(—)'
&8(1+8K0)(1+8K 0) v—0 . kE t —E') —E' v —E')

XL1+or ( )(tlo&fK' —Itl+v(v+1)+Itl(ltl —1)t]l g t+. (sgn(+go )( )K'+tg t]

( ) (sgn~+ttto)((5tf [ sgn»t, i v ))(I o'—oonlt I
1++

I Nnoooo)(PK' nooolt I 0 Knooooo)

—( toto~ ~+,sgn@ t 0, ~—)(.N 0 oo1tll 00000&(00K t oo1tlv2(~3/2) " '049&gl yK toooo&) ~ (49)
(2) Odd-A nuclei:

(I'E'tQ'u'vt10'tto'v15, 00!!Qt!!IE,Qn, ttotz0, 00,00& I 1 I'
=( ) + +' tt' tt&tt' nln( /18)(2I' +1)(2I +1)]' 'tQ d(v((il lgs(vi »s,—lvl)

v=—1 E t' —E'j

XI ~o+(—)**'" K'+"']I 1+(—)K ' "]((0iK-ttint »ool 0 iK-gati 00000&(N o»oo11+~."'tllnooooo&

+{—) (P) KD[nt 1S00 f (I tv!+6)Sv 'g f P[K—afnt0000&(ttno'1Sool ttno0000&) v (~0)

(I'E',0'n', no'I 0',00,1/I I Q oil IE,nt1, too, tt 0,00,00&

XL1+K (—) W'—"—ItI+v(v —1)+Itl (ltl —1)1/0]ig t+. (Sgni+tt ){ )K'—Z+tg t]

= ( ) (sgnt+~ot)l (tttfv(o sgnp1 " 'ttt(vf)(ttno, '—ooltl 1++ $!Nnooooo&(+[K' —tt(nt'ooltl O'IK-Q[ntoooo&

—(t1t,z- [ vie ~"~'+tt
] v [1 sgn~at't,

[ ~ [
—0) (otno'001 t I +nooooo&(ttt[K [ ttnooort I

—v2 (v3/2) '"~'~0 497m
I otiK—o ~, nt, oooo&] ~ (~1)

These matrix elements contain overlap integrals of
the g-vibration wave functions, which have been
evaluated numerically. "

Tb, Ho, Er, Ta. We shall try to give as complete as
possible an analysis for these four cases.

The analysis proceeds in the following manner.
Among the parameters determining the theoretical

V. AN'ALYSIS OF EXPEMMENT~ DATA cross sections the three parameters Ez, Ez, and Ep are

Up to now sca ttering experiments have been per taken from the low-energy spectra. The deformation

formecl only for four heavy deformed nuclei, namely, parameter po can, in principle, also be determined from
the low-energy data. We still consider Po to be an

as given in Ref. 4 contain an error in the phases. As a result of adjustable parameter, both because it is not too well
this error the z-parity selection rule discussed in that paper is determined by the Coulomb-excitation experiment, and
wrong. W'e acknowledge discussions with E. G. Fuller concerning

in order to check for over-all consistency between the
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values of Pp obtained by both methods. The other
parameters determine, crudely, the position, absolute
magnitude, and widths of the resonances. For the width
of the different dipole resonances we assume that they
only depend on the excitation energy and we describe
this by a power law, i.e., we put

(52)

All widths thus are described by two parameters Fp
and 8. Finally, we are left with two parameters, namely,
Eo, the position of the low-energy giant resonance,
and n, the exchange correction to the integrated cross
section" " (effective-mass correction of the hydro-
dynamic model).

The adjustment of the Gve parameters would be an
almost insurmountable job. Fortunately in this case,
different features of the cross section have different
sensitivity with respect to the different parameters.
Thus the parameters Eo, I'0, and e are practically 6xed
by the low-energy peak of the absorption cross section.
The remaining two parameters Pp and 8 are then de-

termined by the over-all splitting and by the height of
the upper bump, respectively. The 6tting thus consists
in an iterative procedure going through the above se-
quence of parameter adjustments until a satisfactory
6t has been obtained.

In odd-A nuclei the low-energy parameters are not
necessarily available from the low-energy data. In such
cases parameters from neighboring nuclei were used.
This procedure evidently introduces some uncertainties.
This is particularly true for the vibrational energy E7.
In these cases, therefore, E~ was also varied while

Gtting the theoretical curve to the experimental data.
The precision with which the different parameters

could be determined was highest for Ep (less than 1%),
Fp (about 5%), and Pp (about 10%).It should be noted
that the different parameters can be slightly changed
by making small changes in other parameters. A correct
determination of the region of best 6t would have
required extensive numerical computations. These were,
however, not carried out. The above-quoted uncer-
tainties include an estimated uncertainty resulting from
this interrelation of the parameters. Unfortunately, the
accuracy in the absolute magnitude of the experimental
cross sections still seems to preclude a complete inter-
comparison between absorption and scattering data.
The conclusions of our paper are thus based mostly on
6ts to the energy dependence of the different cross
sections, and no delnite conclusions can be drawn
concerning the parameter n, i.e., on the magnitude of
the integrated cross section.

%e now proceed to the discussion of the di6'erent
nuclei.

» J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950)."M. Gell-Mann, M. L. Goldberger, and W. E. Thirring, Phys.
Rev. 95, 1612 (1954).

TABLE I. Resonance parameters for erbium.

kg g gp go po
(keV) (keV) (MeV) (MeV) (MeV) Pp

11.68 '?58 1.46 12.1 2.2 0.29

5 0,

1.5 0.09

I I l l I I I

300- Er

bo

IOO

0 I I I I I I I I I I I I I
8 IO I2 I4 I6 18 20

E, MeV
22

Fxe. 1.7-absorption cross section of Er, experimental data
from Refs. 19 and 20.

» E. G. Fuller and E. Hayward, Nucl. Phys. BO, 615 (1962).
~As a result of a redetermination of the neutron-detector

eKciency, the cross sections in Refs. 19 and 28 have to be multi-
plied by 0.67 s,nd 0.75, respectively LE. G. Fuller and H. Gersten-
berg (private communication) g.

Erbium

The photon-absorption experiment" has been per-
forrned only on natural erbium in which the abundances
of the different even-even isotopes are 33.4% for ' Er,
27.1% for "sEr, and 14.9% for "PEr. The low-energy
spectra are well known for '"Er and "'Er, not so well
known for "Er.The low-energy parameters are practi-
cally the same for "'Er and "'Er. The computations
thus were performed with the parameters of the most
abundant isotope "'Er. The fit obtained is shown in
Fig. 1. The parameters are given in Table I."

The level scheme and the dipole strengths for the
giant resonances are shown in Fig. 2. The dashed line
shows the position and the strength of the transversal
mode if the coupling to the surface vibrations is omitted
(Danos-Okamoto picture). The main effect of the
coupling to the surface mode is a splitting of the
transversal mode by almost 2 MeV. Many vibrational
satellites also appear. However, only one of them
acquires, an appreciable dipole strength.

The scattering cross sections, which result with the
above obtained parameters, are shown in Figs. 3 to 5.
Both the elastic and the Raman scattering cross
sections are given. The largest cross sections are shown
in Fig. 3. The elastic scattering here is purely scalar,
since the ground-state spin vanishes. Tensor scattering
is included in Fig. 3, leading to the 6rst rotational state
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e8ects are largest. "However, the agreement is satis-
factory at lower energies.

The total quasi-clast. ic scattering cross section at
140' is shown in Fig. 7. The experimental points are
from Ref. 21. The agreement is excellent, bearing in
mind. that no adjustments have been made in the
parameters obtained from a fit to the absorption data.

CO
N'0

2

Holmium O

As compared with erbium, the situation in holmium

is, on the one hand, clearer because the nucleus is mono-

isotopic; on the other hand, it is more uncertain because
no consisteni analysis of the low-energy data is available
as yet. However, two p-band heads with spins —,

' and
11/2 at 514 and 687 keV, 2' respectively, seem to be

0
8 16

E, MeV
20 22 24

I'IG. 7. Total quasi-elastic scattering cross section of Er with
experimental data from Ref. 21, multiplied by 7/9.

indicated. This would yield for the p-vibration param-
eter about E~=500—700 keV. Such a value for E~ would
also agree with the systematics of the p-vibrational
energies in the neighboring nuclei. '4 Because of these
uncertainties, we took E~ to be a free parameter.

TABLE II. Resonance parameters for '"Ho.0
'0

O&2— Egg E~ Ep Ep Fp
(keV) (MeV) (MeV) (MeV) (MeV) Po 5 a Ref.

10.5 0.6 1.46 12.0 2.1 0.28 1.5 0.05 19
10.5 1.0 1.46 12.0 2.3 0.24 1.6 0.13 25

0
8 20 2416

E, MeV
Two absorption experiments exist in the literature. ""

We matched theoretical absorption cross sections to
both sets of experimental data. The parameters ob-
tained are listed in Table II."

The cross section corresponding to the data of Ref. 25
is shown in Fig. 8. These data suggest the onset of the

FIG. 5. Calculated inelastic scattering cross sections
of Er for scattering into the higher y band.

I.6 —~

)4

I.2—
FIG. 6. Angular

distributions of the
total quasi-elastic
scattering cross sec-
tion of Er for difer-
ent energies. The
dashed line shows
the angular distribu-
tion for pure dipole
scattering. The ex-
perimental points are
taken from Ref. 21..
Top: 11.5—14 MeV,
middle; 14—17.3
MeV, bottom: 17.5-
20 MeV.
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FIG. 8. y-absorption cross section of '"Ho from Ref. 25. The
theoretical curve is computed with the second parameter set of
Table II.

24 A. Faessler, W. Greiner, and R. K. Sheline, Nucl. Phys. 70,
33 (1965).

» R. L. Bramblett, J. T. Caldwell, G. F. Auchampaugh, and
S. C. Fultz, Phys. Rev. 129, 2723 (1963).

~' A similar observation has already been made by K. G. Fuller
(private communication) .

23 R. M. Diamond, B. Elbek, and F. S. Stephens, Nucl. Phys.
43, 560 (1963).

P HOTONUCLEAR EFFECT IN HEAVY DEFORM ED NUCLEI



]57ND GREI NERDANOS, ANAREN HOVEL, D

I.O

0.8

~ 06—
Co

0~—
O
CL

Cl
0.2—

I

I

I

I

I

I

I

I

I

l65
Ho

E, M.V ie
I, I

!2 l4

lL

Cg Cy CyCyCCl Cg 4

me and dipole strengths of the giant. 9. Level s he
d'pol

0
l0

A A
OO0 O.
OO
Cf Q
Q +

A
CA

O

Ol

hC

21 MeV'" The crossE2 ant resonance at about 2 egl
din to the data ose

ll idi ih' ceitisprac icashown separately, sine
'

p

and the strengths of the dipole states
uted with the rs p

n Fig. 9. The spectrum now is
h d l h

pare

H d86 Si:20:79 for
est forI'. T ls is afor

t the odd partice
onte
the dipole strength is sp i

1 close energies.
ross

g " gy

f~6tributions o
Fi s, 10—13. ecausection are shown in ig,

l2— I, K

II/2 II/2 l65

4" 8—

O
lhIO

O
w 4

l2 I4 l6 l8 20
E, NleV

lastic scattering cross s
0

sectionsx . 11.Calculated ine s ic s
for scattering into the two y an

IO

I . l

rin now has bothin the elastic scattering now
The scalar co tr'bution isscalar tensor coontributions. e

el b the as ehed line in Fig.
fh d and

F'can e
n scattering intos 0
er bandanb nds. In the lower y

ached. The correspon inding scatteringstates can be reac e .
t for the transition intocross sections ar p t ore lotted except or

f th di oI I

E= w ic
ed Because o ePen

'

head of t elu el s only the band
'

to the y bands
ho the scattering intopo

even-e
h P h d d hinto t eThe Raman scattering

'

shown in Figs. 12 an
h 1scattering cross section is s

2i,27toget er wih with the availab e experim

I I I I j

CP 2—
0)
Ol50

0

CP

2—O
'o

20 22
0

I4 I6 I88 IO I2

F, MeY

scattering cross sectionsic and inelastic sca tionsFrG.. 10. Calculated elastic
rin into the groun -s

d W. Greiner, Nucl. Phys.~' R. Ligensa an

222010
I0

E MeY

d inelastic scattering crossss sectionsFxo. 12. Calculate in
for scattering into t e

Phys.xel N. Stein, and D. C.. C. Sutton,~7 P. A. Tipler, P. Axe,
Rev. 129, 2096 (1963).



PHOTONUCLEAR EFFECT IN HEAVY DEFORMED NUCLEI 1121

J2—
ldd

The quasi-elastic scattering cross section computed
with the parameters obtained from the fit of the
absorption cross section to the Fuller-Hayward data"'
is shown in Fig. 15. Both sets of parameters evidently
give reasonable agreement with the scattering data.
However, considering the total mass of data together,
the Fuller-Hayward data give a more consistent over-all
picture. Firstly, the paraineter E~ is more in line with
the value expected from the low-energy spectrum (see
above). The same holds for the deformation parameter
Ps, which in this region of atomic number is around 0.3
instead of 0.24. Finally, the agreement with the scatter-
ing data of the two theoretical curves seem to favor
somewhat the Fuller-Hayward parameters. We believe
that two systematic sects are responsible for the
differences between the betatron data" and the positron-
annihilation data."First, it seems that the resolution
of the betatron experiment is higher. This shows up
the difference in the values Fo, viz. , 2.1 and 2.3 MeV.
Second, the neutron multiplicity corrections seem to
have been overestimated by the I.ivermore group. All

'O

2—
'QHD

N

0
8 JO J4 J6

E, MeV
20 22 24

these discrepancies lie within the stated systematic
uncertainties of the experiments. Each of our stated
reasons by itself would not be sufhcient to favor one
set of data over the other. However, taken together,
we believe that they justify our conclusion.

FIG. 15. Total quasi-elastic scattering cross section of "'Ho
computed with the first set of parameters of Table II, except
+=0.16; experimental points as in Fig. 14.

tQ

0
8 J4 l6 J8

E, MeV
20 22

! I I I I I

0
~ ~

165H

FIG. 13. Calculated inelastic scattering cross sections
for scattering into the higher y band of '"Ho.

Terbium

Measurements on '5'Tb have been performed by
various groups, three of which were availab]e to us.2~'0

The obtained resonance parameters are given in
Table III.

E~ is in good agreement with those of neighboring
nuclei. However, the deformation parameter Ps is in
both cases smaller than that obtained from Coulomb
excitation.

Both sets of parameters give reasonable 6ts, as
Figs. 16 and 17 show. The total scattering cross sections
are given in Figs. 18 and 19. The scattering data are
those of Ref. 21, except that they are multiplied by
0.823 and shifted in energy in the plots of Figs. 18
and 19.

Tantalum

L",
E
CJ

IO
Cu'O

2—
4ie
N

For 181Ta we used the data of three groups 25,28,29 two
of which coincide within the experimental errors. ""

TABLE III. Resonance parameters of '"Tb.

Zg E~ Ep Ep Fp
(keV) (MeV) (MeV) (MeV) (MeV) Pp 5 n Ref.

11.6 1.0 1.5 12.00 2.5 0.24 1.6 0.17 30
11.6 1.0 1.5 12.34 2.7 0.26 1.4 0.68 28,29

0
8 J4 l6

E, MeV
20 22 24

FIG. 14. Total quasi-elastic scattering cross section of "'Ho
from Ref. 27 (open circles) and Ref. 21 (closed circles multiplied
by 7/9). The theoretical curve is computed with the second set
of parameters of Table II.

"E.G. Fuller and M. S. Weiss, Phys. Rev. 112, 560 (1958).
~9 0. V. Bogdankevich, B.I. Goryachev, and V. A. Zapevalov,

Zh. Eksperim. i Teor. Fiz. 42, 1502 (1962) /English transl. :Soviet
Phys. —JETP 15, 1044 (1962)g.

'P R. I.. Bramblett, J. T. Caldwell, R. R. Harvey, and S. C.
Fultz, Phys. Rev. 133, 8869 (1964).
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FIG. 16. p-absorption cross section of '"Tb from Ref. 30. 1he
theoretical curve is computed with the 6rst set of parameters
of Table III.

FIG. 19. Total quasi-elastic scattering cross section of '"Tb
computed with the second set of parameters of Table III, except
n=0.175; experimental points as in Fig. 18.
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FIG. 17. 7-absorption cross section of '"Tb from Ref. 28I (circles,
multiplied by 1.07) and from Ref. 29 (dots). The theoretical curve
is computed with the second set of parameters of Table III.

FIG. 20. y-absorption cross section of '"Ta from Refs, 25 and 29.
(Data from Ref. 29 is multiplied by 0.652.) The theoretical curve
is computed with the Grst set of parameters of Table IV.
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159Tb
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0
8 IO 12 16
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FIG. 18. Total quasi-elastic scattering cross section of ~"Tb
from Ref. 21 (multiplied by 0.823; energy scale is shifted up by
0.6 MeV). The theoretical curve is computed with the 6rst set
of parameters of Table III.

The absorption cross sections are shown in Figs. 20
and 21 and the 6tting parameters are listed in Table IV.

The 6tting parameters differ in the values for E~ and

FIG. 21. y-absorption cross section of '"Ta from Ref. 28 (multi-
plied by 0.704). The theoretical curve is computed with the
second set of parameters of Table IV.

slightly for Eo. In this region one would expect ET=1.2
Mev, Ps=0.20-0.25 from neighboring nuclei. The
resulting total scattering cross sections in Figs. 22 and
23 are both in reasonable agreement with the experi-
mental data of Ref. 21.
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FrG. 22. Total quasi-elastic scattering cross section of ' 'Ta from
Ref. 21 (multiplied by 0.65; energy scale is shifted up by 1.0 MeV).
The theoretical curve is computed with the first set of parameters
of Table IV.

VI. SUMMARY

In this paper we have found good agreement be-
tween experimental data and theoretical predictions.
The obtained nuclear parameters were found to be
consistent with the values expected from low-energy
spectra. Also, the data on the damping parameters of
the giant resonance I'0 and 8 are consistent with
theoretical estimates. "

However, there seems to be an indication that the

TABLE IV. Resonance parameters for ' 'Ta.

jV~ jV jVp jVO I 0

(keV) (MeV) (MeV) (MeV) (MeV) Pp S

1.5.1 0.6 1.4 12.55 2.3 0.19 1.8
15.1 1.2 1.4 12.35 2.3 0.21 1.8

Ref.

0.03 25,29
0.12 28

"high-energy deformations" are slightly smaller than
the measured Pp's from the low-energy spectrum, as
shown in Table V."

Fn. 23. Total quasi-elastic scattering cross section of '"Ta
computed with the second set of parameters of Table IV. Experi-
mental points as in Fig. 22 (energy scale is shifted up by 1.2 MeV).

TABLE V. The deformation parameter po of '"Tb, '"Ho '"Er '"Ta, and neighboring even-even nuclei from Coulomb excitation
(pp, cE) and from the giant-resonance splitting (pp oR). The B (B2) values are taken from Ref. 31.pp, cs is evaluated from

B(B2;I;~ Ir) =
3' &Prp ( Ir 2 I;

(2Ir+1)~~
~

PPp(1+0.36Pp)
&

rp= 1.2 F.
47i- I; 0 I, —

Ir B(E2;I; -+If) (e'10 "cm') Pp, cz PO, GR (Ref.)

Gadolinium

Terbium

Dysprosium

Dysprosium
Holmium

Erbium

Hafnium

Tantalum

QT olfram

64

65

66
67

72

74

159

160

164
165

166

180

181

182

p+

3+'
3+
2

0+

0+
7—
2

7—
2

0+

p+

7+
2

p+

5+
7+
2

4.8 ~0.4
5.44~0.25
2.81~0.08
1.27~0.13
1.45a0.06

4.46+0.30

5.64&0.25
2.8 &0.4
2.41~0.07
0.63~0.04
0.65~0.13

6.4 ap.6

4.93~0.35
4.35~0.20
1.9 ~0.3
2.17~0.17
0.59a0.05
0.48&0.08

4.58~0.40
4.00&0.20
4.2 a0.5

0.31
0.32
0.32
0.29
0.31

0.28

0.31
0.33
0.31
0.31
0.32

0.32

0.26
0.24
0.24
0.26
0.26
0.24

0.24
0.23
0.23

0.24
0.26

0.28
0.24

0.29

0.19
0.21

(3o)
(28,29)

(19)
(2~)

(19)

(25,29)
(28)
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The deformation parameter Pp cE for odd-A nuclei
which are deduced from Coulomb excitation data are
in good agreement with those of neighboring even-even
nuclei. This is expected from the collective property
of Pp. In all cases, Pp, on taken from the giant resonance
is smaller than Pp, oE. More precise absorption and
scattering measurements are required to show whether
these indications are indeed true.

Some of these discrepancies may be associated with
the incompleteness of the employed model. First, of the
nuclear surface modes only the quadrupole mode has
been treated dynamically, and higher multipoles of the
nuclear deformation have been neglected. Even limiting
oneself to terms containing at most three amplitude
functions, evidently a large number of couplings with
the higher multipole modes are possible, e.g. ,
b&'&tb"'n"'t, where o. (3't is the creation operator for
surface octupole oscillations. Also, the higher static
deformations" can have an inhuence on the results.

The model also does not yet incorporate the low-

energy tails of the nonresonating high-energy absorption
mechanisms, viz. , the direct photo-ionization processes
and the quasideuteron effect. The existence of these
effects is suggested by the photon-absorption experi-
ments of Ambler, Fuller, and Marshak' with aligned
nuclei. Unfortunately, the experiments with nonaligned
targets are not sufficiently accurate to show the
difference in the shape of various cross sections which

would result from the presence of an additional scalar
component with a magnitude of about 15% indicated

by the experiments, ' a magnitude consistent with

theoretical expectations about these nonresonating
processes.

The small irregularities on the rising side of the cross
section are very likely the effects of the individual

particle structure which in the Brown-Bolsterli modeP'

would give up all the dipole strengths to the collective
states. Such states, perhaps, can be described in the
collective model by spin-isospin waves first considered

by Wild. '4

The modifications of the predictions which would

arise if the theory wouM be refined to take into account
these effects can be expected to be sma]l. Within these
limitations, agreement between theory and experiment
is such that one has to conclude that the collective
model is valid to a very high degree for nuclei of the
deformed region.
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APPENMX

We write Eq. (9) in the case of only electric-dipole
and -quadrupole radiation:

with
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using the Wigner-Eckart theorem (14) for the photon-interaction matrix elements. The meaning of the K,„ is

given in (13). M' is restricted to M'=Mr —M;. The sum of three 3j symbols over p shortens to a 3j and a 6j
symbol.
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Inserting (AS) and (A6) in (A4), we get
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Therefore we get from (A1), (A3), and (A7)

Tlus is Eq. (11) with the polarizabilities (12).
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