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Phonons in Bravais Lattices*
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This work establishes some exact results in lattice dynamics. For arbitrary temperatures, an elastic sum
rule is derived which expresses the minus-erst moment of the displacement correlation function with respect
to the frequency in terms of the isothermal elastic constants, and yields the asymptotic form of the structure
factor of the lattice for small wave numbers. It is shown that at zero temperature the low-lying excitations
of the crystal are sound waves, the velocity of which can be expressed by the second derivatives of the
ground-state energy with respect to homogeneous deformations. This implies that the speci6c heat in the
limit of temperatures tending to zero follows a Debye law of the same form as for a gas of noninteracting
phonons. These results are derived for an ideal Bravais lattice by taking into account the entire anhar-
monicity of the dynamics. As a mathematical tool, a diagram technique is developed which avoids the
concept of the harmonic approximation as a zeroth-order step.

I. INTRODUCTION

HE purpose of this paper is to demonstrate for an
ideal Bravais lattice the connections between the

isothermal elastic constants, the displacement reponse
function in the long-wavelength limit, the low-lying
excitations, and the asymptotic behavior of the specific
heat at small temperatures. Ke will show that one can
generalize the relevant results which have been derived
in the harmonic approximation in such a way that the
nonlinear dynamics is completely taken into account.
These generalizations are of interest because they
establish exact relations between experimental quanti-
ties and because they can be used as a powerful check
on the consistency of approximations.

To handle the anharrnonic eBects, extensive use is
made of diagrams as well as functional derivatives of
diagrams to express the interesting quantities 1ike the
free energy, phonon propagator, etc. It is shown to all
orders of the perturbation expansion that at zero tem-
perature the long-wavelength excitations are phonons,
the velocity of which is given in the usual way by the
elastic constants. This in turn yields the Debye law for
the specific heat of the crystal. The anharmonic effects
do not inhuence the general connections between the
derivatives of the ground-state energy with respect to
homogeneous deformations, the excitation spectrum,
and the specific heat; they only renormalize the numeri-
cal values of the elastic constants. Furthermore, we can
express the static self-energy of the phonons of small
momenta at arbitrary temperature by the isothermal
elastic constants. This yields an elastic sum rule for the
displacement-displacement response function as well as
the asymptotic behavior of the static correlation func-
tion of the lattice for l,arge separations.

This paper is divided into four major sections. First
(Sec. II), the diagrammatic expansion for the free
energy, the Green's functions, etc. , is reported. The
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perturbation theory for anharmonic crystals has been
developed to a large extent. ' ' In those treatments, the
harmonic part of the interaction always plays a dis-
tinguished role. For our purpose it is much more con-
venient to handle the whole interaction on the same
footing; for this reason we start the diagrammatic
expansion by using an artificial Einstein model as the
unperturbed Hamiltonian. Renormalization of the per-
turbation theory is necessary in order to introduce the
physical propagators and in order to use strains instead
of forces as the independent variables. These renormali-
zations are carried out in the same fashion as that of
De Dominicis and Martin' in another context.

In Sec. III we define the stress tensor in terms of the
forces acting on the surface of the crystal. It is shown
that this tensor equals the derivative of the free energy
with respect to the lattice deformations. The elastic
constants which are essentially dered as the second
derivatives of the free energy with respect to homoge-
neous deformations are expressed by the asymptotic
values of the phonon self-energy operator. The equilib-
rium conditions studied by Huang' are derived in
any order of the anharmonic contributions. Section III
closes with a brief discussion of the problem of con-
structing consistent approximations, l.e., approxima-
tions yielding identical results for the elastic constants
independent of whether they are calculated as differ-
ential quotients of the free energy or by determining the
self-energy diagrams for the phonons.

In Sec. IU, a sum rule is derived which expresses the
minus-first moment of the imaginary part of the phonon
Green's function in terms of the isothermal elastic con-
stants. This elastic sum rule, together with the f sum
rule, yields the asymptotic form for the structure factor
of the lattice which diverges for small wave numbers.
Furthermore, it is shown that at zero temperature the
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3 R. A. Cowley, Advan. Phys. 12, 421 (1963).
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Green's function for small momenta and small energies
has the same form as in the harmonic approximation;
the anharmonic effects enter the values for the elastic
constants only. Ke also discuss why the last result is
not valid at nonzero temperature.

Finally (Sec. V), it is shown that the specific heat for
temperatures tending to zero has the same form as for
the gas of noninteracting phonons. This result is a
generalization to arbitrary order in the anharmonic
effects of the corresponding proof carried out by Harron
and Klein' in first-order perturbation theory.

II. PERTURBATION THEORY

A. Notation

'U =detA;;. (1b)

It is more convenient not to use the E(X)'s but to sub-
tract the c numbers X(l~) to get a set of independent
dynamical variables q (X):

Z(X) =X(X)+m-'I'q (l ) . (2)

In terms of the displacement operators q (li), the
Hamiltonian of the system reads

(3)

(here and in the f'ollowing one has to sum over repeated
indices),

a'= —' P L(1/m)ir'(li)+e'q'gE)].

According to the adiabatic hypothesis of Born and
Oppenheimer, 7 they may be written as

.„p„"~,)=~-t2a, , "a,„z[x(~,), ",x(l~)],
pa), =a/aX(x) j. (5)

' T.H. K. Barron and M. L. Klein, Phys. Rev. 127, 1997 (1962}.
~ M. Born and K. Huang, Dynamical Theory of Crysta/ I.attices

(Clarendon Press, Oxford, England, 1956}.

We want to discuss a Bravais lattice composed of X
partides of mass m. The particles are labeled by integer
vectors n= (iii,n2, ii3), where rt, =0, &1, &2, R(ni)
and ir(ni) denote, respectively, the ith component of
the position and momentum operator of the nth atom
in the Schrodinger picture. For the sake of brevity, we
shall use the notation X= (ni).

I et us introduce a three-by-three matrix 3,, The
A,,'s will determine the shape of the unit cell of the
lattice; they enter the theory as parameters and have
to be appropriately determined later. We define vectors
X(n) by

X(ni) =A;,n;.

For the moment we imagine tha, t X(n) is the mean
equilibrium position of the nth particle. Ke denote the
volume of the unit cell by

Here L&'" is the energy of the 1V particle system where the
nth atom is fixed at X(n). In the simplest approxima-
tion, E" is the sum of the two-body potentials. IIO is
the Hamiltonian of X independent oscillators located
at X(n). Each of them has the same frequency e. It is
convenient to start with such an Einstein model as
zeroth-order term. , because we can now treat the whole
interaction on the same footing. At the end of the cal-
culations we have to let e tend to zero.

The operators in the Heisenberg representation are
defined as usus], e.g. , (ti= 1)

(o(M) = e'~'p(A)e '~'

Equation (3) yields Lq, IX—Ho)=0; consequently, the
Hermitian operators q(lit) and mPd) obey the rela, tions

(a/at) q (l~t) =m "'m(Xt), (7a)

Lt(a/at)q(lt) q( t)]=a(~,l ) (7b)

The phonon Green's function' "' of the crystal is
defined by

D(l~iti, h, t2) = (—i) Tre-e" (q (l~,ti) q (l~,tg)}/Tre-e . (Sa)

Here P is the reciprocal temperature P=1/To (he=1).
The times ti and t~ in Eq. (Sa) are pure imaginary
numbers:

t, =(—t)~;, 0&r,&P,

and ( ) denotes the time ordering from 0 to —jP. The
function D is of importance because its resonances in
Fourier space give the excitation energies of the lattice,
in particular, the acoustical phonons. These resonances
can be measured almost directly, e.g. , as peaks of the
cross section in neutron-scattering experiments. » D
denotes the function which we obtain when H is replaced
by IP in Eqs. (6) and (Sa). Equations (7a), (7b), and
(4) yield the equation of motion for D',

f(ia/at, )'—e'jD'(~, t„X,t,)= a(~„~,)a(t,—t,). (9)

We are furthermore interested in the calculation of the
thermodynamical potential

I"=1n Tre &~,

because it determines the free energy F and thus the
equilibrium thermodynamics,

F= —7'/p.

3. External Disturbances

It is useful' " to introduce an external time-depen-
dent Geld, the Hamiltonian of which is given in the

s A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski,
3fethods of Quantum Field l'heory ie Statistical Physics (Prentice-
Hall, Inc. , Englewood Clips, New Jersey, 1963}.

~ Q, Qaym, Ann. Phys. (N. Y,}14) 1 (1961}.
i0 G. Baym, Phys. Rev. 121, 741. (1961);V. Ambegaokar, J, M.

Conway, arid 6. BayIn, in L,attice Dywamics, edited by R, F.
&allis (Pergamon Press, Inc., New York, 1965},p. 261.

» 6. Qaym and L. P. Kadanoff, Quantum Statistical 3IIechanics
(VV. A. Benjamin, Inc. , New York, 1962}.
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Schrodinger picture by

(12)

In the interaction picture with respect to Hf,
' we write

s(t,t, ) = exp( —~

and define the generating functional

tV=in Tre &~(S( iPO)), —

as well as the set of the v-point Green's functions

G„(i~i/i X„t„)=Tre &~(S( ipti) q
—('Arri)

(14)

Fio. 1. Unrenormalized diagrams
contributing to IV—TV'.

e. r

/I I I
I I

I

l
I I

r+&/! I
I

I I
I (

'\ I /

XS(t,t,) v (X„t„)S(t„0))/e~ (15a.)

Notice that H'(r) =E(lir)p(Xr); here and in Eq (15.a),
Iv(Xt) is defined by Eq. (6).

I.et us use the abbreviations 1=X&t~, 2=X2t2, etc.
Equation (15a) then reads in a more compact form

G„(1 v) = Tre ~~(S( iPO) q —(1) Iv(v))/e~. (15b)

The first and second derivatives of 8" with respect to
E are given by

[8/Il( —ZE(1))]W=G(1),

[8/8( —iI'(2) )jG(1)=Gz(12) —G(1)G(2)
=G(12) .

(16)

tV~ I,
G(1) m'I'[(R(X, ))—X(X,)],

Gs(12) -+ zD(liifi lysis}.

(18a)

(18b)

(18c)

C. Perturbation Exyansion

In the most primitive version of a diagrammatic
representation for 8"and for the G„'s we treat the opera-
tor (H H'+H') as a perturb—ation. Wick's theorem
yields the expansion of the interesting quantities. The
diagrams are built up by v vertices (v= 1, 2, ) and by
free propagators G', where we write G'=iD'. The rules
for evaluating and drawing diagrams are:

(i) For each v vertex, write down —iV(1 . v).
Here V(1)=oi(ii))+E(1), V(1 .v)=s„(lii . .!i„)8(tits)
X8(teals) o(t„ it„), if v&2. A v vertex is represented by
a dot with v legs. We write G'(12) for each propagator
between 1 and 2, say; it is represented by a dotted line
joining those points.

Here and in the following we drop the index of the one-
point functions to simplify the notation, i.e., G(1)
=Gi(1). After having developed the diagrammatic tech-
nique we shall take E as time-independent and. zero
within the sample. We have to provide that E/0 on
the surface of the crystal in order to discuss a system
under external stresses. This procedure will give us the
desired functions, viz. ,

(ii) Legs of vertices at which a propagator is attached
are called internal points. One has to sum over all X's

and to integrate over all times between 0 and —iP for
the internal points. The other points of the vertices as
well as the free ends of the propagators are called
external points of the diagram. A diagram is a function
of its external points.

(iii) To get the correct contribution due to a given
diagram, one has to take into account some weight
factors:

(a) If a propagator has both ends at the same vertex,
we associate it with a factor -', .

(b) For each set of / propagators running between
the same pair of vertices, we write a factor 1/(l!).

(c) The diagram gets a further factor 1/Sy, where Sy
is the symmetry number. To determine Sy one
has to label all the vertices of the diagram; Sy is
the number of permutations not changing the
topological structure of the labeled graph.

A diagram with v external points is called a v diagram
if all those v points are ends of propagators (and not of
vertices). A diagram is called linked if there is a connec-
tion between any two points of it. There are three
linked cluster theorems of interest in the following,
which can be derived in the standard fashion. '4

N~ —W'=[sum of all linked 0 diagrams], (19a)

G(1)= [sum of all linked 1 diagrams], (19b)

G(12) = [sum of all linked 2 diagrams]. (19c)

Here 8" is the function which we obtain when H'=0
s,nd z„=0 for v=1, 2, . in Eq. (14). Examples of
diagrams contributing to IV—W', G(1), and G(12) are
shown in Figs. 1, 2, and 3, respectively. The last diagram
of Fig, 3 is a graph with symmetry number Sy=2.

D. V~ Renormalization

We want to use the strains G(1) instead of the forces
Vi(1) as the independent variables of the crystal. For
this reason we have to perform a generalized I egendre
transformation. As far as the mathematics is concerned,
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FIG. 2. Unrenormalized diagrams
contributing to G(1).

(i') The Vi-renormalized diagrams are built up by
vertices V„(I =2, 3, .), Go propagators joining two
points, and propagators G(1) with one end 1 which has
to be attached at a vertex. The G(1) propagators are
symbolized by a wavy line. The diagrams do not
contain accumulation lines.

(ii') The same as (ii).
(iii ) The rules (iii) (a), (b), and (c) remain valid,

but we have a further prescription.
(d) Each set of II G(1) propagators ending at the same

vertex has associated with it the weight factor
1/(~I)

this problem is almost the same as the problem of re-
placing the 1-point sources by condensate wave func-
tions in superQuid Bose liquids. " In the case of Bose
liquids, the transformation mentioned has been studied
at length by DeDominicis and Martin. 4 Hence we have
to outline the concepts only as far as it is necessary for
the discussion of the following sections. For full details
the reader is referred to Ref. 4.

A propagator in a diagram is called an accumulation
line if the diagram can be split into disconnected pieces
by cutting this line; an accumulation line is called a
trivial one, if one of those pieces is a simple Vi vertex.
A diagram is called Vi-irreducible if all its accumulation
lines are trivial ones. Each of the Figs. 1, 2, and 3
shows in its erst row graphs having one and two non-
trivial accumulation lines, respectively. The graphs of
the second rows have one and two trivial accumulation
lines, respectively, while the examples given in the last
rows have no accumulation line at all. Only the exam-
ples given in the first rows of those figures are not
V~-irreducible.

Every V& vertex is joined to the rest of the graph by
a propagator; consequently, the V~-irreducible diagrams
are functionals of iG'Vi—= —iG'(11)Vi(1). We denote
the set of all Ui-irreducible 0 diagrams by X( iG'Ui)—
The set of all Vi-irreducible 1 diagrams may be written
as G'(11)E(1;—iG'Vi), because the external point is
joined with the rest by a propagator. Obviously,

X(1 —iG'Vi) = (8/5L —iG'(11)VI(1)j)X. (20)

In Fig. 4 are shown those V~-renormalized diagrams
which can be obtained from the second rows of Figs. 1,
2, and 3, respectively, by replacing —iG'V~ by G. The
examples given in the third rows of Figs. 1., 2, and 3
are also Vi-renormalized graphs.

Equation (21) is a nonlinear relation between Vi
and G. X(G) has been constructed as the sum of all
Vi-renormalized 0 diagrams. Equation (20) yields

&(1)=L~/~G(1)3X, (22)

and thus E(1) is the set of all Vi-renormalized diagrams
having one external vertex point. The second derivative
of X)

M (12)= i[8'/8G(1) 5G(2)]X (23)

is very important because it is the self-energy operator
of the phonons. Differentiating Eq. (21) with respect
to —iE(2), we obtain from Eqs. (17) and (23) the
Dyson equation

(—i)t (D') '(11)—M(11)]G(12)= 8(12) . (24)

Here we have used the fact that X and E depend. on

E(2) only implicitly via the Vi dependence of the G's.
In the first row of Fig. 5 examples of V~-renormalized

diagrams contributing to X are shown. In the second
and the third rows of this figure are drawn the first and
second derivatives corresponding to Eqs. (22) and

(23), respectively. In this figure the correct weight
factors are indicated because they are changed by
performing the functional derivatives.

The simplest contribution to the right-hand side

(RHS) of Eq. (19b) is given by —iG'Vi. All the other
diagrams are obtained if we replace in the set of
V&-irreducible 1 diagrams —iG'V~ by the set of all 1

diagrams, i.e., by 6. Hence we get

G(1)= —iG'(11)Vr(1)+G'(11)E(1;G) . (21)

In. Fq. (21), X appears as a functional of G(1).It does
not contain V~ vertices anymore. Diagrams of this type
are called V~-renormalized graphs. The diagram rules
are:

I

I

i+~
I

Pro. 3. Unrenormalized dia-
grams contributing to G(12).

"Iam indebted to Dr. H. Schmidt for dravring my attention to
these similarities.



E. V& Renormalization

A sequence of m(m)2)G' propagators in a Vi-
renormalized diagram is called a cyde if the cutting of
any two of those propagators splits the graph into
disconnected parts. A graph is called a skeleton diagram
if it does not contain cycles. The 6rst diagram in the
last row of Fig. 1 has a cycle with m= 2, and the second

graph in the last rom is a skeleton diagram; the analo-

gous statement is true for the diagrams of the 6rst row
of Fig. 4. The statement is also true for the graphs
drawn in the last rows of Figs. 2 and 3 and the graphs
of the second and third row of Fig. 4 under the condition
that we amputate the propagators which join the
external points with the vertices.

There is never more than one V~ vertex in a skeleton
diagram. Thus we treat V2 separately. I-et4 denote the
set of all skeleton diagrams not containing a V2 vertex.
4 is a functional of G'; its derivative is denoted by

&(12;G') = (»)P/~G'(12)]C'[G']. (26)

g is the set of all skeleton diagrams (except V2) with

two external vertex points. The simplest contribution
to M in Eq. (23) is V2. All the other contributions are
obtained if one replaces 6' in Z by the whole set of linked
2 diagrams, i.e., by G [compare Eq. (19c)].Thus we

Obtain
M(12) =Z(12; G)+V~(12) .

The RHS of Eq. (19a) is not simply identical with
X—$VyG because there are diagrams which are counted
twice in this expression. The correct result is

1V—&'= —kG(1) (G') '(12)G(2)
—iVi(1)G(1)+X. (25)

Equations (25), (21), and (24) achieve the desired
Legendre transformation. Vi(1) has been eliminated
from all diagrams; the G(1)'s are now the new variables.
These three equations and the underlying dehnitions
are the necessary and sufhcient tool for the analysis of
the following two sections. But in order to calculate
the speci6c heat we have to perform a further partial
summat1on.

FIG. 5. In the erst rom,
V1-renormalized contribu-
tions to X are drawn. In the
second and third rows the
6rst and second functional
derivatives, respectively, of
those diagrams with respect
to the G(1) propagators are
shown.

After having replaced Go by G in 4, Eq. (26) may be
written as

~(»)= (2i) P/~G(12)]C [G].
A similar consideration leads to

(28)

III. ELASTIC CONSTANTS

A. Invariance Properties

It(1)= —iV, (»)G(l)+9/~G(1)]C. (29)

The diagrams for C and its derivatives just de6ned do
not contain 6' propagators V2 vertices or cycles. These
diagrams are caHed V2-renormalized diagrams. The
diagram rules are:

(i") Each V2-renormahzed diagram is composed
of V„vertices (v=3 4 . ) propagators G(12) joining
the two points 1 and 2, and propagators G(1) with one
end. Only skeleton diagrams are to be considered. The
G's are represented by solid lines. Rules (ii') and
(iii') remain valid.

In Fig. 6 the Vg-renormalized analogs of the first
column diagrams of Figs. I—4 are shown. The re-
normalization of 5' requires some nontrivial topological
considerations and yields the formula

W+Pno ——4 —Z(12)G(12)——', in[i(G') '—M](11)
~iG(1)[(Go)-i+iV,](I2)G(2) —iV, (1)G(1) . (30)

[Notice that io is equal to E" for the regular arrange-
ment of the lattice points given by Eq. (1a).]

The achievement of the V2 renormalization has been
the elimination of the 6"s from the diagrammatic
expressions. Only the physical quantities 6 and 6
occur in the final expressions, Eqs. (27), (29), and (30).

I ro. 4. V1=renormalized diagrams
contributing to 8' —8' (6rst row),
G(1) (second row), and G(12) (third
row).

Af

/

The lattice structure of our system has the conse-
quence that the excitation states of the crystal form
neither a representation of the group of translations nor
a representation of the group of rotations. The function
E' in Eq. (5), of course, is invariant under such trans-
formations. These symmetries and symmetry breakings,
respectively, imply some relations for M(12) and X(1)
which we want to study.

Translational invariance means

E"[Xi,",X~]=&'P'i+a, ",Xw+a] (3»)
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Here X' is the set of all diagrams of X which do not
contain G propagators, Obviously, families belonging
to different 1.'s have no common element and

FIG. 6. V2-renormaHzed
diagrams coI tributing, to
C, E(1),and M |'12), respec-
tively.

for an arbitrary vector a. Hence Eq. (5) yields the
lnvarlance property for the vertices

g I&, (niiIXI X,)=0. (31b)

In every diagram for M(12) in Eq. (23) the external
points j. and 2 are attached to some vertex and hence
we get from Eq. (31b)

p M(niiiti, ngi..tg) =0. (32)

Rotational invariance means

P(ZI, ~ ~ ~,Ziv] =E"[QZI, ,QZiv] (33a)

for an arbitrary rotation Inatrix Q. Equation (5) yields

1&„(nIII' ' 'n„I» QZ1»' ' QZiV)

=n,„, n;„;„a„(niji. n,j,; Zi, ZII). (33b)

Here we have generalized the de6nitions of Sec. II in a
trivial fashion, because we do not impose the condition

(1a) for the points Z; at which the derivatives have to
be performed. One can write Z; as the sum of X(n) and
an appropriate 1-point function, this being indicated by
the notation

I„&I(XI 1i,)=I&,PI . 4; XP I)

+m—'i'O(XI), , X(Xi&&)+m I&'G(XII)]. (33c)

The v„o's are the vertices of the deformed lattice.
Let L be a diagram of X which does not contain any

one-point function and Let X~ be the family of all

diagrams of X which differ from I.by 6's only. Figure 7

shows the three such families; I-'s are written in the
column. The diagram rules (iii') lead. to

X~(I„,O', G) = 1-(I&„o,G'),

because the diagrams of the X~ family are obtained by
performing the Taylor expansion of the ~„~'s in Eq.
(33c) at the points (XI, ,XN). For the sake of clarity
we have indicated in Eq. (34a) all quantities which X
and I depend on. The same argument which gave

Eq. (34a) yields

—PI&»—iii(l)G(1)+X'(I&„,G) = —PI&,0. (34b)

X'(I&„,G',G„)=1.(I&„G,Q 'O'Q)

I.(v o G')-
=X~(v„G',G}. (35b)

equahty slg11 1s a consequence of Eq. (33b)
(~=X+G)»d th«act that each vertex point of i. is
joint with some other internal point; hence one can shift
the Q's from the vertices to the propagators. The
second equality sign is a consequence of the diagonabty
of O'G'(nII II2g) ~ 5" A similar equation holds for X'.
Using Eq. (34c) we get

—iI&I(1)G.(1)+X(G.) = X(G)—iI&I(1)G(1). (35c)

Here again we have not written out the e„and Qo de-
pendence of X explicitly.

Let us consider an irhnitesimal rotatior now. To
evaluate Eq. (35c) up to first order in ~, we use Eqs.
(35a) and (22) and. find

[—iI&I(ni)+E(nit)]co;, [X(nj)+m-"'G(n jt)]=0. (36)

If we perform the derivative of Eq. (35c) with respect
to G(1), we obtain [compare Eqs. (35a) and (22)]

[—iI&1(niji)+E(ni jiti)]Q;„;,
=[—ii i(n, i,)+E(n,i,t„G)].

To evaluate this equation also up to Itrst order in ~ we
use Eq. (23) and get

[—iei(n, j,)+E(n, jit,}]~,„,
=iM(niiiti, n2jptg)cv, „.,[m'I'X(nag)+G(nIigtg)]. (37)

»

FIG. 7. The 6rst
members of three X~
famihes.

where one has to suin over all different diagrams L.
Let us write the rotation matrix 0 as the sum

Q=I+~. We introduce the nota. tion

G„(nit) =G(nit)+co, &[m"'X(n j)+G(njt)], (35a)

and obtain from Eq. (34a)
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In Eqs. (36) and (37), a&;, is an arbitrary skew-sym-
metric matrix. Notice that the summation convention
applies not only to the indices of ~ but also for repeated
ts andes.

B. Equilibrium Conditions

Up to now, we have not used the assumption that our
system is a crystal. This assumption can be formulated
as follows: For a given temperature T' and for given
time-independent surface forces E(X), we can choose a
matrix A;P in Eq. (1a) such that the equations of
motion are solved by G(1)=0 for all points X(n)
reasonably far from the surface. Because of Eq. (2) this
is equivalent to the statement that (up to surface
strains) the equilibrium positions of the atoms are
arranged in a regular array. There is, of course, no possi-
bility of proving such a general assumption; one can
only check its consistency and analyze its consequences.

In the following, we assume that A,, in Eq. (1a)
agrees with A;;. This is for convenience. But this con-
vention is not necessary, because one could express the
arrangement of the (R(X))'s in Eq. (2) also by choosing
appropriate 1-point functions G(X). A change of A;;, e.g. ,

f (N 0/m )0'ji )cojgj|

$0)j2 i2

0

dt2M (nri|tz, n2 j2t2)X(n2i2)X (n&j) .

We have explicitly indicated the time integration to
avoid confusion, If we introduce the matrix

S..,.g= Lm/(NV) j dt,

X Q ~(nlit1 n2~t2)X(nlj)X(n21) (43)
n II12

we may write the foregoing equation in the form

The derivative of Ii with respect to the deformations
I;; for I;,=0 has to be equal to the stress tensor. This
equation can be used to calculate Ao;, for given 0;, and
that transformation from the stresses to the strains is
a special case of the transformation discussed in
Sec. IID.

A further necessary condition for equilibrium follows
from Eq. (37) after multiplication with X(nij) and
summation over ni [we use Eq. (41)j:

k
—goi (38a) S'g, w —S"u =gi &k —Ok ~& (44)

can also be represented by introducing the displacements

G„(ni) = 'm' I~uX( jn), (38b)

where the deformation matrix I;, is given by

We want to calculate the second derivative of the free
energy with respect to the deformations now. Equations
(42a), (38b), and (23) yield

u, ;=8A;A, (A') '1,;.
Equation (21) with G=O yields —iV&+%=0 or

zp, )= —it —i.,(x)+x(z)$.

(38c) (8'/Bu, ,dugi)F = (imT') dtgdt,

X g M(n&it&, n2kt2)X(n& j)X(n2l) .
&1&2

The stress tensor for the lattice is de6ned by

0; = —Lm'I'/(N'U) jg E(ni)X(nj), (40)

so that Eq. (39) yields

0; =i''I'/(N'0) jP I iw&(ni)—+K(ni) jX(nj). (41)

Because of Eq. (36), we conclude that the stress tensor
is a symmetrical matrix: 0;;=rj;. We remark that
Eq. (39) does not hold for poin. ts on the surface of the
crystal; but those points do not contribute to Eqs. (40)
and (41) in the limit N —+~.

A second equilibrium condition is obtained if we
consider a change of the free energy Ii under the
deformations (38c). Equations (11), (18a), (25), and
(38b) yield

(8/au;;) F= (—T') (8/Bug)

Xl X(G.)- I (1)G.(1)j. (42.)
Using Eqs. (22) and (41), we arrive at

M(12) depends on the time difference tr —tn only. Hence
comparison of the last expression with Eq. (43) leads to

(tYV) '(a'/au, ,au~i)F-=S;,,„, (u;, =0). (45)

C. Representation of the Elastic Constants

It would be complicated to continue the discussion for
a general stress tensor 0-;, , therefore, we restrict our-
selves to the most important case of an applied pressure

0 ~

p, s.e. ,
po( ..

We introduce the matrix

Xa,,i= —p'(&;;4~—&o&;a), (47a)

and de6ne the isothermal elastic constants of
lattice by

Cig. W= Sij,ki—Xik,j). (47b)

The condition (44) and the trivial symmetry S;;~i
=Sag, ;; Lcompare Eq. (43)$ yield the usual symmetry
relations' for C.

(N'0) '(rt/Bu;, )F=Op, (u,,=0). (42b) Cij, kl Cji, k/ ~ij, &k= Ckf, ij ~ (47c)
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F(001, ' ' )0)p) =
0

dt's dt„e'(""&+"'+"""

Equation (43) may be used to get a representation of
the elastic constants other than Eqs. (45), (47b). To
figure this out, we introduce Fourier transforms in the
usual way' ' ":

where
(49c)

and ~ runs over the reciprocal lattice L~X(n)/22r is an
integer].

Using the reQection symmetry of the interaction and
Eq. (32), we may write for the self-energy operator

P(qi . . . q )= P g
—'[qlX(~1)+ +qP"(0p))

Qj ~ ~ ~ Qp

XF(n.. .n„), (48b)

for any function F(1 v). Here 001 ——(22riT')ni, a1=0,
etc. , and q, is a vector of the first Brillouin

zone. Because of the invariance of our functions under
time translations, we may write, e.g. ,

~(q1001ii,q2002i2) ( 2P) ~ +,Ojif (qiil q2i2, 0)1) ~ (49a)

If the volume of the crystal tends to inhnity, we may
neglect surface contributions. Hence the invariance
under discrete translations yields

~ 2(q 00) = (—2)P»n2LqX(n)/2]

jV;&(q,0) =Z,2, ;)qjq&+0(q') . (51)

The coefficients Z;~, ;~ are symmetric with respect to
interchanging i and k or j and l. Equation (50) yields

Z„,, 2) = —
2 Q Ct 3E(ni0, 0kt)X(n j)X(nl) . (52)

XjV(ni0, 0kt)e'"'. (50)

M;1.(q, 0)) vanishes for q=0. For small momenta and
zero frequency, we write

jif (qiii, q2i2; ~1) =&&(qi+q2) jib,„,(qi, 001), (49b) On the other hand, we obtain from Eq. (43)

S;, 2)+S,)2, , ['m/, (iV——U)] dt( —P M(nii0, n2kt)LX(ni j)—X(n2j)]LX(nil) —X(n2l)]

+Q X(nij)X(nil)Q &(niiO, n2kt)+Q X(n2j)X(n2t)Q M(niiO, n2kt)) .

In this expression we can perform the limit to an
infinite crystal; this would not be possible in Eq. (43).
The last two terms vanish because of Eq. (32) snd in
the limit. l)l'~~ comparison with Eq. (52) yields

S;,, 2)+S;1,2, = 2 (222/'U)Zg„j j. (53a)

This formula, together with the definitions (47a) and
(4'lb), yields

C;;,„+C, i, i.;——2(m/W)Zg„, i. (53b)

The symmetry relations (47c) and Eq. (53b) lead to the
final result

Cjj21= (j)2/'U, ) (Zjijj+Zj k, j 1 Z, jj,2 1) ~

D. Consistency of Approximations

The equations derived do more than establish an
exact relation between the derivatives S;,, ~~ of the free
energy and the limiting values Z, l, ,~ of the phonon self-

energy. The given proof is also of relevance as far as
approximations are concerned. If one performs an
approximation A", say, to calculate the free energy Ii,
one can use Eqs. (45) and (47b) to get approximate
expressions for the elastic constants. On the other hand,
one can start with an approximation A for the self-

energy and use Eqs. (51) and (54) to get the C;;,2&. It is

not a trivial problem to choose the approximations in
such a manner that the results for the elastic constants
calculated by method A~ and A~~, respectively, are the
same.

In deriving the results for the elastic constants, we
have not used the complete information of the equations
of Sec. IID; essentially we have only applied the Kqs.
(21), (22), (23), and (25). Hence we conclude: To get
a consistent scheme of approximations one can start by
approxima, ting the functional X. The corresponding
approximation 3~ for M and E is obtained by perform-
ing the derivatives of Eqs. (22) and (23). The approxi-
mation A" is then given by Eq. (25). In approximating
X, one has to fulfill Eq. (35c), i.e., one must not approxi-
mate X by a set of graphs which violates the rotational
symmetry of the system. This can be achieved by
choosing the desired set of I.graphs (diagrams not con-
taining one-point propagators) and then approxima, ting
X by the sum of all X~ classes Ldiagrams obtained from
I. by attaching G(1) propagators in all possible ways]
generated by those L's.

The simplest approximation is given by X, i.e., by
the set of all diagrams not containing any G' propagator.
According to our convention G(1)=0, we obtain X=0,
~(4ti, ) 2t2) = 2)2(4&2) tI(tit2) (compare with the first
column of Fig. 5). Equation (25) yields 8=2)0. The free
energy is approximated by the energy of the rigid lattice
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and the self-energy of the phonons is given by the second
derivatives of E". This is the classical harmonic ap-
proximation for the lattice. The equilibrium conditions
of Sec. IIIB have first been discussed by Huang' and
by Leibfried and Ludwig" for this approximation.

Another interesting approximation is given, if we
choose as the set of I- diagrams all rings which can be
constructed with only V2 vertices and 6' propagators
(Fig. 7). The contribution to F is

Using Eq. (51), we obtain

(58a)—[~*~.~tq~qt+0(q')3D~-(q 0)= ~'-,

or, if we apply Eqs. (53a), (47b), and (47a),
—('U/m)t C,, ptq;qt+0(q4))DI, „(q,0)= 8;„(58b)

This equation shows that the restoring force for static,
long-wavelength deformations is given by the isothermal
elastic constants. From Eq. (56) we derive

F,=Q in{2 sinht-,'P(o(qa)j), (55)
('U/m)C;, I, t lim q, qt d(o (0 'XI,„(q,te) =7rb, . (59)

q~0
where the phonon frequencies ~(qn) are given as the
roots of the eigenvalues of e, (q). This is the quasi-
harmonic approximation ' for the lattice. The approxi-
mation for M which is consistent with Eq. (55) is
indicated by the last two diagrams of Fig. 5; the propa-
gators occurring there have to be replaced by the ones
of the harmonic approximation. The evaluation of the
expression (55) or of the corresponding diagrams for
M" is very dificult; therefore, further approximations
have been applied. ""We remark that the approximate
evaluation of Eq. (45) for the quasiharmonic approxi-
mation carried out by Salter' is equivalent to a replace-
ment of the propagators in the two diagrams for M
(Fig. 5) by Green's functions for an Einstein model.

The co ' moment of the spectral function is thus given
by the isothermal elastic constants. This elastic sum
rule is a generalization of the compressibility sum rule"
for liquids. The co moment can also be calculated by
using Eq. (7b); this yields the f sum rule'

d& tax~'a(q, to) = ~3~n ~ (60)

The foregoing results determine the structure factor
F;,(q) of the lattice which is defined by

F (q) = (1/m)P e '& '"&(p(ni) p(0j)) . (61)

IV. THE GREEN'S FUNCTION FOR SMALL
MOMENTA

A. Elastic Sum Rule

We introduce the usual spectral representation ' for
the response function LEqs. (8a), (49a), (49b)):

The Quctuation-dissipation theorem relates F;, and &,;:

Et.„(q)= (1/m) d~ cath(P~/2)xq„(q, td)/(2m). (62)

The inequality

D;, (q,z) =
" d(o X;,(q,(e)

oo 2& 3 CO

(56) 0& L(teP/2) coth(-', P(u) —1j(0—'Xp„(q,u)

t z'8;p —3II,& (q,z)jD& (q,s) = b, . (57)

» G. Leibfried and W. Ludwig, Z. Physik 160, 80 (1960).
'4 G. Leibfried and W. Ludwig, in Solid State Physics, edited by

F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1961),
Vol. 12, p. 275.

'5 A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall,
Ann. Phys. (N. Y.) 15, 360 (1961).

"Compare the discussion of G. Leibfried, in Haedbmh der
Physik, edited by S. Flugge (Springer-Verlag, Berlin, 1955),
Vol. 7, Part I, p. 104, especially Chap. 84."L.Salter, Phil. Mag. 45, 360 i1954l.

The spectral function X;; is the Fourier transform of the
commutator of the field operators. X;; is a Hermitian
three-by-three matrix, because the p(Xt)'s are Hermi-
tian operators; it is a real matrix because of the
time-reversal symmetry of the Hamiltonian. X,;(q,&u)

is a symmetric function of q because of the invari-
ance of the system under space rejections. It is an
antisymmetric function of co and it is a positive matrix
for co&0 as follows from its definition.

The Dyson equation (24) reads in Fourier space
(e —+ 0)

&const X d(e (oXt.„(q,(e)

implies, because of Eq. (60),

lim 'UC;, , qF q„(q)q, qt ——T08;„.
ti~0

(63)

The structure factor increases to in6nity if q tends to
zero. The fact that F,, (q) diverges proportional to
(1/q') can be derived" under less restrictive assump-

~' W. Brenig, Z. Physik 169, 219 {1962);L. P. KadanoB and
P. C. Martin, Ann. Phys. (N. Y.) 24, 419 (1963).

'9 H. Wagner, Z. Physik 195, 273 (1966).

lim q, qt da&(p/2) coth(-,'pa&)x„„(q,s&)
q-+0

0

=lim q, q~ des &u 'Xt.„(q&td).
q~0

0

Hence we obtain for F&„(q) in Eq. (62), using Eq. (59),
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tions than we made in Sec. IIA. The achievement of
formula (63) lies in the determination of the complete
asymptotic form of F;i(q) for q —+ 0, which is given by
the isothermal elastic constants.

B. Phonons at Zero Temyerature

The self-energy M;, (q, s) is an even function of q and
s and it vanishes for tI=O. Let us assume that M is a
function not too singular for small s and q so that we
may write the expansion [compare Eq. (51)]

M;, (q, s) =Z,, „,q,,i7i+q'i, (q,s)+q's'i, (q, s), (64)

where fr and f'2 are finite for q~ 0 and s~ 0. We will
see later that this assumption is justified for zero
temperature only; for T'&0, an expansion like Eq. (64)
is impossible.

The asymptotic form for D,, (q,s) is obtained if we
substitute Eq. (64) into Eq. (57). We neglect all but
the second-order terms. Using Eqs. (53a), (47b), and
(47a) we arrive at

[s'b, i—(V/m)C;;i, gq, qi], Di, „(q,s) = 8;„. (65)

Hence, we conclude: The low-lying excitations of the
lattice at zero temperature are phonons. The velocities
of the sound waves are given by the elastic constants as
they are in the harmonic approximation. The an-
harmonic eGects do not change the connection between
the derivatives of the ground-state energy with respect
to homogeneous deformations and the restoring forces
for displacement fluctuations; they renormalize the
elastic constants only, so tha, t quantum effects a,re
included.

To eva, luate F,, (q), we write the solution of Eq.
(65) as

Mo(q, s) =M;P(q)+My'(q, s) .

Here M' is independent of s. The V4 diagram of Fig. 5
is an example of a contribution to Mo. M may be con-
sidered as a renormalization of the V2 term of the
harmonic approximation. It allows an expansion of the
kind formulated in Eq. (64); hence it is uninteresting
in the following. M; (q, s) is an analytic function on the
whole plane with the possible exception of the real axis.
It decreases like s ' if s tends to infinity. Therefore, we

may write the spectral representation' simi]arly to
Eq. (56);

M, ,'(q, s) =
~«e (qp&)

)

~ 27r S M

(69a.)

I";,(q, cv) =~[M;,f(q, ~+iq) M,, (q—, (u —i')],
0+. (69b)

I';; has the same symmetry properties as 'X;, ; it is a real
function also. The simplest contribution to M' is the
last diagram of Fig. 5;

M (12)= (g'j) V, (112)D(11')D(22')V, (1'2'2). (70a)

To evaluate this expression' ' we use the harmonic ap-
proximation for D, i.e., we use the representation
Eq. (66a), where the ~'(qu)'s and e (q)'s are the eigen-
values and eigenvectors of the classical secular matrix
and where q runs over the first Brillouin zone. The
Fourier transform of e~, which is defined according to
Eq. (48b), may be written as [compare Eqs. (49b) and
(49c)]

C. Analytic Properties of M(q, s)

Ke write the self-energy of the phonons as the sum
of two contributions:

Ke introduce
where e"(q) (u= 1, 2, 3) are the polarization vectors of
the three sound branches, while s (qu, kiyi, kgb, )

= e,'(q)e, ,»(k,)e;,»(ki)b(qi, kiii, k,ii) (70c)
(u (qu) =C.(Q) ~J, (66b)

and the distribution functions

Dp„(q,s) =P ei"(q)[s' —a&'(qu)] 'e„~(q), (66a) a3(qi, kiii, kii2) =X&( q+ k+ik)2b( qi) kii)iki2)i. (70b)

with c (0) as the sound velocity of branch u in direction
Q=q/g(q= ~q~). From Eq. (62), we find f(qu) = [exp(~(qu)/T') —1] ', (70cl)

F.-( )= 2" ( ) - ( )/ -(fi), (» o) (67)
2m(

and get from Eq. (70a) after some algebra

M;,'(q, s) = e,~(q) [nz.p (qs)+m. p (q—s)]e,e (q) . (71a)

Here we used the notations
i.e., at zero temperature the structure function diverges
like (1/q) if q tends to zero. Again, the asymptotic
behavior is determined by the elastic constants.

m p(qs) =m.p'(qs)+m p'(qs), (71b)

1 1+f(kiyi)+ f(knyi)~.p" (qs) = (1/siV) 2 a(qu, kn i,l n~)a(q+ki+k2)a(4vu, kivi, qP) — ——,(71c)
klkg (u(kiyi)a)(k, k,) s—a (kiy, )—co(k,y,)
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f(kov o)
—f(kn'i)

iioaa (qs) (1/8&V) Q o(q&)k1'r1)k2Y2)+ (q+ki+k2)o(k'A 2)kl| 1)iatt) (71d)
k1ka ~(k171)o~(ko72) s+oi(k2'y2) &(kl'ri)

First we consider the zero-temperature case, i.e., f(ky) =0. We obtain nz s'=0 and, according to Eqs. (69b),
(71a), and (71c), we find for &u&0 the contribution to F;;

I'' (q,~) = (~/4&) Z ~' (q)~(q~, kiv& k~72)~(q+kl+ko)
k 1k2

&&~(kovo, kiri, qP)e'(q)i[~(kni)~(kovo)]~[~ —~(kivi) —~(4yo)]. (72a)

For small &u, no umklapp processes contribute to Eq. (72a). Because of Eq. (31b), t, in Eq. (72a) vanishes if one
of the arguments q, kq, or k2 tends to zero. Thus the usual phase-space discussion yields for the leading contribu-
tion to I'„(q,&v) for q, and oi tending to zero

r,, (q ) &
.

, (»5). (72b)

Equation (69a) shows that the expansion of Eq. (64) is justified. More complicated diagrams do not alter this
result qualitatively.

Second, we consider the case of a nonvanishing temperature T . We get a contribution due to m p' and in con-
trast to m p" it yields a very singular result. We get, on the one hand,

lim(1im m '(qs) iq'} = p,
z-&0 q~0

(73a.)

but we have, on the other hand,

limflim m '(qs)/q') =p+ (1/81V)p [lim n(qn, k—qy, —ky)/qoo(ky)]'( —1/To) f(k7)[1+f(ky)]@p. (73b)
q~o z~0

Hence M,;(q,s)/q' is a discontinuous function for s —+ 0
and q~ 0. An expansion like Eq. (64) is not possible.
This is the mathematical reason why Eq. (65) cannot be
applied for finite temperatures.

The physical reason for the result Eqs. (73a) and
(73b) is the following. If q and s tend to zero at fixed
nonzero temperature, we enter the region where all
phenomena are dominated by quasiparticle collisions.
In this hydrodynamic regime, the self-energy M,;(q,s)
itself has poles due to heat conduction or due to second-
sound propagation. '0 No matter how small To is, in the
limit s —& 0, q —+ 0 the calculation of simple graphs' like
Eq. (70a) does not yield reliable results for M,, (q, s),
i.e., for the sound velocities or for the sound damping.
The solution of integral equations of the Boltzmann
type is unavoidable in this domain.

V. SPECIFIC HEAT

A. Asymptotic Expansion of 5"

Knowing the low-lying excitations one knows the
asymptotic behavior of the entropy and thus the leading
term of the specific heat for small temperature To. The
proof of this statement follows closely the ones given in
the theory of quantum liquids. ""

"P. C. Kwok and P. C. Martin, Phys. Rev. 142, 495 (1966);
compare formula (874) of W. Gotze and K. H. Michel, thisissue,
Phys. Rev. 156, 963 (1967).

2' J. M. Luttinger, Phys, Rev. 119, 1153 (1960).
2' W. Gotze and H. Wagner, Physica 31, 475 (1965).

To expand W in Eq. (30), we choose A,, in Eq. (1a)
as the equilibrium matrix for T =0. Because of
[8/8G(1)]W=O we may put G(1)=0 to get the leading
term of H/', i.e., we may neglect the thermal expansion.
We indicate the temperature dependence of 3f and 6
explicitly, putting

M(12,T') =M(12)+M'(12),

G(12,T') =G(12)+G'(12),
where

G'(12) =G(11)M'(12) G(22)+

(74a)

(74b)

(74c)

f((u)= lim f(o~)+ f(o~),
r0 0

(76)

M(12) and G(12) denote the self-energy and the
propagator, respectively, for zero temperature. Equa-
tion (28) yields the expansion for 4:
C v [G(12 To)] C,,[G(12)]

+(1/2i)r, (12)G'(12)+ ".
Substituting Eqs. (74) into Eq. (30), we obtain

(2/P)W 2io To(24r[G]—g(12)G(12)
—1n(iGo '—M) (11)). (75)

The functional 4r[G] depends on temperature because
the diagrams contain the distribution function f(o&)
=[exp(oi/To) —1] '. The expression for m s' in Eq.
(71c), e.g., depends on To even though the harmonic
propagators in Eq. (70a) are T'-independent. We write
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and expand C'r up to first order in f E. quation (75)
then reads"

(2/ioW 2&o= (2T 4r)G])r~o+T Z(12)G(12)

d~(j(~)/2~] Z;;(q,~)a;, (q,~)

—T' lnG '(11), (77)
where

&";,(q,~) =-,'P';(q, ~+in)+&'~(q, ~ &v)]—n= o+

S~ -29/~T']T' lnD-'(11) . (78)

B. The Debye Law'

The trace in Eq. (78) can be calculated by trans-
forming the expression into Fourier space, viz. ,

y= T' lnD '(11)

=T'Q g DnD '(q, co )],, (79a)

The first term on the RHS of Eq. (77) is temperature-
independent. The second term yields a constant, while
the leading T'powers of the two terms in the parentheses
cancel; there is no contribution to (T')' due to those
terms. Hence only the log term in Eq. (77) enters the
free energy in Eq. (11) as the leading temperature-
dependent quantity. The entropy S is

dQ
o '=L'U/(18 ')]Z —~='(~l) (82b)

The sum runs over the three phonon branches and the
integration over the solid angle 0 has to be extended
over all directions.

The entropy obeys the same Debye law Eq. (82a) as
a gas of noninteracting phonons. The Debye tempera-
ture O~ is related to the sound velocities, which in turn
are given via the elastic constants by the derivatives
of the ground-state energy with respect to homogeneous
deformations, in the same way as it is known from the
harmonic approximation. The anharmonic eGects do
not inAuence these general aspects of the results; they
enter the formulas by renormalization of the ground-
state energy only.

—i " d(q, o)+iq)
y= — da) j(a&)g In — +const,

7i p d(q, o&
—iq)

q ~ 0+ . (80)

Only the contributions due to small cu's and small q's
enter the asymptotic form of y in Eq. (80). Hence we
may use Eq. (66a) to get

d(q, cv) =L~'—cP(Q) q']Pa)' —cP(Q) q']
&(LsP—cP(Q)q'] (81)

Transforming the sum over q into an integral, Eqs. (80),
(81), and (78) yield the final result for the entropy

S/1V ~ (4/5)vr4(T'/0~)', (82a)

where the Debye temperature O~ is given by

where
lnD '(q, co.),,= lnd(q, co,),

d(q, (o.) = detr a).'8,,—M,, (q,(o.)].
(79b)

(79c)

Transforming the sum over the discrete frequencies
into an integral over the real axis Eq. (79a) yields

In this equation we have to calculate the trace of the
logarithm of a three-by-three matrix, which is equal to
the logarithm of the determinant of this matrix. Hence
we get from Eq. (57)
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