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The use of a continuum Bethe-Goldstone equation, recently proposed by Mittleman, to describe electron
scattering by an alkali atom, is generalized by introducing the concept of continuum Bethe-Goldstone
equations of successively higher order. In analogy to a method recently used for calculating mean-value
properties of atomic stationary states, this makes possible the computation of net increments of a scattering
amplitude or phase shift in successively higher orders, defined so that the sum of all net increments to order
N (for an N-particle system) is the exact amplitude or phase shift. Variational equations that might be used
to solve a continuum Bethe-Goldstone equation of order » are derived. Solution of a system of inhomo-
geneous linear equations is combined with integration of an integro-differential equation similar to a con-
tinuum Hartree-Fock equation. The formalism should be applicable to elastic scattering of an external

particle by any many-fermion system.

I. INTRODUCTION

HE concept of nth-order Bethe-Goldstone equa-
tions has recently been proposed as the basis for
a systematic procedure for computing the correlation
energy and other stationary state mean-value proper-
ties of many-electron atoms.!> There is no difficulty,
in principle, in applying the same method to other
many-fermion systems, in particular to nuclei and to
the electrons in solids and molecules, although com-
putational details make applications to atomic electrons
much simpler than to these other systems.

In the present paper, a further generalization of the
Bethe-Goldstone equations will be proposed, in the form
of a procedure allowing successive approximations to
a scattering amplitude or phase shift for an external
electron or nucleon interacting with a many-particle
scattering system. For convenience, this will be de-
scribed in terms of electron-atom scattering, but the
formalism can equally well be applied to other many-
particle systems.

The Bethe-Goldstone equations developed in nuclear
theory,? following the work of Brueckner,* are the time-
independent Schrédinger equations for pairs of particles
embedded in the Fermi sea of the remaining N-2 par-
ticles of an N-particle system. The two-particle Bethe-
Goldstone wave function is constrained to be orthogonal
to N-2 specified occupied orbitals of the Fermi sea. It
has recently been proposed by Mittleman® that this
same approach can be used in scattering theory. In par-
ticular, scattering of an electron by an alkali atom can
be approximated by a continuum Bethe-Goldstone wave
function for the external and series electron, constrained
to be orthogonal to the occupied orbitals of the closed
shell atomic core. The wave function satisfies boundary
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conditions appropriate to one bound electron and one
free electron of specified momentum.

An nth-order Bethe-Goldstone equation has been
defined as the time-independent Schrédinger equation
for  particles embedded in the Fermi sea of the remain-
ing N—» particles of an N-particle system.!? For sta-
tionary states, this is most conveniently described in
terms of the complete set of Slater determinants
®;;...%5" ** obtained from some specified normalized refer-
ence state determinant,

By=detd1(1)- - -on (), (1

by replacing occupied orbitals ¢;, i< N, by orthonormal
unoccupied orbitals ¢,, a> N, taken from a complete set.
Then the ordinary (second-order) Bethe-Goldstone
equation for pair (i7) is equivalent to a variational cal-
culation with trial function

W= Po+2 0 P25 i%;0+2ap Pij*Pei. (2)

A Bethe-Goldstone equation of order #, for » specified
occupied orbital indices ijk- - -, is equivalent to a varia-
tional calculation with a trial function that is a linear
combination of ®, and all Slater determinants whose
subscript indices are a subset of ijk---. For example,
the wave function ¥,; would be a linear combination
of determinants @0, q%a, (p],b’ @kc, (I)i]_ab, @ikac, (I)jkbc,
®;;;*%¢, where indices 75k are fixed but abc take on all
possible values. With this definition, the Bethe-Gold-
stone equation of order N is just the N-particle Schrsd-
inger equation.

A stationary-state property of an N-particle system,
defined by the mean value of some operator F, can be
expressed as a sum of the net increments of this mean
value obtained from Bethe-Goldstone wave functions
of successively higher order. Let the matrix elements of
F in the complete basis of Slater determinants be de-
noted by F,, .Then the gross increment of F, computed
for Bethe-Goldstone wave function ¥;;..., of order #, is

AFij"-:ZM Zl’ (F}w_ 5pyF00)Cp*Cy/Z“ C“*C,‘. (3)

The indices u or » are summed over all Slater determi-
nants used in constructing ¥;;.... The net increment of
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F, denoted by fi;..., is defined to be the difference be-
tween AF;;... and the sum of net increments of all orders
less than # that have indices that are subsets of ij- - -
As a consequence of these definitions, the exact mean
value of F is expressed as a sum of all net increments up
to order V. This provides a practicable method of cal-
culation if the net increments of order greater than two
or three are found to be negligible. Calculations on Be
and Ne atoms indicate that this is true for net incre-
ments of the electronic energy.®7

The present paper is concerned with the extension of
these ideas to properties of the wave function, such as
a scattering amplitude, that are not expressible as sta-
tionary-state mean values.

II. BETHE-GOLDSTONE EQUATIONS
FOR SCATTERING

Because of the complexity of processes that can occur
in scattering by a many-particle system (inelastic scat-
tering, induced ionization) the present discussion will
be limited to elastic scattering of a single external
particle. Extension of the formalism to include more
complex processes is straightforward.

Let the scattering atom be represented by a Hartree-
Fock wave function ®y, Eq. (1). Then the zeroth-order
approximation to a wave function that describes scat-
tering of an external electron is

Pr=detpi(1)- - -px (V) (N+1), 4

where ¢ is a continuum solution of the Hartree-Fock
equation
3C0¢k= €k¢k ) (5)

where 3Co is the Hartree-Fock one-electron operator de-
fined for state ®,.8 Since ¢, is a continuum function, if it
were normalized to make (¢r,¢x) equal unity, the elec-
tron density would vanish in any finite region. There is
no self-consistent effect on the occupied bound-state
orbitals ¢;, i<N. The function ¢y, for wave number £,
determines a set of zeroth-order phase shifts §;(0). For
consistency with earlier notation, the symbol “det” in
Eq. (4) means [(NV41)!]"/2 times the antisymmetrizing
operator.

The first-order Bethe-Goldstone equation with index
1 is equivalent to a variational calculation with a trial
function of the form

V=P, 0000, (6)

The indices ab refer to members of a complete set of
normalized orbitals that are orthogonal to all occupied
orbitals ¢; of the atomic Hartree-Fock reference state
®,. The index % refers to an unnormalized continuum
orbital of momentum %, orthogonal to the N occupied
orbitals ¢; but not to the unoccupied orbitals ¢,. The

6 R. K. Nesbet, Phys. Rev. 155, 51 (1967).
- "R.K. Nesbet Phys. Rev. 155 56 (1967).
8R. K. Nesbet Proc. Roy. Soc. (London) A230, 312 (1955).

R. K. NESBET

156

variational equations for ¥, discussed in more detail in
Sec. ITI, below, are equivalent to the Bethe-Goldstone
scattering equation discussed by Mittleman.? Since the
function ¢ satisfies equations that differ from Eq. (5),
it will in general have different phase shifts. For this
reason the continuum function determined by Eq. (5)
will be denoted by ¢x(0), and the continuum function
determined variationally from Eq. (6) will be denoted
by ¢x(7). Since this function is not normalized, ¥; itself
is not normalized, but ¢, and the coefficients ¢;% contain
an arbitrary common numerical factor.

Corresponding to ¢x(0), there is a set of gross phase
shifts A;(0), which by definition are equal to the net
phase shifts of order zero, §;(0). The modified phase
shifts obtained from the ansatz of Eq. (6), through the
function ¢4 (3), will be referred to as gross phase shifts
Ay(7). Then the net phase shifts are defined by

81(2) = Ay(3)— 8:(0) , O]

in analogy to the definition of gross and net increments
of stationary-state mean-value properties used previ-
ously.!:? The intuitive meaning of 8,(¢) is clear—it repre-
sents the change in phase shift at momentum % due to
virtual polarization of the orbital 7, neglecting any in-
teraction with the polarization of other orbitals.

The extension to higher-order effects is obvious. The
Bethe-Goldstone equation of order #, for a set of »
indices 4j- - -, is equivalent to variational calculation
with a trial function expressed as a linear combination of
ok Poe Pbe ... Peve ... including all determinants
Wlth occupled orb1ta1 1nd1ces belonging to subsets of
17+ ++. The continuum function ¢x(ij---) determines
gross phase shifts Ai(37- - ). A net phase shift §,(7--+)
is defined as the difference between the gross phase shift
and the sum of all net phase shifts of lower order with
indices belonging to subsets of 77- - -.

By definition, the sum of all net phase shifts up to
order IV is the exact phase shift if inelastic processes
cannot occur. Obviously an inelastic process would re-
quire a trial wave function with more than one con-
tinuum function ¢5. The assumption that the normal-
ized orbitals ¢;, ¢, form a complete set means that in
principle a function like ®;%*, representing a static cor-
rection to the Hartree-Fock approximation for the scat-
tering atom, is already included in Eq. (6) and in its
higher-order generalizations. In practice, it would be
desirable to include such terms explicitly if they have a
significant effect on the phase shifts. Since ¢y is not as-
sumed to be orthogonal to the unoccupied orbitals, such
terms can be included without changing the structure of
the theory.

In Eq. (6), the orbitals ¢, and ¢, describe polarization
of occupied orbital ¢; and distortion of the continuum
function ¢, near the scattering atom. To describe these
localized effects, it should be adequate to include orbitals
¢, from a discrete complete set of normalized functions
that vanish at infinite distance from the atom. Then
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the asymptotic behavior of ¥; is entirely determined
by the continuum function ¢. The same remark is valid
for Bethe-Goldstone functions of higher order.

III. COMPUTATIONAL METHOD

When core excitations are neglected, Mittleman has
shown that his derivation leads to the Bethe-Goldstone
equations.® This is easily seen to be equivalent to the
use of Eq. (6) if the latter is written in the form

V= ad;(1, ---, N—1)X*N, N+1), )

where @ is an antisymmetrizing operator, ®; is the
(N—1)-particle Slater determinant obtained by re-
moving ¢; from Py, and X* is a two-particle Slater
determinant

Xt = det{ps(N)pr(N+1)+2 o ¢a(N)ps(N-+1)ci2%} . (9)

The sign of @ in Eq. (8) depends on the position of
orbital ¢;, and @ includes a normalizing factor. As
written here, X is not a spin eigenfunction. The func-
tions X, considered by Mittleman are the spatial factors
of the singlet and triplet components, respectively, of
X, In general, Eq. (6) is a mixture of spin eigenstates,
which can easily be projected out by taking linear com-
binations of functions with different values of M g for
the atom and m, for the external electron. For the sake
of simplicity, this will not be done here, and Eq. (6),
which describes scattering of a polarized electron
(definite m,) by a polarized atom (definite M g), will be
used.

With these remarks, the Bethe-Goldstone equations
follow directly from the condition®

(%, (H-E)¥)=0, (10)

where this notation indicates integration over variable
sets 1, -+, N—1, leaving an integro-differential equa-
tion in the remaining two variable sets that determines
X#(N, N41). This is equivalent to requiring that the
functional derivative of (¥;, (H—E)¥,), taken with
respect to variations of X%, should vanish.

When the explicit orbital expansion given by Eq. (6)
is used, this variational condition implies two state-
ments. First, the ordinary partial derivative of (¥;,
(H—E)¥,) with respect to each of the coefficients ¢,
should vanish. Second, the functional derivative with
respect to variations of the continuum function ¢(z)
should vanish, subject to the constraint that ¢; remain
orthogonal to the occupied orbitals ¢; of reference state
®,. The first of these statements implies

@, (H—-E)¥)=0, ¢, d>N, (1)

a set of inhomogeneous linear equations for the coeffi-
cients ¢;#%. The second statement leads to an integro-
differential equation for ¢x(3),

Feodr(1)+ X as ¢2®(i| R| @)y

= (E—Ho)pr(i)+2 i \os, (12)
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which differs from the continuum Hartree-Fock equa-
tion (5) by inclusion of a polarization term. The coeffi-
cients \; are Lagrange multipliers needed to make ¢,
orthogonal to the orbitals ¢;, j<N. Here Hoo is the
Hartree-Fock energy of the scattering atom. The oper-
ator R is defined by the equation

(i| R|a)¢p=(i| Q| @)ps— (| Q| B) b, (13)

where Y ;; Q(i7) is the two-particle operator in the
Hamiltonian H. If the orbitals ¢;, /<N, are Hartree-
Fock orbitals (eigenfunctions of 3Cy), then Eq. (12)
implies that

M= as ¢*%(1j| R|ab). (14)

Equations (11) and (12) must be solved simultaneously
or iteratively.

In analogy to the variational principle of Hulthén,®
the trial wave function ¥; can be required to satisfy the
additional condition that the functional (¥;,(H— E)¥;)
should be equal to zero. Since Egs. (11) are already im-
posed, this is equivalent to requiring that

(@%, (H—E)¥)=0. (15)

When expressed in terms of matrix elements this be-
comes a formula that determines the parameter E,

E=Hopt+ext+ (k| k)™ Xap (ik| R|ab)co®.  (16)

Here ¢, is the Hartree-Fock energy of the continuum
orbital (%42 in atomic units), and R is the operator de-
fined by Eq. (13). Equation (16) also follows from Eq.
(12).

The last term in Eq. (16) represents a correction to
the energy of the scattering atom. This is most easily
seen by considering an orbital ¢, that vanishes at in-
finity, so that (%] k) can be set equal to unity. Then this
orbital could be taken to be one of the set ¢, giving an
energy correction

AE;=Y", (ik I Rl ak)co*, an

identical with the formula for the first-order Bethe-
Goldstone energy of a stationary state.’® When ¢, does
not vanish at infinity, it will have finite amplitude
throughout an infinite volume, and the norm (k| %) be-
comes infinite. The coefficients ¢;*® are finite under these
conditions, and the individual integrals (ik|R|ab) are
finite. Hence the last term in Eq. (16) vanishes unless
the sum Y .5 diverges. In practice, the complete set of
normalized orbitals would be truncated, and the sum
> ab» would consist of a finite number of finite terms,
thus precluding any finite energy shift AE;. It is for this
reason, to avoid an attempt to expand the unnormaliz-
able function ¢y, as a linear combination of normalized
orbitals, that it would be desirable to include terms like
&% in Eq. (6) if correlation corrections to the free scat-
tering atom are important.

® L. Hulthén, Kgl. Fysiograf. Sillskap. Lund, Forh. 14, 1 (1944).
10 R. K. Nesbet, Phys. Rev. 109, 1632 (1958).
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IV. DISCUSSION

In this paper the proposal by Mittleman,’ to use the
two-particle Bethe-Goldstone equation to describe elec-
tron scattering by an alkali atom, has been extended to
a general theory of one-particle scattering by a many-
particle system. The definition of net phase shift incre-
ments of successively higher orders makes it possible
through a hierarchy of n-particle Bethe-Goldstone equa-
tions to obtain phase shifts of arbitrary accuracy.

A similar method has been shown to be practicable
for calculation of the correlation energy of light atoms.®"7
In addition to the evaluation and manipulation of large
numbers of matrix elements of the atomic Hamiltonian
for normalized atomic orbitals, for which the methods,
developed in stationary-state calculations should suffice,
there are special problems arising from the nature of the
continuum orbital ¢ in scattering theory. Coulombic
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integrals must be evaluated in which the charge densities
contain oscillatory as well as exponentially decreasing
functions. In using the method outlined in Sec. 111, a
continuum integro-differential equation, Eq. (12), must
be solved. However, since this equation has the same
formal structure as the Hartree-Fock equations, con-
siderable experience in the necessary numerical methods
is available.

A very useful test of the practicability of the pro-
posed method would be calculations of the phase shifts
for low-energy elastic scattering of electrons by He and
Ne atoms. Excellent calculations on He ! and Ne !?
have recently been published, and the present method
should be tested by its ability to refine or to systematize
such work.
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A microwave measurement of the 4sy/5-4p,/2 separation in He* has been obtained, using a method which
involves time-resolved optical detection. Population changes induced by the microwaves in the 4s (m=4%)
state are observed via intensity changes in the 4686 A (n=4 — 3) transition. The result of eleven measure-
ments of the separation is 1766.04=7.; MHz. The lifetime of the 4s,/, state was measured to be (1.352£0.20)

X 1078 sec.

I. INTRODUCTION

HE fine structure of the #=4 level in He* has been

the subject of several experimental investigations.

Series! performed a high-resolution optical study of the

\686 A radiation (n=4— 3 transition in Het) pro-

duced in a hollow-cathode discharge tube, and reported

agreement with the theory except for a large shift of the
42Py, level downward from the predicted position.

A similar study by Herzberg? showed satisfactory
agreement with the theory for all components of the
\4686 A line.

Roesler and DeNoyer® investigated the helium
hollow-cathode discharge and concluded that differ-
ential Doppler displacements of the spectral lines origi-
nating from the four n=4 levels could cause large shifts
in the experimentally determined positions of the levels.

* Supported by the National Science Foundation.
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Roesler and Mack* studied the A\4686 A radiation
from a hollow-cathode discharge tube and reported
over-all agreement between the experimentally deter-
mined positions of the components and the positions
predicted by the theory, including quantum-electro-
dynamic corrections. The accuracy of these optical
measurements was not sufficient to test the quantum
electrodynamic theory to better than a few percent.

Lea, Leventhal, and Lamb? have reported the results
of preliminary measurements on the 425y5-4%Py2 and
42P3/5-42Py)5 separations. Their method employs a dc
electron beam to produce excited He* and a rf field to
induce 42S1/2-42Py/2 or 42P;—-4%Sys transitions which
are observed as intensity variations in the A1215 A
(n=4— 2) radiation. Their result for the Lamb shift
is 1765420 MHz, which agrees with the theoretical
value of 1769 MHz obtained from the work of
Erickson.®
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