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The variational-perturbation method is applied to the study of angular correlations between electrons in
the helium atom. We compare the relative merits of various basis functions for calculating the correlation
energies. Starting from the hydrogenic and Hartree-Fock Hamiltonians as zeroth-order approximations,
we have performed detailed numerical calculations on the ground state of helium. Very accurate results
are obtained with a set of basis functions intermediate between the Hylleraas and the "configuration-
interaction" types of trial functions. The perturbation theory of the (1s 2s)'Sp and (1s 2s)PS& states is also in-
vestigated.

I. INTRODUCTIOÃ
' 'N carrying out variational calculations on the two-
' ~ electron system, trial functions depending explicitly
on the interelectronic separation e=r~2 have proved by
far the most accurate. This type of trial function,
proposed 6rst by Hylleraas, ' has given extremely
precise answers" when used in the context of the
Rayleigh-Ritz method for the total energy of the
ground state. More recently, it has also been shown'
that the Hylleraas basis set of trial functions gives very
good results in the framework of the variational-
perturbation method, starting from a hydrogenic
Hamiltonian as zeroth-order approximation.

However, there are certain problems in the study of
atomic structure which are not readily answered in the
Hylleraas formalism. In this work we will be interested
in precisely such a problem, namely, that of determining
the distribution of the correlation energy among the
various relative partial waves occuring in the wave
function of the system. Questions relating to this

*Research supported in part by the U. S. Air Force OfBce of
Scientific Research under Grant No. AF-AFOSR-130-66.

t Alfred P. Sloan Foundation Fellow, on leave for the academic
year 1966-67 from the Dept. of Physics, University of Massa-
chusetts, Amherst, Massachusetts.

f. Present address: Physique Thtforique et Mathematique,
Faculte des Sciences, Universite Libre de Bruxelles, Brussels,
Belgium.

s E. A. Hylleraas, Z. Physik 54, 347 (1929)
& 65, 209 (1930).' C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

p C. Schwartz, Phys. Rev. 128, 1146 (1962).' C. W. Scherr and R. E. Knight, Phys. Rev. 128, 2675 (1963);
Rev. Mod. Phys. 35, 4M (1963).

157

problem' —in particular the rate of convergence of the
expansion of the energy in relative partial waves and
the difBculties associated with obtaining reliable values
for the contribution from relative partial waves with
high angular momentum —have been of interest ever
since the development of the configuration-interaction
approach' to the study of many-electron atoms.

Perhaps an even more important consideration con-
cerning the variational-perturbation method, which
we shall use throughout this paper, is how to extend
variational techniques to many-electron systems. If
one elects to proceed via perturbation theory, which
strikes us as being the most reasonable approach, then
the natural zeroth-order starting point is the Hartree-
Fock Hamiltonian and not the simple hydrogenic
Hamiltonian nor even the Hartree Hamiltonian. These
last two Hamiltonians are indeed "simple, " because if
one chooses them as zeroth-order approximations all
the matrix elements which must be computed in
variational-perturbation theory involve only straight-
forward closed-form expressions, even with the
Hylleraas basis function. However, when dealing with
the Hartree-Fock Hamiltonian, as was done in paper I,7

' C. Schwartz, Phys. Rev. 126, 1015 (1962).
'See, for example, J. C. Slater, Quantum Theory of Atomic

Structure (McGraw-Hill Book Company, Inc. , New York, 1960),
Vol. II, Chap. 18.

s F.W. Byron, Jr., and C. J.Joachain, Phys. Rev. 146, 1 (1966),
to be referred hereafter as 8JI. In this paper, the following mis-
prints should be corrected: In Eq. (Sa), the fsrst term should be—(xp ) Hp Zp ( xp) and in Eq. (9b—) the last term should read—2Ephp'I p p).
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the computation of matrix elements of the nonlocal
exchange potentials between basis functions involving
increasing powers of the interelectronic coordinate
becomes a very arduous problem. Therefore, in order
to extend the usefulness of variational-perturbation
theory to more complicated systems, it is desireable to
look for a more tractable set of basis functions. Ideally,
one would like to find a type of trial function inter-
mediate between the Hylleraas form and the con-
6guration-interaction type, thereby retaining the
simplicity of the latter but still obtaining sufBciently
accurate results. We have thus explored in this work
some alternatives to the Hylleraas basis, with particular
attention to a basis "intermediate" between the
Hylleraas and the configuration-interaction types.

In order to illustrate the main relevant considera-
tions, we present the results of our calculations on three
problems. In Sec. II we study the second-order energy
of the ground state of helium, starting from a hydro-
genic Hamiltonian, and using various forms of the
6rst-order wave function of perturbation theory.
Section II is devoted to the calculation of the second-
and third-order energies of the (1s2s)'So and (1s2s)'S~
excited states of helium, again using the interelectronic
interaction as a perturbation. Finally, in Sec. III, we
calculate the correlation energy in the helium ground
state through fifth order in perturbation theory and
using the Hartree and the Hartree-Fock Hamiltonians
as starting points.

where, in atomic units, 8

H= ,'V, ' ,'V'2' 2/r~ —2—/rm+—1—/rg2.— —
We start from the zeroth-order equation

Hollo= Eogo,

where Ho is the hydrogenic Hamiltonian

(3)

Ho= 2Vp 2V2 2/r—g 2/r—2— —(4)

with the zeroth-order ground-state eigenvalue Eo= —4.0
a.u. (atomic units) and the corresponding eigenfunction

A(r' r2) = (8/~)e ""'+""
~

The perturbation H& is defined as

If we expand
H, =H Hp 1/r, 2. — ——(6)

We neglect the mass-polarization term and use twice the
reduced-mass rydberg as unit of energy.

II. SECOND-ORDER ENERGY FOR THE
GROUND STATE OF HELlUM

Let us consider the Schrodinger equation for the
helium atom:

and

(7b)
n=o

we get, for the erst-order wave function f&, the equation

(Ho Eo)4'1+ g4 El)40
an.d thus

a=(AI H~I 6)

(8)

(9a)

$1 (rl)r2) = P Clmnglmn(rl~r2)
L tn n

1—=—P C~~„r& r&"e '*""&e ~&'&PI, (cos8~~), (11)
4& l,m, n

where r& and r& denote, respectively, the larger and the
smaller of rj and r2. As noted by Schwartz, ' functions
of the type (11) are correlated in their radial part and
are likely to facilitate a great deal the calculation of
higher-3 components of E2. For reasons of convenience,
the quantities n and P were both set equal to 4.0. Since
the variational expression (10) for E2 actually decouples
into a sequence of minimum principles for each relative
partial wave, we can deal with a single partial wave at
a time, thereby working with relatively small matrices
when solving the system of linear equations which
result from Eq. (10).

In performing the variational calculations, we chose
two types of trial functions of the general class (11).
In case I, negative powers of rN in Eq. (11)were allowed

in a wave function containing 30 terms (in each partial
wave) satisfying —1 &&m+n&~4. In case II, no negative
powers were allowed in the trial function, and we used
a 36-term function (in each partial wave), including
all terms satisfying m+e ~& 7. In both cases we included

all contributions coming from partial waves through
i=20. Asymptotically, one expects' for large l that
E2(l), the contribution to E2 from each partial wave,
is given by

E,(l) = —(45/256)l 4 a.u. , (12)

which would predict, for example, a value of Eu(10)
= —1.76)& 10 ', which is 28%%uz larger in magnitude than

alld
E =O'oIH —E~IA)= —(AIHo —Eol&i& (»)

The first-order energy E& is readily evaluated with
the result E~= 1.25 a.u. In order to calculate E2 we note
that Eq. (8) for P& may be obtained by varying the
functional

Ply'~'j= 8'~'I Ho —Eo
I
&~')+2(4'I H~ —@I@)~ (10)

which, because of the completeness of the eigenfunctions
of Ho, gives a minimlm principle for E2.

We now turn to our choice of trial function fq'. As a
compromise between the Hylleraas type of basis
functions and the configuration-interaction methods,
we use a trial function of the form'
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TAmz I. The contribution of the various partial waves to the
second-order energy (in a.u.) of the ground state of helium in
hydrogenic perturbation theory. The three cases correspond to
the three choices of trial function discussed in the text.

E&(l) (case I) E~(l) (case II) Es(l) (case III)

0
1
2
3
4
5
6
7
8
9

10
&~ 11
Total

—0.125334—0.026495—0.003906—0.001077—0.000405—0.000183—0.000094—0,000053—0.000032—0.000021—0.000014—0.000042—0.157656

—0.125320—0.026475—0.003893—0.001070—0.000401—0.000182—0.000094—0.000053—0.000032—0.000020—0.000014—0.000041—0.157595

—0.125031—0.025903—0.003531—0.000874—0.000292—0.000118—0.000055—0.000028—0.000015—0.000009—0.000006—0.000013—0.1558/3

the value Es (10)= —1.38)& 10 a.u. found in our
calculation. For i=20 we find Es(20) = —0.944&&10 '
a.u. , whereas the asymptotic formula (12) gives
Es(20)= —1.10X10 ' a.u. , which is 16% larger in
magnitude than our variational result. Thus, as /

increases the calculated value of Es(l) gets slowly closer
to the predicted asymptotic value. Notice, however,
that the ratios Es(l)/Es(l+1) approach much more
rapidly their asymptotic value of L(l+1)/1)'. The
results through /=10 are given in Table I. We also
include in this table the contributions of all higher
partial waves obtained by actually calculating the
terms from /= 11 to /= 20 and using the asymptotic
form (12) to extrapolate the remainder. "

For comparison we also list in Table I the results of
a calculation done with a trial function of the
"configuration-interaction" type (case III):

We used 20 terms in each relative partial wave, i.e.,
all terms such that rN+rs~&7. Table I shows how poor
these results are (recall that we have a minimum
principle for each partial wave) when compared with
those obtained using a trial function given by Eq. (11).
This is particularly obvious for the higher partial waves.
Nevertheless, these values are more accurate than those
obtained by Schwartz' using a trial function with 30
parameters. The reason for this fact is that Schwartz
insisted on the restriction mrs&~l, I&&l in Eq. (13), which

' lVote added in proof. Dr. C. Schwartz has informed us (private
communication) that a more precise result than Eq. (12) is

Es(l) = —(45/256) (l+-', ) 4/1 —(5/4) (I+)) '+8(l 4)g.

Using this result, one finds Es(5) = —1.84X10 4 a.u. , Er(10)
~ —1.43&(10 ' a.u. , and E&(20) = —0.992)&10 ' a.u. , in very
good agreement with the calculations reported in the text. Using
this asymptotic formula, we estimate that the total error made
in calculating contributions from relative partial waves with
l ~& S is about —7.0X10 6 a.u. for case I.

fli(rl, rs) Q Clmn(rlmrs++rlnr m)e 2(rr+rs)—

4~ l,m, n

)&Pr (cosgis) . (13)

indeed must be satisfied by the exact first-order wave
function, as may easily be seen by considering the
expression for Pr in the form of a sum over the complete
set of eigenfunctions belonging to Ho. Thus we have an
example of the fact that building a trial function to
have some particular property of the exact wave
function does not necessarily yield an improved result
for the variational energy.

The values of E~ obtained with the two trial functions
of the (r&,r&) type are

alld

Es= —0.157656 a.u. (case I),

Es= —0.157595 a.u. (case II) .

(14a)

(14b)

We believe that the bulk of the uncertainty in our
results (14a) and (14b) comes from inaccuracies in the
relative partial waves with /~&5.We note that the values
(14a) and (14b) compare favorably with the most
accurate calculations of Knight and Scherr, who ob-
tained with a trial function of the Hylleraas type:

III. THE EXCITED STATES (Is2s)'Ss
AND (1s2s)'Si

Since we are not working with a ground state, the
functional (10) does Not give a minimum principle for
Ei in the case of the first singlet excited state (Is2s)'Ss.
However, it is easy to show that, although there is no
over-all minimum principle for E2, we do have a mini-

mum principle for all partial-wave contributions to E2
with /&~ 1. In the case of the first excited triplet state
(1s2s)'Sr, we recover a minimum principle for Es

i1 F. W. Byron, Jr., and C. J. Joachain, following paper, Phys.
Rev. 157, 7 (1967).

Es= —0.15'/666 a.u.

Thus the trial function used in case I gives slightly
better results than the oi) e employed in case II, although
both functions give very satisfactory answers. Of course,
the Hylleraas-type function is clearly desirable if
extreme accuracy is needed.

We also see in Table I that the results obtained by
using a "configuration-mixing" type of trial function

t case III, Eq. (13)j are accurate to only about 1%.
However, in many cases extreme accuracy in E& is not
needed, so that a trial function of the form (13) may
be quite useful in these circumstances. For example, in
calculating the correlation energies of four-electron
systems, ' the contributions arising from pairs of elec-
trons which are not in the same shell are relatively
small. Therefore, it is sufhcient to calculate these
contributions to only a few percent accuracy, so that
a trial function of the form (13) is quite satisfactory for
such a purpose. This is also illustrated in Sec. III,
where we investigate the perturbation theory of the
lowest-excited states of helium.
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TABLE II. The contribution of the various partial waves to the
second-order energy (in a.u.) of the (1s2s)'S2 and (1s2s)'Si states
of helium. The former state is designated by a superscript s, the
latter by a superscript t.

0
1
2
3
4
5

&~6
Total

E2l'& (l) (a.u.)
—0.106335—0.006239—0.000816—0.000199—0.000066—0.000027—0.000041—0.113723

Z &2' &(l) (a.u.)
—0.045316—0.001898—0.000137—0.000020—0.000004—0.000001—0.000001—0.047377

because this 'S~ state is the lowest one having total
spin equal to unity.

With He still given by Eq. (4), we have, for the space
parts of the relevant zeroth-order wave functions,

&Js* (2/2r)Le——-&2"1+"»(1—r,)+e—&~1+2"» (1—r,)j

and
E,'(4)/Es'(5) =3.95, (5/4)'=3. 82. (18b)

and

E2'———0.1137 a.u.

E2'= —0.0474 a.u.

(19a)

(19b)

As one should expect from symmetry considerations,
the quantity E2' is larger in magnitude than E&'.

With $1' and $1' calculated, it is a simple matter to
evaluate the third-order energy, since

E =Q I& —E I4 )—2EQoIW)

We have obtained

(20)

Thus we see that even for quite small values of l the
asymptotic behavior is fairly well obeyed as far as the
ratios of successive terms is concerned. Using this fact,
we have extrapolated the contribution from partial
waves with /~& 6. Our results for E2 are then

and

P's ——(2/2r) Le ""+"' (1—rs) —e
—'"'+'""(1—ri) j, (16b)

Es'= 0.0035 a.u.

Es'= —0.0025 a.u.

(21a)

(21b)
where the superscripts s and t remind us that the wave
functions (16a) and (16b) must be multiplied by singlet
and triplet spin functions, respectively. The correspond-
ing zeroth-order energy is Eo'=ED'= —2.50 a.u. The
first-order energy Ei is easily obtained from Eq. (9a)
with the results Ei'= (338/729) a.u.=0.4636 a.u. and
Ei' (274/729) a.u. =——0.3759 a.u.

For the trial functions $1' and fi' to be inserted into
the variational expression (10), we choose the following
con6guration-interaction forms:

1
$1 Z ~l (rl r2 +rl r2 )

4~ t,m, n

Xfe (i~t'1+1P"2&+e Hsn+l~n& jp (cose ), (17a)

and

Therefore, we get, from Eqs. (19) and (21),

E2'+ Es' —0.1102 a.u——.
and

E2'+ Es'= —0.0499 a.u.
Now, de6ning

(22a)

(22b)

(23)

and

hE'= —0.1096 a.u. (24a)

one can obtain "experimental" values of hE' and hE'
by subtracting, respectively, the quantities (Es+Ei )
or (Es+Ei') from the experimental value of the total
energy of the 'So and 'S& states considered. These
experimental values are

1
pl Q +l (r1 r2 +r1 r2 )

5E'= —0.0511 a.u. (24b)

&& Le & 1+*'~" 2& e "~~1+1~»&jPl (cos012). (1'7b)

The scale factors in the exponents were 6xed at the
obvious choice n=4.0, P=2.0 without being varied.
Using 30 parameters in each partial wave, we have
calculated the contributions of terms through the l=5
partial wave.

The results are listed in Table II. In particular, it is
worth noting how rapidly the values of E2'(l) decrease
with increasing l. This fact is in accordance with the
conjecture of Schwartz' that the terms E2'(l) should
decrease like l ' for large l, as compared with a decrease
of the type l for the terms Es'(l). In fact, we find

E2'(4)/Es'(5) =2.49, (5/4)4= 2.44, (18a)

Thus we see that with just E~ and E3 we are within a
few percent of the total value of DE. Therefore, we

conclude that a trial function of the con6guratioo-
interaction form (13) is suflicient to deal with inter-

shell-type correlations between electrons, at least in

those cases where an error of a few percent is not
important.

IV. HARTREE-FOCK PERTURBATION
CALCULATIONS

As a 6nal example, w'e turn to Hartree-Pock pertur-
bation theory in helium. Our starting point is the
Hartree-Pock Hamiltonian

Hs —21712—2 Vs' —2/ri —2/rs-—
+2Ve(rt) —V, (r&)+2Ve(rs) —V, (rs). (25)
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In this expression, Vq is the "direct" Hartree-Fock With thefunctionsPi andes determined variationaGy,
potential the quantities Es, Es, E4, and Es are readily evaluated

by using the formulas (9b) and (20) together with

E4= —Qpl &o—Eolgs) Esg1 lofti&
—2Es(~4I&i& (30a)

whereas V, is the "exchange" Hartree-I"ock potential,
which, acting on a given function f(r), yields

EHF =Ep+Ei= —2.86167 a.u. (28)

In a previous work, ~ we started from the Hartree-
Fock Hamiltonian (25) and evaluated the corrections
to the Hartree-Fock energy (28) through fifth order in
perturbation theory by using Hylleraas-type trial
functions with ten parameters. In what follows, we
want to re-do this calculation with trial functions of
the form (11) containing 21 terms Pi.e., m+nb&5 in

Eq. (11)] for each partial wave and including the
contributions from all partial waves through l=6. As
in BJI, we determine the first-order wave function by
using the variational expression (10) and the second-
order wave function P,. by varying the functionaP

F.L~"]=8"I~.-E.I~"&
+2@s'I &i—EiI Pi&—2Esg s'I 6& (29)

V, (r)f(r) = Po*(r') f(r')dr'po(r). (26b)
Ir—r'I

In the above definitions, the object pp(r) is the 1s
single-particle Hartree-Pock orbital such that

A (r»rs) A (ri)4'o (rs) (27)

where Po(ri, rs) is the ground-state eigenfunction of the
Hartree-Fock Hamiltonian (25), yielding for the
Hartree-Pock energy

Es= Qsl&i —EiIA& —2Es(AI&s& —EpQil&i&
—2Esg o I go&

—2E4(A I4'1& (3ob)

From our experience with the Hylleraas basis we used
n=P=3.72 for this calculation. For the Hartree-Fock
function we used the four-parameter function of the
form

4

4 (r)=Ear"'e "' (31)

where the numbers a;, n;, and p; are given by Roothaan
et al 'P In BJ.I we made use of a simple two-term analytic
function for the is orbital, but because the trial function
used in the present calculation contains higher powers

of ri and. rs than did the trial function of BJI, it was

found that this simple Hartree-Fock function leads to
errors in the evaluation of matrix elements which result

in errors of about 1.5% in Es. With these remarks made,

the calculations are identical to those described in BJI
except for the fact that the evaluation of the matrix

elements (especially those of the exchange potential) is

simplified considerably by the use of the (r»r&) basis.

We illustrate this increase in computational simplicity

by writing the expressions for the only two nontrivial

matrix elements occurring in our calculation, namely

Q'i „IV~Ifp .„.) and gi „IV,I/i „.). Thus we have

4

I V&Ifi, )= g ,aIa2 W( +n'n+2, m+m'+2, n,+n;+1, P, ts, y,+y;)
2l+1 s, i=i

+W(n+n'+2, n;+n;+1, m+m'+2, p, y,+y;, ts)+W(n, +n;+2, n+n'+1, m+m'+2, y,+yt, p, ct)

+W(n, +n,+2, n+n'+2, m+m'+1, y,+y;, P, n)+W(n+n'+2, n;+n,+2, m+m'+1, P, y;+y;, n)], (32)

Q'tmnI VeIPvm'n'&= P a;a,[W(l+n+n, +2, m+n'+2, m'+n;+1 l, y,+isP, is—n+isP, 7;+ion)
(2l+1)' '.~'-i

+W(l+n+n;+2, n'+n, +1 l, m+m—'+2, y;+-', P, y;+-', P, n)

+W(l+n'+n;+2, n+n;+1 l, m+m'+2—, y, +siP, y;+siP, a)

+W(l+n'+n;+2, m'+n+2, m+n, +1 l, y;+sP, se+sP, 7,+on)—

+W(n+n'+2, l+m'+n, +2, m+n, +1 l, P, y+—,'n, y;+$n)-
+W(n+n, '+2, l+m+n, +2, m'+n;+1 l, P, y;+s—n, y;+on)], (33)

'P C. C. J.Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. Phys. 32, 186 (1960).
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0
1
2
3

5
6

&~7

Total

Z2 (l) (Hartree-jock)

—0.01347
—0.01894
—0.00317
—0.00092
—0.00035
—0.00016
—0.00008
—0.00015

—0.03725

E&(l) (Hartree)

—0.01798
—0.02475
—0.00365
—0.00100
—0.00038
—0.00017
—0.00009
—0.00015

—0.04817

TABLE III. The contribution of the various partial waves to the
second-order energy (in a.u. ) of the helium ground state in
Hartree-Pock and in Hartree perturbation theory.

(see Table I). In the Hartree-Fock case, the exchange
potential has a significant effect on Es(0) and on Es(1),
but even here we see that its importance decreases
rapidly with increasing l, so that the partial-wave
contributions in the Hartree and Hartree-Pock cases
are nearly equal for /) 2.

Table IV gives the quantities E2, E3, E4, and E5 for
the Hartree and Hartree-Fock cases, both as calculated
in the present work using the (r&,r&) basis and as
calculated in BJI using a Hylleraas set of basis func-
tions. We see that for both the Hartree and Hartree-
Fock cases we obtain for the correlation energy'
(neglecting contributions from orders higher than fif th):

TAm.E IV. The contribution through fifth order of perturbation
theory to the correlation energy (in a.u.) of the helium ground
state, both for the Hartree and Hartree-Fock zeroth-order
Hamiltonians. The results of 3JI are included for comparison.

Hartree-Pock
Energy This paper 8JI

E2
E3
E4
E5

—0.03725
—0.00377
—0.00085
—0.00016

—0.03719
—0.00346
—0.00109
—0.00006

Total —0.04203 —0.04180

Hartree
This paper 3JI
—0.04817 —0.04804
+0.00717 +0.00713
—0.00129 —0.00121
+0.00026 +0.00024

—0.04203 —0.04192

"H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).

in terms of the basic integrals W originally dined by
James and Coolidge" (see also Appendix II of BJI).
To make the comparison with BJI complete, we have
also done this calculation using the Hartree Hamiltonian

Hp= —
s Vr —

p 7s 2/ri 2/t's+Vg(rr)+Vg(rs) (34)

as our starting point.
The results for Es (in the Hartree-Fock and Hartree

cases) are shown in Table III. The most striking poin. t
is the very large reduction in the magnitude of Es(0)
due to the effect of the average self-consistent potential.
In the Hartree case, all the contributions of higher-
relative partial waves to E2 are nearly equal to the
corresponding contributions in the hydrogenic case

E „=—0.04203 a.u. , (35)

compared with the value E„„=—0.0419 a.u. found in

BJI and the "exact" value E '""'=—0.04205 a.u.
We note that the present calculation represents an
improvement over our preceding o~e, particularly in
the computation of E4 and E5 for the Hartree-Fock
case. This is not surprising, since in BJI the Hartree
case was treated with a 12-parameter trial function,
whereas in the Hartree-Fock case we used only a
10-parameter trial function. Note that the terms
omitted in BJI for the Hartree-Fock case were those
containing higher powers of the variable N=r~2. The
inclusion of such terms induces considerable com-
putational labor in calculating the matrix elements of
the exchange potential. By choosing the basis functions
(11), one circumvents nicely these difficulties. All the
integrals can be done systematically in closed form
and the only (low) cost of the improvement is the
inclusion of more parameters in the trial function,
which is a trivial matter when dealing with modern
computing machines.

ACKN OWLEDGME3%TS

We would like to thank Professor Kenneth M.
Watson for his interest in this work and Dr. David Judd
for the hospitality extended to one of us (C. J. J.) at
the Theoretical Group of the Lawrence Radiation
Laboratory during his stay in Berkeley.


