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A phenomenological analysis of the 7~-mesonic atom in light nuclei has been made by use of a new approxi-
mation technique for the exterior wave function outside of the region of strong interaction. This approxima-
tion is a series expansion of the Coulomb wave function in terms of the energy-level-shift ratio AE1g/E:s.
From the new measurements of Jenkins, Kunselman, Simmons, and Yamazaki of the shifts and spreads of
the 2P — 1S transition energy in #—-mesonic atoms, we have calculated the complex z-nucleus potential
and the exact #—-nucleus scattering length. The #—-nucleus scattering lengths are found not to satisfy the
hypothesis that they are the sums of #~-nucleon scattering lengths. Also the scattering lengths do not exhibit
any apparent isotopic-spin dependence. It is also found that level shift depends only on the volume integral
of the potential and not on its shape. Using this potential, the #~-mesonic wave function inside the nucleus
is obtained in analytic form, and it is found that the probability that the #~-meon is inside the nucleus has
only about half the value given by a first-order perturbation calculation.

I. INTRODUCTION

N the last twelve years, several models and phenome-
nological calculations of the #~-mesonic atom have
been made. Deser et al.,* Brueckner,? and Ivanenko and
Pustovalov?® tried to connect the energy-level shifts and
spreads with the low-energy =—-nucleon scattering data
using first-order perturbation theory. In all cases the
energy-level shifts predicted by these calculations have
a stronger atomic-number dependence than the experi-
mental shift and spread data.*” However, first-order
perturbation theory is not valid, even for the lightest
nuclei, where the energy-level shifts are very small
(~3%). This can be understood as follows: The 7~
nucleus potential which perturbs the pure Coulomb in-
teraction is large, but it has a small effect on the binding
energy because it occupies a volume which is small com-
pared with the volume occupied by the meson wave
function. This wave function is expected to deviate
greatly from the unperturbed wave function only in the
vicinity of the nuclear volume. However, it is just the
wave function inside the nucleus which is needed to
calculate the energy shift. In Sec. V, we demonstrate
quantitatively that perturbation theory is not valid in
the #~-mesonic-atom problem.

Several attempts have been made to do a phenome-
nological analysis of the problem and to calculate the
energy shift more carefully. Ericson,® Pustovalov,® and
Byers!® have solved the Schrédinger equation in various

* Partially supported by grants from the National Science
Foundation and the U. S. Army Research Office (Durham).

1S. Deser, M. L. Goldberger, K. Baumann, and W. Thirring,
Phys. Rev. 96, 774 (1954).

2 K. Brueckner, Thys. Rev. 98, 769 (1953).

3D. D. Ivanenko and G. E. Pustovalov, Usp. Fiz. Nauk 61,
27 (1957) [English transl.: Soviet Phys.—Usp. 63, 1043 (1961)].

4 M. Stearns and M. B. Stearns, Phys. Rev. 103, 1534 (1956).

5D. West and E. F. Bradley, Phil. Mag. 2, 957 (1957).

6 M. Camac, A. D. McGurire, J. B. Platt, and H. J. Schulte,
Phys. Rev. 99, 897 (1955).

”D. A. Jenkins, R. Kunselman, M. K. Simmons, and T. Yama-
zaki, Phys. Rev. Letters 17, 1 (1966).

8 M. Ericson, Compt. Rend. 257, 3831 (1963).

9 G. E. Pustovalov, Zh. Eksperim. i Teor. Fiz. 36, 1806 (1959)

[English transl.: Soviet Phys.—JETP 9, 1288 (1959)]1.
10 N. Byers, Phys. Rev. 107, 843 (1957).

approximations with a phenomenological #-nucleus
potential added to the Coulomb potential. The problem
is hard because it is difficult to find a good approxima-
tion for the Coulomb wave function outside the nucleus.
The methods used by these authors all involve expan-
sions which make error estimates very difficult.

In Sec. I, we shall present a very simple approxima-
tion for the external Coulomb wave function which
makes use of the fact that it deviates only slightly from
the unperturbed wave function. It is an expansion in the
energy shift and is valid for all values of 7. In Secs. III
and IV, this approximation is used to calculate the
w—-nucleus potential for several nuclei by fitting the
observed energy shifts and spreads. The internal wave
functions were found numerically and simple analytic
forms for these are given in Sec. V, which may be of use
in 7-capture calculations. In Sec. VI we discuss some
of the implications of our results.

II. FORMULATION

We shall consider the #~-mesonic atom only in light
nuclei (6<4<24), because there exists a series of new
experiments for atoms in this region.” Furthermore, the
effect of the strong interaction on the 2P state for these
nuclei was experimentally found to be negligible,*5:11 so
that only the shift and spread in the 1§ state need be
considered.!2:18

U M. Carmac, M. L. Halbert, and J. B. Platt, Phys. Rev. 99,
505 (1955).

12 This simplifies the analysis considerably because it is known
that the =-nucleus interaction has a strong momentum depend-
ence at low energy associated with the 3-3 resonance of the
m-nucleon interaction. This momentum dependence requires the
determination of an additional complex parameter, referred to as
a nonlocal interaction parameter by Ericson (Ref. 13). It can be
shown that the energy-level shift and spread of the 1§ state is
hardly affected by this momentum-dependent interaction, pro-
vided the radial wave function is nearly constant inside the nu-
cleus, while for the analysis of the 2P state its inclusion is essential,
since even the unperturbed wave function varies rapidly inside
the nucleus.

18T, E. O. Ericson, in International Conference on High-Energy
Physics and Nuclear Structure, CERN Report No. 63-78, 1963,
p- 47 (unpublished).
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To describe the strong = -nucleus interaction, we use
a simple square-well potential, since, as will appear later
(Sec. IV), the level shift is not sensitive to the shape of
the potential. Thus, determination of the shape is quite
difficult, as it is in the case of low-energy nucleon-
nucleon scattering.

The Schrodinger equation for the radial wave function
U(r)/r of the 7—-mesonic atom is then

— (#/20)U" (r)— (Ze*/r)U (1)
+#U1+1)/20r*]U ()= EU(r), 2R (la)

—#/20)U" () +{V o+ (Ze/2R)[(r/ R)*= 3T} U (1)
+D(1+1) /20 U (1) = EU(r), R>r>0 (1b)

where (Ze?/2R)[(r/R)*—3] is the Coulomb potential
inside the nucleus due to a uniform charge distribution
of radius R, V, is the height of the 7—-nucleus potential,
also of radius R, and p is the reduced mass of the 7—
nucleus system.

In terms of the Bohr radius ap=7%2%/(Ze*u)=1/a and
the unperturbed ground-state energy Eo=—Ze?/2a,
= —#%%2/2u, we introduce the following dimensionless
variables:

p=ar, p():CLR )

e=(E—Ey)/|Eo| =AE/ | Ey|
Vo= Vo/ | Eo| = 2uVo/ (@?).

As defined, the real parts of e and U are positive and the
imaginary parts are negative. Note that the complex
parameter e describes the energy-level shift and spread
caused not only by the strong interaction, but also
by the finite charge distribution inside the nucleus. In
terms of these variables the equation for the 15 state
is

U"(p)+2U(p)/p—(1—€)U(p)=0, (2a)

p=po

Uex(p)=Cpe~*¢(p) ,
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U (p) = (Vo+1—)U(p)—[(0/p0)>— 31U (0)/po=0,

po>p>0. (2b)

Our problem is to find the complex parameter Uy, given
the experimental value of e.

Since the perturbed exterior wave function U is
only slightly deviated from the unperturbed wave func-
tion U, outside the nucleus, it is convenient to write
Ue in terms of Uy:

Uex(p)=Uo(p) ¢(p) . )

Here, ¢(p) is a function which depends on the energy
shift € and has the properties that ¢(p)|e~o=1 and
lim, .. p~¥¢(p)=0 for some N. The unperturbed wave
wave function Uy(p) satisfies the equation

Ud"(0)+2Uo(p)/p—Uo(p)=0, (4)

and has the form
Uo(p)=Cpe>. (5)

Substituting Egs. (3) and (5) into Eq. (2a), we obtain
the equation for ¢(p):
¢"(0)+2(1/p—1) ¢ (p)+e€0(p)=0. ©)

¢(p) can be written in a series in terms of the small
complex number e:

¢(p)=1-+et1(p)+ 2£2(p) - €2E3(p)+- - -, )

where each £, satisfies successive differential equations

En/l(p)+2(1/p_ 1)57;’(}7)‘*‘ En—l(P) =0 3 (8)

with £0= 1.

These differential equations can be easily integrated,
successively subject to the above boundary condition
on ¢(p). The wave function comes out to be!t

P
¢(p)=1+%¢(p+1Inp—1/2p)+ (¢*/16) / p*[4p*+6p°+6p+5+2(20°+2p+1)Inp+2¢20Ex(2p) Jdp+-0(€®),  (9)

and its logarithmic derivative is

d(InU)/dp=1/p— 1+ €&/ (0)+ [ &/ (0) — &' (p) E1(p) ]

+ 63[51’(;))512(11) —2&(p) &/ (p) —e?Pp~? _/ Elz(p’)e‘“'p’zdpl:]+0(6“)

=1/p—1+3e(14+1/p+1/2p%)+(¢*/16)[2+6/p+7/p*+1/p*+2e2 E1(2p) /0]

+(€/ 32){2+ 10/p+11/p*4+6/p*+1/2p*—2(2p+2+1/p*)In%

+e+2”|:(5+1/p—2/p-—2 Inp) E(2p)+7/6+ (y-+1n2)2—2 /

pln“’pe“?Pdp]/lG}—l-O(e“*), (10)

0

1 F,(z) is the exponential integral defined in Ref. 15, p. 228. Note that exp(2p)Ei(2p) — 1/2p as p— o so that ¢ as given

in Eq. (9) does not increase exponentially in this limit.
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TasLE 1. The potentials and scattering lengths which fit the measured energy shift and spread using the radii obtained from electron
scattering. AFy, is the difference in the 1.5 level shift between the experimental value and the theoretical value for a point Coulomb po-
tential, corrected for the vacuum-polarization effect. That is, AEy, includes the strong-interaction effect and the finite-volume effect.
AE,, is the measured energy spread of the 15 level. These data are from the measurements of Jenkins ef al. (Ref. 7).

R» AEg, AE, Vg Vi R3Vp RV ar ar
(F) (keV) (keV) (MeV) (MeV)  (F MeV) (I MeV) (") (F)
. +0.9 +6.0 +20 +160 +0.10 +0.21
Li¢ 2.97 0.740.2 0.394-0.36 6‘6_1.9 _5'2—4.8 170_50 —140_130 0.37__0.09 —0.23_0.25
. +0.8 +5.7 +20 99160 +0.10 _ +0.19
Li7 2.97 0.940.2 0.5740.30 8.5__1‘7 _8'4—-4.8 220__50 220_130 0'49—-0.08 0.34_0‘21
Be? 2.84 2.040.2 0.854-0.28 9.940.9 —6.34+24 230420 — 140460 0.46+0.05 —0.224-0.08
B 3.07 4.340.2 1.4 +0.5 9.340.2 —4.6+1.9 270410 —1304+60 0.53490.03 —0.2040.08
Bu 3.29 4.740.2 2.3 0.5 7.740.2 —6.3+1.4 270410 —270450 0.58+0.07 —0.344-0.07
C12 3.12 6.7+0.5 2.6 £0.5 7.5+0.7 —4.64+1.0 230420 —140430 0.474-0.04 —0.2240.04
N1¢ 3.16 12.640.5 4.1 404 9.540.7 —5.240.6 300420 —160+20 0.594-0.04 —0.244-0.02
01 3.41 17.74+0.5 4.5 +1.0 7.2+0.2 —3.04+0.6 290410 —120420 0.5640.02 —0.1840.03
F1e 3.57 30.6+0.5 4.6 +1.0 8.8+0.2 —2.3+0.6 400410 —110430 0.7340.02 —0.1440.04
Na? 3.70 63.941.0 4.6 1.0 10.34:0.2 —1.5+0.2 520410 —80+10 0.9240.01 —0.09+0.01
Mg 3.75 76.6+1.0 8.6+0.2 450410 0.854-0.02

a Radii are taken from R. Herman and R. Hofstadter [ High-Energy Electron Scattering Table (Stanford University Press, Stanford, California, 1960) ]
except for lithium radii, which are from P. Sood et al., Nucl. Phys. 4, 274 (1957).

where v is Euler’s constant, y=10.5772. This expression
for the logarithmic derivative of the external wave func-
tion is valid for all values of p=po, and from the rapid
convergence of this series it appears that the contribu-
tion of the e term is much less than the errors on the
experimental data under consideration.

Equation (2b) for Ui, the interior solution, is easily
solved numerically, and the complex parameter U, ad-
justed so that d(InUi,)/dp calculated from Eq. (2b)
is equal to d(InUe)/dp from Eq. (10) at p=po.

An independent check of our approximation was done
by expanding the Whittaker function® for the exterior
wave function to first order in € and comparing with Eq.
(9). Also, a calculation was made of the y—-atomic energy
shift and compared with numerical solutions of the
Dirac equation given by Ford and Wills.’ Our results
agree within several percent for nuclei with Z<40, the
difference arising from our use of a square well and the
nonrelativistic Schrodinger equation. Application of this
approximation method to the Dirac equation is in
process and will be compared with numerical analyses of
the u~ atom.

III. CALCULATIONS AND RESULTS

Comprehensive experimental data of the 7—-mesonic-
atom 15— 2P transition energies and their spreads in
light nuclei were recently reported by Jenkins et al.”
These data were measured with germanium solid-state
detectors in contrast to earlier experiments in which Nal
spectrometers were used.* ¢

Assuming no shifts and spreads of the 2P energy
levels, we fit these new data using complex square-well
V="Vg+1iVy to describe the #—-nucleus strong interac-
tion, with the equivalent square-well radius R obtained

15 Handbook of M athematical Functions, edited by M. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math.
Ser. 55.

16 K. W. Ford and J. G. Wills, Nucl. Phys. 35, 295 (1962).

from the electron-nucleus scattering measurements by
the Stanford group.'” (This will be referred to as the
Stanford radius.) The volume integrals of the potentials
and the exact 7 -nucleus scattering lentghs,®

a=R—tanh(8R)/8,
b= Quv /i),

were calculated from these potentials and were found to
be independent of R. This will be discussed more fully
in Sec. IV.

In Table I, we list the energy-level-shift and spread
data, the best-fit potentials and their volume integrals,
and the 7—-nucleus scattering lengths. Errors shown in
this table (and also in Table II) are the experimental
errors in the y-ray energy measurement. The higher-
order terms which are neglected in our approximation

T1c. 1. The 7~ -nucleus scattering lengths and their linear curve
fits, calculated from the best complex potential in Table I. Indi-
cated errors are the experimental ones. The errors caused by
neglecting the €* term were estimated to be much less than these.

17 R. Herman and R. Hofstadter, High-Energy Electron Scat-
tem'n‘g Table (Stanford University Press, Stanford, California,
1960).

BT. Y. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962), p. 73.
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are estimated to contribute less than the experimental
error. The scattering lengths are also plotted in Fig. 1
as a function of the atomic number 4. From these re-
sults, we see that the 1S5-state 7—-nucleus interaction is
repulsive as obtained independently from measurements
of the low-energy n~-nucleus scattering.!® Furthermore,
we recognize two important features of the interaction
from the quantities listed in Table I and shown in Fig.
1:

1. The depths and heights of the potentials do not
show any obvious atomic-number dependence, but the
values of their volume integrals do increase slowly with
A as do the scattering lengths. While an isotopic-spin
dependence of the #~-nucleus interaction has been used
by Ericson®13 in previous analyses, no such isotopic-
spin dependence is apparent here.

2. The r-nucleus scattering lengths calculated ex-
actly from these potentials do not satisfy the additivity
hypothesis that they are the coherent sum of the =~
nucleon scattering lengths. On the basis of this hypothe-
sis, the real part of the n~-nucleus scattering length is
given by

dR=dA

for nuclei with N=Z, and by
ar= b+dA

for nuclei with N=Z41. Here a=3(a,+a,) and
b=%(a,—a,), where a, and @, are the 7—-neutron and
m—-proton scattering lengths, respectively. The most
recent evaluation of these quantities gives® G=0.012
=+0.004 F and 5=0.097240.006 F. The actual scattering
lengths exhibit no simple A4 dependence, but we have
nevertheless calculated the best-fit linear curves to
them. These fits are shown in Fig. 1. The results are as
follows: For the real part of the scattering lengths we
get for N=2Z nuclei

ar=0.18-£0.04-+(0.028+0.002) 4
and for N=Z+1 nuclei
ar=0.184-0.05+4(0.0324-0.003)4 (x2=12.1). (11b)

The fits are not good and the coefficients are in serious
disagreement with the values calculated on the basis of
additivity. Furthermore, there is no evidence for an
isotopic-spin dependence since the two curves are
identical within the statistics. For the imaginary part of
the scattering length we have for the N=Z nuclei

ar=—0.31220.14-+(0.006-£0.010)4 (x*=1.7) (12a)

13V, S. Demidov, V. G. Kirillov-Ugryumov, A. K. Ponosov,
V. P. Protasov, and F. M. Sergeev, Zh. Eksperim. i Teor. Fiz. 42,
%687 )51962) [English transl: Soviet Phys.—JETP 15, 1172

1962)].

20 V, K. Samaranayake and W. S. Woolcook, Phys. Rev. Letters
15,936 (1965). See also J. Hamilton [ Phys. Letters 20, 687 (1966)],
where @ is found to be only 0.001240.004 F. We use the opposite
sign convention for the scattering lengths, in order to conform with
the convention used in potential calculation (Ref. 18).

(=195) (11a)
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and for the N=Z-1 nuclei
ar=—0.41-+0.14+(0.014+0.004)4 (x2=2.0). (12b)

Here we see that both have little 4 dependence and are
again identical within statistics.

IV. SUPPLEMENTAL CALCULATIONS

Just before the data of Jenkins et al. became avilable,
we had done a series of calculations using the old
Stearns and Stearns data.* In this section, we give
some of the results of these calculations which demon-
strate a couple of general features of our optical-model
calculation.

In their data only the energy spread of Be® is given.
Their energy-level-shift and spread data for Be?,
AE;5=[(1.9840.10)—4(0.620.1)] keV, was used to
examine how the real and imaginary parts of AE,g in-
terfere in the determination of ¥V and V7, assuming no
shift and spread of the 2P energy level. This AE;g was
fit using a square-well 7—-nucleus potential Vr+iVr
for two different nuclear radii, the Stanford radius and
the radius given by the A3 law, R=7,413 with 7,=1.3
F. The results are, for the Stanford radius R=2.84 F,

Vr=10.3£0.7 MeV,

(13a)
Vi=—48+1.0 MeV,
and for R=rpA1/3=2.70 F,
=12. .8 MeV
V= 1+£0.8 MeV, (13b)

Vi=—5.5+1.0 MeV.

Then, omitting the energy spread, real potentials were
found which fit the energy shift AE;s=1.984-0.10 keV.
The results are, for the Stanford radius R=2.84 F,

V2=10.62-0.6 MeV (142)
and for R=reAY3=2.70 T,
Vr=12.4-+0.8 MeV. (14b)

Comparing the two results, (13) and (14), we see that
inclusion of the energy-level spread has only a negligible
effect on the determination of Vg. It should be noted
that this does not contradict Brueckner’s theory? of the
#—-mesonic atom in which he estimated that the =~
nucleus scattering contributes to the energy shift by a
half of its value and another half is a result of the pure
absorption of the 7~ meson. The real part of AE;g used
here is the observed total energy-level shift and such a
contribution from the 7—-meson absorption would be
already included in the observed value.

Since the interference between the real part and
imaginary part of our optical-model calculation is
negligible, we calculated V5 from the energy-shift data
for the rest of the atoms measured by Stearns and
Stearns to examine how our calculation depends on the
radius R. We calculated Vg, its volume integral, and
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the scattering length for the two kinds of radii R as
before. The results are listed in Table II. From this
table we see that the calculations using different radii
give the same value for the volume integral, even though
perturbation theory is not valid. It is the volume integral
of the potential rather than its shape which determines
the energy shift [and also the spread according to Eq.
(13)]. Given the fact that the volume integral is the
same for different radii, it follows from Born approxima-
tion (see Sec. V) that the scattering lengths will also be
the same.

V. THE =—-MESONIC WAVE FUNCTION
AND THE = -CAPTURE PROBLEM

Asmentioned before, although the exterior wave func-
tion differs only slightly from the bound Coulomb wave
function, the interior wave function is completely dif-
ferent from it. Nevertheless, the bound Coulomb wave
function has been commonly used in the =—-capture
problem as the interior wave function. Usage of the new
interior wave function obtained from the =~-mesonic-
atom data corresponds to treating the initial state by
the distorted-wave Born approximation (DWBA). The
only difference is that in the bound =—-nucleus interac-
tion problem, the initial incident particle is described as
the bound Coulomb wave function instead of the plane
wave, and this “incident wave” is deformed from the
bound Coulomb wave function through the #—-nuclear
interaction and the finite charge distribution inside the
nucleus. In calculations of the n—-capture rates, the
DWBA has been applied to the final-state interaction
to calculate the reaction probabilities for one- and two-
nucleon ejections.?! Since the initial pion wave function
is greatly perturbed by the nucleus, as will be shown
numerically at the end of this section, the new interior
wave function obtained from the #—-mesonic-atom data
should also be used in 7~-capture calculations.

The interior wave function, a solution of Eq. (1b)
with /=0, has an explicit analytic form??

Uin(r) o« r[exp(—3nr®) JM {3[3—2(m/n)
X (E+3Ze2/2R— VO)]}%:""2} ’ (15)

where 7= (MZe*/#2R3)V2, It is, however, difficult to
manipulate this function in this form since the major
part of the optical and the electrostatic potentials ap-
pears as a parameter in the confluent hypergeometric
function. Although in the phenomenological calculation
in Sec. ITT we numerically integrated Eq. (1b) to avoid
any possible errors, we present here an approximate
simple analytical form of the interior wave function for
future usage in the =—-capture problem.

Since the major part of the potential in Eq. (1b) is its
constant part V=V,—3Z¢%/2R, we may write the in-

21 R. M. Spector, Phys. Rev. 134, B101 (1964).
22 M (a,b,2) is Kummer’s function, one of the confluent hyper-
geometric functions defined in Ref. 15, p. 40S.
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TasLe II. Potentials and scattering lengths, which fit the meas-
urements of Stearns and Stearns (Ref. 4) of the energy shifts,
using the Stanford radii and R=r,41/? radii, with »o0=1.3 F. AE
is the difference of the 1S level shift between the experimental
value and the theoretical one corrected for the vacuum-polariza-
tion effect. That is, AE includes the strong-interaction effect and
the finite-volume effect.

R (F)
AE Stanford Ve a R3Vp
(keV)  R=nrd'® (MeV) (F) (MeV F?)
L= 087012  3.65 4.840.8 0.4620.06 230440
249  17.1+£3.2 0.4840.07 260250
Bed 1984010 2.84  10.6+0.6 0.4630.02 240410
270  12.4+0.8 0.46+0.02 240+20
Bl 3.88+0.2 3.07 84405 0.4740.02 240310
2.80 114402 0.47+40.01 250410
Bt 5.68+40.2 329  11.740.5 0.72+0.02 42020
289  17.5+0.5 0.7140.01 420310
Cciz 7.27+£04 3.12 9.24:0.5 0.534-0.02 28020
298  10.60.8 0.52::0.03 28020
N 10.4 0.3 3.16 7.6+0.2 0.47+0.01 240410
3.13 7.8+£0.3 0.47+0.02 24010
o 23.5 +0.8 341  11.54+04 0.7840.02 460420
3.28  13.2+0.7 0.79+0.03 47030
F19 30.6 1.0 3.57 88404 0.724-0.03 4003-20
3.47 9.740.5 0.72+0.02 40020

& A mixture of 929% Li? and 8%, Li¢.

terior wave function Ui (r) as

Uin(r)=Usq(r) (r)
=2C sinh{[2m(V—E)/5* "} o(r), (16)

where Ug(7) is the solution of Eq. (1b) neglecting the
term Ze%?/2R? in the potential, and ¢(r) is a smoothly
varying modifying function to correct for this. Inserting
Eq. (16) into Eq. (1b), we obtain an equation for ¢(r).
Neglecting the d?¢/dr? term in the equation, we get

o) <exp| () [ tanby)ir |

=exp[y°r'/8+0(r%)].

Thus, the interior wave function can be written
approximately,

Un(r)=Cletr—er)e,

an

where

v=yr+ivi=[2m(Vo—3Ze*/2R— E)/#2]!'2,
o= 7)2/8 = (8a0R3)—2,

and ay is the Bohr radius. These parameters are listed
in Table III.

Also in Table III, we compare the probability of the
7~ being inside the nucleus,?® S'oB|Us|%dr=AEs/Vr
(where AE,, is the measured 15 energy spread), with
that obtained from the Coulomb wave function. The

23 This simple result for the interior probability follows from the
fact that AEgp= [o° |U|2Vidr="V1 [of |Uin|%r.
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TaBLE II1. Parameters of the interior wave functions and proba-
bilities. The probabilities are for the =~ meson to be inside the
nucleus. The unperturbed probability is calculated from the un-
perturbed Coulomb wave function and the perturbed probability
is equal to Eq,/ V1. The parameters are to be used in Eq. (17).

Unper- Per-

turbed turbed

prob- prob-

ability ability e vI 8 C

(%) %) FYH  (FY) (107°F) (107F72)
Li¢ 0.0113 0.00750 0.198 0.0919 0.0721 0.0649
Li? 0.0114 0.00679 0.243 0.122  0.0724 0.0488
Be®  0.0235 0.0135 0.238 0.0933 0.111 0.0786
Bl 0.0565 0.0304 0.214 0.0758 0.110 0.118
B 0.0692 0.0365 0.206 0.108  0.0894 0.114
C12 0.101 0.0565 0.177 0.0921 0.126 0.182
N®#  0.163 0.0789  0.202 0.0915 0.142 0.188
O 0.294 0.150 0.139 0.0764 0.129 0.328
e 0.465 0.200 0.158 0.0518 0.127 0.336
Na? 0.890 0.307 0.161 0.0331 0.139 0.396

Coulomb wave function is found to give a probability
about twice as large as that given by the exact wave
function. Thus the 7—-capture rate should be about half
the value given by calculations using the bound
Coulomb wave function.

It should be noted that our criticism of perturbation
approximation refers to its usage to obtain the potentials
from the energy-level shifts and spreads. When the po-
tential is once obtained exactly, Born approximation is
valid to obtain the scattering length a from it, if and
only if ap/RK1 or equivalently a/R<1,2* which is the
case for the m—-nucleus interaction. Here ¢z is the scat-
tering length obtained from the exact potential in Born
approximation. In our analysis, a is obtained exactly
from the algebraic relation for the square-well potential.
Either way, the major errors in previous analyses of
7~-mesonic atoms occur in using perturbation theory to
relate the level shifts to the potentials and not in using
Born approximation to obtain the scattering lengths
from these potentials.

VI. REMARKS AND CONCLUSIONS

The characteristic feature of the results of perturba-
tion approximation and the additivity hypothesis of the
scattering lengths is that they cannot explain the correct
atomic-number dependence of the energy-level shift.
The previous level-shift predictions’™® from the =
nucleon scattering have a stronger dependence on A
than the experimental values. As pointed out by
Eisenberg and Kessler,? this cannot be corrected by a

2 For a real-square barrier we have ¢/R=1—tanh(3ag/R)'/2/
Bas/R)!? and for a real-square well, a/R=1—tan(3as/R)'/*/
(3as/R)!2. Thus, ag~a occurs only if |ap/R|<K1 (provided no
bound states exist). This is the conclusion arrived at by F. von
Hippel and J. H. Douglas [ Phys. Rev. 146, 1042 (1966)], though
their derivation is inconsistent.

26y, Eisenberg and D. Kessler, Phys. Rev. 130, 2352 (1963).
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simple algebraic improvement within the first-order
approximation, as long as additivity is assumed. We
have shown that a more exact calculation of the 7
nucleus scattering length from the level shift does not
give a simple 4 dependence for the 7~-nucleus scattering
length.

The additivity hypothesis is based on impulse ap-
proximation and the neglect of multiple scattering.
Impulse approximation is used to relate the amplitude
for scattering a #— from a bound nucleon to the free
m—-nucleon scattering amplitude. This approximation
has been used in the multiple scattering treatment of
Ericson and Ericson.? It appears to us, however, that
significant errors may be involved in this approximation
and this point is being investigated.

In fact, the quantity a=%(a.+a,) Is very much
smaller than either @, or a,. Samaranayake and Wool-
cock® find ¢,=—0.1224-0.011 F and ¢,=0.1544-0.011
F, which give @=0.0172-0.006 F. This value of @ is much
smaller than the coefficient of 4 which was found in Eq.
(11) to fit the 7 -nucleus scattering lengths. Thus, cor-
rections to @ coming from the fact that the nucleons are
bound in the nucleus, which are proportional to a,?+a,?,
may be comparable to @ itself.

The low-energy m—-nucleus scattering could be a
useful means to supplement or independently check the
m—-mesonic data. Unfortunately, the experiments are
extremely difficult and there are no systematic measure-
ments available to compare with our scattering lengths.
A single measurement that we are aware of is the experi-
ment of Demidev et al.® on 7—-C'? scattering. Our
7—-C12 potential for the Stanford radius gives the values
of —0.0844-0.0064-7(0.04120.009) and —0.1132-0.009
+14(0.05740.012) for the real and imaginary parts of
the 7—-C!2 S-wave phase shifts at 5 and 10 MeV, respec-
tively, which is in good agreement with the phases used
by Demidev et al. to fit their data. This comparison is
not complete because of a lack of measurements of the
2P energy-level shift and thus a determination of the
P-wave r—-nucleus potential.

As a conclusion, we summarize our results as follows:

1. Tt is the volume integral of the potential rather
than the detailed shape of the interaction which deter-
mines the energy-level shift.

2. The additivity of the scattering length and first-
order perturbation approximation are invalid.

3. Nosimple 4 dependence of the potential is evident.
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