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Lattice Dynamics of Wurtzite: CdSt*
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A mixed valence-Coulomb force field has been constructed and used to calculate phonon frequencies for
waves propagating in three principal directions in CdS wurtzite, and in two directions of a CdS sphalerite
structure. Using calculated phonon frequencies, the observed two-phonon Raman spectrum in CdS wurtzite
is interpreted. Phonon symmetries and energy shifts predicted by the model have been verified by infrared
and Raman experiments. The qualitative and quantitative importance of both valence and Coulomb forces
in materials like CdS is demonstrated. This has implications for interpreting phonon studies in mixed crystals
with wurtzite, and zith sphalerite structure. The valence-Coulomb force-field model may have general ap-
plicability to other crystals, for which a shell model cannot be applied.

1. INTRODUCTION
' 'N this paper we present the results of a calculation
- ~ of phonon frequencies in the wurtzite structure. Our
particular attention was given to CdS, but the model
we used may be applicable to other materials which
occur in this crystal structure and which (presumably)
have similar mixed binding, including mixed crystals.
As will be discussed below, the model which we used
included short-range forces designed to simulate the
covalent-bond contributions to the potential energy;
and also the long-range Coulomb force designed to
represent those forces whose origin is in the partially
ionic nature of the binding. We are not aware of any
previous treatments of lattice dynamics in structures
with mixed binding in which these particular approxima-
tions have been used to calculate the phonon disper-
sions. Using single-phonon energies obtained optically,
we determined the seven force constants of the model,
and calculated phonon dispersion in zone directions
F-A, F-E, F-M in wurtzite and in zone directions
F-A and F-Jtf in a "sphalerite" form of CdS. In another
paper we shall report on the calculation of one-phonon
and two-phonon density of states from our model, and
comparison with experiment.

In our work we found it necessary to reassign two of
the single-phonon modes whose symmetry was pre-
viously incorrectly given. The revised assignments
were independently confirmed by Raman scattering
experiments. Ke also found a shift in energy of two
active single-phonon wurtzite modes (I'i and Ps) with
polarization, which was apparently recently confirmed
by infrared measurements. Our calculated phonon
frequencies enable us to interpret the reported two-

t Parts of this work were presented at the American Physical
Society New York Meeting, June 1965 )Bull. Am. Phys. Soc.
10, 616 (1965)j, the American Physical Society New York Meet-
ing, January 1966 /Bull. Am, Phys. Soc. 11, 16 (1966)g, and at
the Conference de la Societe Frangaise de Ph sique, Grenoble,
March 1966 fJ. Phys. (Paris) (to be published) .
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phonon Raman spectrum of CdS. Finally, our work in-
dicates the qualitative and quantitative importance of
both short-range and long-range ionic forces for the
phonon spectrum in the CdS wurtzite structure.
Presumably this conclusion applies as well to other
wurtzite-structure compounds, including mixed crystals.

Several recent treatments of the lattice dynamics of
the wurtzite structure have been given, which differ
from that presented here. In the work of Jeffrey, Parry,
and Mozzi, ' and Keffer and Portis' the partially coval-
ent and partially ionic binding in the wurtzite structure
was considered, in an attempt to account for observed,
static, structure deformations, as distortions from the
ideal wurtzite structure. The central assumption was
made that the deformation from the ideal wurtzite
structure was caused by effective charges +fe on each
ion, which caused static strain and polarization due to
the long-range Coulomb field. Thus, these authors have
effectively dealt with the long-wave elastic and piezo-
electric properties in wurtzite on the basis of a rigid,
nondeformable-ion model. While they achieved reason-
able success in that acceptable values of the parameters
gave reasonable values of the distortion parameters,
their work was effectively restricted to the long-wave
properties of the acoustic branch. 5o optic-branch fre-
quencies were determined, nor were any dispersion
effects obtained for either branch. Merten' later dis-
cussed the lattice dynamics of wurtzite using a general
force model to obtain formulas for the elastic and
piezoelectric coefficients, which again, depend on the
long-wave properties of the acoustic branches of the
vibration spectrum. By including the long-wave
(ran=0) Coulomb field, Merten obtained expressions for
the long-wave optic modes. Finally, Merten discussed
wurtzite and sphalerite lattice modes, using a com-
parison between the structures which had first proven
useful' in comparing the electronic energy bands in the
two crystalline forms. Merten's calculation of phonon

~ G. A. JeGrey, G. S. Parry, and R. L. Mozzi, J. Chem. Phys. 25,
1024 (1956).'F. Eever and A. M. Portis, J. Chem. Phys. 27, 675 (1957).

3 L. Merten, Z. Naturforsch. 15a, 512 (1960); 1Sa, 626 (1960);
17a, 65 (1961);13a, 662 (1958); 13a, 1067 (1958); 17a, 174 (1962);
17a, 216 (1962).

4 J. L. j3irmsn, Phys. Rev. 115, 1493 (1959l.
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dispersion was only schematic since he did not attempt
to determine accurate values of the coupling parameters
in his theory to 6t a particular substance; also the re-
strictions upon the forces, and particularly the treat-
ment of the Coulomb field at infinite wavelength only
are severe limitations of accuracy. Kaplan' and Sulli-
van' have examined the applicability of the "shell
model"7 to calculatioo of sphalerite and wurtzite nor-
mal modes. As is well known, the "shell model" has
been successful in the analysis of lattice vibrations of
germanium, and similar insulators, as well as ionic
crystals with simple crystal structures, such as rocksalt.
After careful analysis using a general shell model they
showed that 50 parameters were required for the long-
wavelength expressions alone. By limiting the non-
Coulomb interactions to first neighbors only, the num-
ber of parameters was reduced to 28, while a further
simplification (sphalerite approximation) reduced the
number of parameters to 11 and then the wurtzite and
sphalerite problems become essentially identical.
Unfortunately, as these authors showed, ' even the
sphalerite structure could not be uniquely analyzed on
the basis of the shell model. Hence, while the shell-
model equations were capable of being reduced, so that
the long-wave elastic, piezoelectric, and dielectric
coefficients could be obtained, formally in terms of
shell-model parameters no actual calculation was pre-
sented. After the present work was completed, we

learned of a rigid-ion calculation of normal modes in
HeO, a wurtzite structure, by Young. ' That calculation
is in apparent serious disagreement with experimentally
observed modes, including the long-wave modes. '

It is evident, then that there is need for actual calcula-
tion of normal-mode dispersion in wurtzite structure
materials. It is also evident that the shell model, which
has been successful for other materials of difrerent
binding type than, e.g., CdS, and higher symmetry,
e.g., cubic, is incapable of being applied to the wurtzite
structure at present. Kith this background in mind, we
consider that the results presented here represent one

step in the direction of obtaining a quantitative under-
standing of phonon dispersion in wurtzite.

point of view. Kurtzite may be considered as four
interpenetrating hexagonal Bravais lattices, or equiva-

lently, as two interpenetrating hexagonal-close-packed
lattices. In either case the primitive cell contains four
atoms: two cations and two anions. Ke shall, through-
out this paper, take the two arbitrary structure parame-
ters: c/a and e to have their ideal values. That is

c/u= (8/3)'i' u=-83c= 1ul ~
(2.1)

Vr'urtz ite Sph o leri te

)st

2nd

where, if a~, a2, a3 are the base vectors of the hexagonal
H»v»suet, la&l

= I»l =a' laal =can«meas«es t"e
displacement, parallel to a3, of the cation hexagonal-

close-packed lattice with respect to the anion hexagonal-

close-packed lattice. For the ideal geometry given above,
the wurtzite structure is quite similar to sphalerite.
Thus in both cases each cation has anions disposed at
the vertices of a tetrahedron as its four nearest neigh-

bors; and cations in very similar orientations as 12
second-nearest neighbors. The relationship between
wurtzite and sphalerite structures is easily appreciated

by inspecting a "stacking diagram, " or (1120) plane
section through the two structures. " In Fig. 1 we

present a diagram showing consecutive shells of neigh-

bors about a given Cd ion in the two structures, assum-

ing the wurtzite to be ideal. There are four basis ions

in the unit wuxtzite cell; each of these ions represents a

2. SYMMETRY AND GEOMETRY OF
WURTZITE: C6,4-I'63ync

The symmetry of the wurtzite structure has been
fully examined in many places, "' from a geometrical

' H. Kaplan and J. Sullivan, Phys. Rev. 130, 120 (1963).
J. J. Sullivan, thesis, Syracuse University, 1963 (unpublished};

J. Phvs. Chem. Solids 25, 1039 (1964); also D. G. Shankland,
Report from Aeronautical Research Laboratories, WPAFB,
Ohio, 1963 (unpublished).

See, for example, B. G. Dick, in farce Dynamics, edited by
R. F. %'allis (Pergamon Press, Inc. , New York, 1965), p. 159.

J. A. Young (private communication).
'R. M. Brugger, K. A. Strong, and J. M. Carpenter (to be

published). We thank Dr. Brugger for sending us a report of this
work prior to publication."International Tables for X-Ray Crystallography {Kynoch
Press, Birmingham, England, 1952).

o Cd

&s
Fzo. 1. Consecutive shells of neighbors of a central ion in

wurtzite and sphalerite structures assuming ideal wurtzite. Shaded
circles are cations, open circles are anions. Observe the similarities
through the shell of second neighbors. The central ion is shown in

each shell. The labeling 1st, ~ 4th refers to wurtzite. (This
figure courtesy of V. A. Brophy. )

"Reference 4, Fig. 3.
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hexagonal Bravais lattice. In Fig. 2 we show the erst,
second, and third neighbors of cation labeled CdI
and anion labeled S I. Each of the ions shown is in-
volved in one or another of the springs which arise
in. the short-range valence forces assumed in our model,
and each of the listed ions belongs to one or another of
the four Bravais sublattices. The atomic coordinate
positions of each atom for 6rst and second neighbors
of a given ion are already published" and for the single
third neighbor in wurtzite are easily obtained.

The Brillouin zone of wurtzite is the well-known
hexagonal prism. The Brillouin zone of sphalerite is the
truncated octahedron. To facilitate comparison we give
a presentation of the Jones zones of both structures, '
on Fig. 3. The Jones zone shown here for wurtzite is
simply double the usual prism; for sphalerite the Jones
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FIG. 3.The Jones zones of wurtzite and sphalerite. For sphalerite
the Jones and Grst Brillouin zones are identical; for wurtzite the
Jones zone is a double prism, i.e., double Brillouin zone.

representatives may be taken as

{elo},{5slo), {oslo) ', {«"'Io},{«"'Io)
{«l»lo), (2.2)

13I

Structur e

oF Wurtzlte Cd.

Q cd

FIG. 2. First, second, and third neighbors of cation labeled Cd I
and anion labeled S I. All atoms shown are involved in the short-
range potential V R (see text).

and Brillouin zones are identical. Principal directions
in the zone in both structures are shown on the figure.

The group theory of the wurtzite space group has
been discussed by several authors'~' so we shall simply
give a brief precis of the relevant results as needed.
The space group of wurtzite is Ct},'-E63mc, which we
call Q. The invariant subgroup of translations is that
of the hexagonal Bravais lattice, which we call g. Then
the factor group (Q/Z consists of 12 co-sets, vrhose

"L. Merten, Z. Naturforsch. 15a, 512 (1960), Table 2; J. L.
Birman, Ref. 4, Tables 1 and 2.

"G. Dresselhaus, Phys. Rev. 105, 135 (1957); M. L. Glasser,
J. Phys. Chem. Solids 10, 229 (1959). Both of these papers give
some erroneous results (see Refs. 14, 15)."J.L. Birman, Phys. Rev. 114, 1490 (1959); R. C. Casella,
ibid. 114, 1514 (1959); and Ref. 4."E. I. Rasbba, Fis. Tverd. Tela. 1, 407 (1959) I Englislr
transl. : Soviet Phys. —Solid State 1, 368 (1959)j.

~ M. Nusimovici, J. Phys. (Paris) 26, 689 (1965). See note .

added in proof (p. 696).

3. THE NORMAL-MODE PROBLEM

To determine the normal modes of motion and the
corresponding phonon frequencies, we must solve the
equations of motion for the ion displacements. '~ If we
call the instantaneous ion position of the ~th basis
particle in the lth cell

r(l,x) = r'(l, ir)+ u(l, ir), (3.1)

where rs(l, x) is the rest position of the particle, and
u(l, lr) the displacement from rest, then the Cartesian
components ss„(l,ir), a= 1, 2, 3 are the basic dynamical
variables. In the harmonic approximation the potential
energy of the lattice is

V=-s, Q I (l,ir)C s(ll', Irir')Ns(1', Ir')
4a

l'a'P

(3.2)

~~ M. Born and K. Huang, Dynamia/ Theory of Crystal Lattices
(Oxford University Press, New York, 1954), Secs. 15, 24, 38.

{~sI e},{~sI ~), {5sl~) ', {~."'I ~),
{e„'ts&

I e},{rr,&s&
I ~), (2.3)

where ~=as/2. The coset representatives (2.2) alone
form a group, isomorphic to C3,. The representatives
(2.2) plus (2.3) do not form a group as they are not
closed under multiplication. In what follows we shall
at times be concerned with various subgroups of Q,
especially the subgroups which are themselves space
groups: these generally consist of certain of the coset
representatives (2.2), (2.3) combined with the transla-
tion group Z. These subgroups are the groups of the
wave vector g, to be referred to later; these are generally
denoted in the text as Q(st), i.e., Q(I'), 1(A), etc.,
where the particular wave vectors g are deined on
Fig. 3.
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where the dot means a time differentiation. We intro-
duce the dynamical matrix by Fourier transformation

exp( —2rrig Ri)
D p(rl, az') =P 4 sP.,ziI, ') — —, (3.4)

QS m .)i&2

taking advantage of the fact that the elementary
force constants C s(ll', m') depend only on differences

/'. If we—now assume that the displacement u(t, a)
has harmonic time variation, with frequency ~, the
equations of motion (3.3) become

2 D.s(n, «')es('In, i)=~'(el j)e-(~ln,i) (3 5)

In (3.5) oi'(q
I j) is the squared eigenfrequency for wave

vector p, branch j, and e («lg, j) is the nth Cartesian
component of the eigenvector e(x Ig,j).For fixed q, the
equa, tions (3.5) determine 3s eigenfrequencies (not all
necessa. rily distinct), where s is the number of ba, sis
atoms in the cell and 3s the number of Cartesian
mechanical degrees of freedom per cell. The eigenvalue
problem (3.5) can be formulated as the determina, tion of
the eigenfrequencies o&'(pl j) of the dynamical matrix
by solution of a secular determinant.

IID(n) —~'(nl j)III = o,
where D(p) is the 3sX3s dynamical matrix whose rows
and columns are la,beled by the indices o.P and nc', and I
is the diagonal unit (3s&&3s) matrix. For fixed q and j,
we can consider the 3s components of e (a I g, j), o.== I, 2,
3, ~=1 . sas the3srowsof acolumnvector. Physically
e (~l g,j) gives the amplitude of the nth Cartesian com-
ponent of displacement of atom I(: in the normal mode of
wave vector q, corresponding to branch j, eigenfre-
quency o&(glj).

To determine the co'(g
I j) and the eigenvectors

e (» I q, j) we first obtain a complete set of force constants

4 p(tl', ~~')=-
BR (I,K)BSp(l,K )

(3.7)

then transform as in (3.4) to obtain D. We treat short-
range (SR) and Coulomb (C) contributions to (3.2)
separately. We write for the potential energy

V VsR+ Vc (3.8)

Short-Range Contribution

Under the rubric of short-range contributions to the
potential energy V we include all the near-neighbor
non-Coulomb contributions. We represent VsR in terms
of a function which depends upon eight force constants.
These represent stiftnesses opposing certain bond-

The equations of motion of the masses M, are

M, f7 (l', i~)+ Q 4' p(ll', m')up(l', r.') =0, (3.3)

length changes and changes in certain vertex angles,
and are left to be determined. They represent both two-
body and three-body interactions. This part of the
potential energy is quite similar to the valence force
models used by Herman" and Pope" in treating
germanium and silicon lattice dynamics. In spite
of the great vogue for "shell-model" calculations,
based in part on their success in accounting for phonon
spectra of germanium and silicon" it needs to be
remarked that the calculation of Herman gave ex-
cellent agreement with experiment using fewer dis-
posable valence-field parameters than those needed
by the recent shell-model calculations in the same
substances (Dolling and Cowley' ). Also the recent
work of Musgrave and Pople" and Musgrave" on
phonon dispersion in diamond indicates that a valence
force field model, with relatively few model parame-
ters, and with model parameters interpretable in
reasonable physical terms, can give a good quantita-
tive account of the experimental phonon spectrum.
Note, too, that valence force models with few dis-
posable parameters go back at least to the earliest days
of quantitative lattice dynamics. "

Kith these preliminaries disposed of, we write for the
short-range part of the potential energy:

V' =-'P X(br,,)'+2 P p(br, i)'+-', ). v(br, i)'
2' Cd 2'S

+k 2 ~(~r'i)'+2 2 k«o'(~ll' )'~
S-Cd- S

+-,' P 4 ro'(&e, ai)'+l P k,~'ro'-(&&;~i)(&r;i)
Cd" S- Cd Cd- S-Cd

+l 2 k.»'o'(~8~'i) (~ri'-) (3 ~)
S-Cd- S

'8 F. Herman, J. Phys. Chem. Solids 8, 405 (1959).
~9N. K. Pope, in Lattice Dynamics, edited by R. F. Wallis

(Pergamon Press, Inc. , New York, 1965), p. 147.
'0 W. Cochran, Proc. Roy. Soc. P ondon) A253, 260 (1959).
"M.J.P. Musgrave and J. A. Pople, Proc. Roy. Soc. (London)

268, 474 (1962).
22 M. J. P. Musgrave (private communication).
23 M. Born, Ann. Phys. (Paris) 4, 44 (1914).

The spring constants in (3.9) are X, ii, v, 8, ko, kr,
k„z, k„&'. The springs X, p, v, 8 are two-body interactions
which oppose bond extensions: in turn these represent
springs opposing first-neighbor Cd-S bond extension

(X); opposing second-neighbor Cd-Cd bond extension

(p); opposing second-neighbor S-S bond extension (v);
opposing third-neighbor Cd-S bond extension (8). (In
regard to the latter see Fig. 1 for the single third
neighbor in wurtzite. ) The springs k|t and kq represent
three-body interactions opposing changes in bond
angles: kq refers to changes in erst-neighbor angles
S-Cd-S, while ko. to refers to changes in first-neighbor
angles Cd-S-Cd. The constants k„e and k„ft' are cross
coupling constants, for the bond, and the angle of which
the bond forms one arm. The potential-energy function
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(3.15)

The corresponding Coulomb contribution to the
dynamical matrix isg2ySR

(3 10) exp( —22r&g Rg)
D po(rl, KK') =p 4 po(X,KK')

(3E„M, )'~2

C' psn(ll', KK') =
Bu-&(l,K) Bup(i, K ) p

In the evaluation and transformation it is useful to
utilize the rules" '4 g»g'»' P' ezp( 22—rig R),)

(M.M, ) '~2 &=—&
—i'

~(~r') (u-(i) —u-(j))
: Bu.(i) rp2

(3.11)
g2

X , , I , , I
(3 16)

au. (i,K)aup(i', K') k
( r(l, K) r(l', K') (—)80;j„

[3(u„(k)—u.(j))
Bu..(i) 2v2r p2 The element D pc(g, KK') may be interpreted as the nth

component of the electric field at site r,„.=—r„—r„when
a fictitious dipole wave of polarization p, wave vector 27,

magnitude q„q„./(M„M„.)"2 exists at each lattice site
of the hexagonal Bravais lattice. That is, the equivalent
electric field may be defined as the dot product of a
certain dyadic with a vector representing the magni-
tude and polarization of fictitious dipole. Writing

+(u.(i)—u-(j))], (3 12)

80;;„2
[up(i)+up(k) 2—up(j )]

aup( j) V2rp'
(3.13)

In (3.11)—(3.13) the atom index pair (l,K) was replaced
by a single index i or j, r 0 is the initial distance between
the first neighbors, while ro' is the appropriate distance
between ion pairs involved in 5r;;. Using (3.11)—(3.13)
we easily obtain the elementary short-range force
matrices I ps "(ll',KK') from (3.7) and the corresponding
D p "(rlKK') from (3.4). In constructing the latter we
assume that the force matrix connecting atom pairs
(l,K) and (i',K') which are farther apart than third neigh-
bors, vanishes identically. Here we shall not enumerate
the matrices C ps (ll', KK') as their computation is
elementary, and examples have been given by Merten. "
Note also that use is made, in our work, of the ideal
tetrahedral arrangement of the first neighbors about
each ion, so that (3.12) and (3.13) must be modified
for nonideal wurtzite structures.

(3.17)

where p= q„q„./(3f M )'~'= q'/(3'„~„~)'~2 a—nd p is a
unit polarization vector, we can write

(3.1g)D pc(rl, KK') = (B(rl,KK') pp)

where the basic object to be computed is

B(17 KK )=p' exp( 22ri27 —Ri,) V V
ir—R)[ p

(3.19)

The gradient in Eq. (3.19) is to be taken with respect
to r; the sum there is over a hexagonal lattice.

The evaluation of (3.19) has been discussed in several
places. ' ' ' " The most exact and general procedure
utilizes the Ewald transformation, and this procedure
was utilized for all results which will be presented here.
Once the parameter p is determined, and the quantities
in (3.19) computed, the contribution of the Coulomb
field to the dynamical matrix element is completely
determined. We discuss below how the "Coulomb"
parameter was determined. The actual calculation of
the quantities (3.19) was programmed as a subroutine
for the New York University CDC 6600 computer.
We did not obtain a printout of the values of (3.19)
for each case computed, but satisfied ourselves by
choosin diQ'erent values of the Ewald arameter

Coulomb Contribution

To determine the Coulomb part of the force matrix
we take Cd and S ions to be point ions of (unknown)
charge ~q„, respectively. When the ions are at instan-
taneous positions r(l, K), see (3.1), the Coulomb contribu-
tion to the potential energy'~ in wurtzite is

g»g»'
Irc —Q~ (3.14)

~
r(l, K) r(l', K') ~—

l'»'

In (3.14) the prime signifies that the divergent term due

g p
'4E. B. Wilson, J. C. Decius, and P. C. Cross, Molecu4r

Vibrations (McGraw-Hill Book Company, Inc. , New York, 1955). ' E. W. Kellerman, Phil. Trans. Roy. Soc. (London) A238, 513"L.Merton, Z. Naturforsch. 17a, 65 (1962). (&940).

Vs~ includes interactions of a given ion with its neigh- to the Coulomb self-interaction of a point charge must
bors in wurtzite up to and. including third neighbors, be omitted. The force-constant matrix element cor-
as indicated also under the summation indices in (3.9). responding to (3.14) is typically

To utilize (3.9) in the analysis, we must evaluate the
O'Vderivatives (3.7), or what is the same thing, transform

from the set of independent valence force field variables
to the usual Cartesian displacement variables u (l K).
9'e require the short-range force constants
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("trennungs-parameter") that the subroutine was cor-
rect for a number of test cases,

D g(g, m') = D gsa(g, aa')+D go(gI, »»'),

n,P= 1,2,3,
K)K = 1~2~3)4 ~

(3.20)

for wurtzite. For sphalerite z,z'= 1, 2 only.
Now to proceed with the actual calculation, we

require the nulnerical values of the nine parameters:
eight short-range, plus one Coulomb parameter. %e
determined the values of these parameters by 6tting the
expressions for the g= 0 solutions of the equation of
motion (3.5) to the experimentally observed one-phonon

The Dynamical Matrix

Owing to the four-atom basis (CdI, CdII, SI, SII
in Fig. 1) of wurtzite, there are 12 dynamical degrees
of freedom per cell. Hence (3.6) is a 12X12 matrix. In
sphalerite with a two-atom basis, the secular problem
(3.6) is (6X6). To compose the complete dynamical
matrix from its constituents we write

eigenfrequencies in CdS wurtzite. At go=0 (I' in the
Brillouin zone) the normal modes of vibration span the
following irreducible representations of the point group
Cgy 6gggg-gg, which ls @(F)/g, ln this case

21'gQ+21"gQ+21'gQ+21'g, (3 21)

as is easily seen using the standard method of placing
displacement vectors upon each ion in the basis,
and reducing this "displacement" representation. ""
One set of the representations I',Q+Fg correspond to the
acoustic branches for which co =0. Now using the nota-
tion ~'(gI

I j) we denote the squared frequency at wave

vector q, branch j.The branch index wi11 be tak.en as
the irreducible representation spanned by the relevent

eigenvector. Thus for the three acoustic branches we

have
~'(0[1,)=~'(0[1',)=o. (3.22)

In taking the limit q —+ 0 we found two cases to be
distinguished: gI [I», gI I[x.

For gI [[» the secular determinant factorized at
q~0 and we obtained expressions for the different

squared eigenfrequencies:

~a+~cd
~'(0[1',)= [47/3+(16/3)(kgykg. )+8~31~,g+b+2p(c+d)]

Ms3fcg

M s+3lcg
~'(0[kg) = [+/3+(16/3) (kg+kg )+8~&,g p(c+d—)]

M sMcz

~g(0I I'4')+~g(0
I
I gg) = [4A/3+(I 6/3)(kg+kg )+K3E„g+sp+2p('a —b)](I/Mop)

(3.23)

+[4X/3+(16/3) (kg+kg )+8%BR,g+ Su+ 2p(a —b)](I/3f s), (3.25)

N'(0
[
I'4')ld (0[ I'g )= (I/AII»Mop) [4X/3/(16/3)(kg+kg )+%BE,g+Sgg+2p(a —b)]

X [4X/3+ (16/3) (kg+kg )+SVBE,g+ Sr+ 2p(a b)]—
—(I/M M )[—2X/3+ (16/3) (k +k )+2%3K, —b+2p( —a)]', (3.26)

~ (0 [
I'g')+cg'(0

I
I'g') = [4x/3(16/3) (kg+kg )+2kg+8%3E'„g+2p —p(a —b)](I/3IIog)

+[4~/3+(16/3)(kg+kg')+2kg+8~3E„+2. p(a b)](I/His) —
) (3—.27)

cg'(0[ I'g')cog(0[ I'gg) = (I/3f sBIog)[4II/3+(16/3)(kg+kg )+2kg+SvBIC„g+2p, p(a b)]— —

X [47/3+ (16/3) {kg+kg )+8&3E,g+2v p(a b)']— —

—(I/3f sMog) [4X/3+(4/3) {kg+kg )+SvBK,g p(c d)]'. (3.28—)—
For gII[x we obtained two additional equations:

Ms+HE cg
ra'(0[ I"g(T))= [4X/3+(16/3)(kg+kg )+SV3E,g+b p(c'+d')] —'—

MSMcg

3f8+Mcg
(a'(0 [ I'g(1))= [47/3+ (16/3) (kg+kg )+843K,g+2p(c"+d")]

3fBiM cg

(3.29)

(3.30)
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All quantities in (3.23)-(3.30) have either been defined
in (3.9), or will be given in the following few paragraphs.

Owing to the discontinuity and direction dependence
of approaching a limiting value, the same modes which
were I't and I's as in (3.23} and (3.24) when s1-+O~~s,
become I' t(T) and I's(L) as in (3.29) and (3.30) when

r1 ~ O~~x. Thus these modes shift in frequency, 'i ss and
have diferent polarization and selection-rulc properties,
as is also veri6ed experimentally. "

Fit of Parameters for CdS

Symmetry

1'i (trans)
F~ (long)
Fg
F 1

Fss
F4I
F48

T~LE I. Phonons at F in CdSp

Ex tl. (8) ExptL (T)' Exptl. (L) This worh
cm ') (cm ') (cm

—r) (cm-&)

305 305 298 298
233.5 228 232 228

305 302 308
242 235 240 240
256 252 257
85 44 45

210 211
169 171

p =0.203)(10s dyn/cm, (3.32)

~ = —0.086X10' dyn/cm, (3.33}

6= —0.085X 1o' dyn/cm (3.34)

ks =0.1M&& 10' dyn/cm, (3.35)

k&.——0.154&(10' dyn/cm, (3.36)

&,s=k, s+k,s'= —o 0216&&1o' dyn/cm (3 3&)

(3.38)p =0.032 &(10' dyn/cm .
These values were used in all our calculations for

wurtzitc and sphalerite. For the sphalerite calculation

'~The frequency shifts of the FI and F~ modes can also be
obtained from the sum rule discussed in: M. Nusimovici and J.L.
airman, J. Phys. Chem. Sol ds 27, 701 (1966).

~s R. Loudon, AAunces in Physics (Taylor 8c Frances, Ltd. ,
London, 1964), Vol. 13, p. 423."B.Tell, T. C. Damen, and S. P. S. Porto, Phys. Rev. 144,
Dl (1966).

'o M. Balkanski, J.M. Besson, and R. Le Toullec, in Proceedings
of the International Conference on Semicwtdlctors, Paris, 1964
(Dunod Cie., Paris, 1965), p. 1098. See also H. Poulet and J. P.
Mathieu, Compt. Rend. 258, 2043 (1963);and K. Colbow, Phys.
Rev. 141, 742 (1966).

In Table I we give fundamental (san=0) mode fre-
quencies and symmetries as determined by a variety of
experiments in columns 1, 2, 3. The mode of frequency
256 cm ' we assign as I'6, symmetry and that of 210
cm ' we assign I'4. These assignments difII'er from those
proposed by Balkanski, Besson, and Lc Toullec'o; the
revised assignments were necessitated by the require-
ment that the eight parameters of our model be real.
Our revised symmetry assignments have been sub-
sequently (and independently) confirmed by the work
summarized in columns 2 and 3 of Table I.

In column 4 of Table I we give the frequencies which
we obtain as "best 6t" to our model. Observe that we
have achieved an exact Gt of the experimental data on
the assumption that recent Raman work" correctly
gives the lowest-frequency I"6 mode as 44 cm '. Older
work, quoted in Ref. 30, gave this as 85 cm—' but the
newer result seems preferable. Since the equations
L(3.23)—(3.30)g are not linear, achievement of an exact
6t is not a trivial result.

Using data and assignments of Table I, and (3.23)—
(3.30) we find for the parameters of the model, in cgs:

X= 1.061&&10' dyn/cm, (3.31)

wc take 8=0. Obscrvc that thc g =0 work only permits
a determination of the sum of the cross-force constants
E„s k„tt+k„——s'. However even for t1WO only the sum of
these constants appears in the equations. Wc shall dis-
cuss the values (3.31)-(3.38) below in Sec. 5.
I" In addition to the springs (3.31)-(3.38), complete
speci&cation of the Coulomb Acid requires a statement
of the values of the necessary dimensionless Kwald
sums which appear in (3.23)—(3.30).These are

a =5.37488,

b =0.405219,

c= —2.12997,

d = 7.90855,

c' = 13.1457,
d' = —6.93298,
c"=5.50785,

d"=0.488606.

(3.39)

(3.40)

(3.41)

(3.44)

(3.45)

(3.46)

The constants (3.39)—(3.46) are the limiting, direction-
dependent values of the Coulomb fields (3.19), for
y=0.

4. PHONON DISPERSION AND
SYMMETRY IN CdS

Wurtzite

Using the values of the spring constants (3.31)—(3.38)
the secular equations (3.5)—(3.6) were solved for wave
propagation in the directions I'-A, I'-E, I'-M of the
wurtzite zone. In each direction calculations were made
at 20 equal intervals. The cakulations were performed
on the New York University CDC 6600 computer pro-
grammed to diagonalize complex (but Hermitian)
matrices. Output was given as eigenvalues co'(r1

~ j) and
associated eigenvectors e (x~r1,j).For degenerate cases
only one of the degenerate-partner eigenvectors was

a One-phonon energies in Cds at I' in the zone. Columns 2, 3, 4 from
various sources, as indicated in the references, also see text. In column 5"This work" is our fit to the values which me accept as best experimental.
Observe the energy shift F1 -+ F5(L,) in agreement arith Ref. 3; ~e accept
the value of 44 cm ' for a Raman mode as given in Ref. 2. Our reassign-
ment of mode symmetries is given in the Table, as explained in the text.
Column 1 designations like I'tl' and Fp refer to two modes of same symmetry.b Reference 3Q. We reassigned the 256 and 210 cm ' modes, as explained
in text,

& Reference 29.
d Reference 36.
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Phonon
Energy

300
TO LO

LO

Dispersion Curves of CdS Wurtzite
Direction t.OOOI ]

b5 h6
A~

Al

200

100

LO

A,

Pic. 4. Calculated phonon dispersion
in CdS wurtzite, direction I'-A. Near-
est-neighbor central forces only. No
Coulomb forces are included here.
Observe the degeneracy of TO and
I,O modes, and the accidental degen-
eracy of I"5 and F6. The single-force
constant was adjusted so that mode
frequency for TO mode was as
observed (see Table I).

Ap

I'- A: (Wurtzite)

The symmetry of the modes for g at I was discussed

above in (3.31)—(3.39); and depends as shown there on

the direction of approaching I'. For g at A (zone edge

in the b3 direction) the representations spanned by the

modes are
(4.1)2A IQ+2A 3.

e modes 3 z are doubly degenerate and are compatible

with the modes AIQ+A4 along I' A. Modes-A3 ale foul-

fold degenerate, and compatible with D„.Q+63 along
I'-A.

In Fig. 4 the results of a calculation of phonon dis-

persion are shown for the case of a one-parameter

theory, i.e., with only XNO. The value of the parameter

is unimportant, since all frequencies will be propor-
tional to gK. This curve is given for comparison pur-

poses only, and the variety of accidental degeneracies

merely indicate the incompleteness of a model in which

only first-neighbor short-range interactions occur. Ob-

serve in particular, that in the absence of the Coulomb

field the transverse optic (TO) and longitudinal optic

(I.O) frequencies are degenerate at I'. In Fig. 5 the re-

sults of our exact calculation in the direction F-2 are

shown. Among the features to be noted besides the

3' G. 'L Lyiibarski, The APP/icoiioN of GroNP Theory irs Physics
(Pergamon Press, Inc. , New York, 1960);J.L.Birman, inHgmgzq/g

d~ Ehysik, edited by S. Flugge (Springer-Verlag, Berlin, to be
published), Vol. XXV/2.

given by the machine. We were able to verify nonethe-
less in all cases that the eigenvectors transformed as
partners for the irreducible represer1tations, i.e., as
members of an irreducible subspace of Q(ri).3I In cases
of degeneracy, the missing partners were easily obtained
using a projection operator.

I -llf: (Wurtzite)

At wave vector JIpI the displacement representation
spans the irreducible representations

2(2M IQ+2M3Q+M3Q+SI4) (4 2)

of N(3f). We also can obtain the symmetrized com-
binations of elementary Cartesian displacements which
span the irreducible subspaces (4.2), using a projection
operator, and the known character tables for the ir-
reducible representations. I.et Xi, I'~, Z~ be elementary
unit Cartesian displacements of SI, and likewise Xii,
VII, ZII for SII, as in Fig. 1.Then if n and P are arbitrary
constants (in each line) the six-dimensional representa-
tions spanned by Xi, , Zii may be reduced as

~%I—& n), p(ZI+ZII),

cV3: c3(XI+XII),p(ZI —ZII),

iV3 n(VI+ VII), .

JI4. n(VI —VII) .

(4.3)

(4 4)

(4 3)

(4.6)

Particularly noteworthy is the occurrence of z bases
among the nontrivial representations M2. This result
differs from assertions previously made, by work. ers in
the field."4"We checked the basis (4.3)—(4.6) upon the
computed eigenvectors. Of course, in addition to the S

TO-I 0 splitting at I', are the changed order of the
upper A~ and A3 states, and the crossings of several
branches in this direction.

It is also noteworthy that both our group theoretical
analysis and the exact numerical calculation give no
splittings of the A3 modes. This is contrary to a surmise
due to Sullivan'; the latter is evidently incorrect.
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Phonon
Energy

Dispersion Curves of CdS N urtzite
Direction t000l]

Pro. S.Calculated phonon dispersion
CdS vmrtzite, direction I'-A. RCd, ' - . esults

g nce and
orce eld contri

COInpare %Kith Plj.g. 4 for Coulomb
ngsi tlIlg of sonmx and

pro uction of other ac
degeneracy.

er, accidental

&00 LO

r, {L)

TO

TO

I LO

200

l00

LO

TO

displacements , Cd dlsplacements must bemus e considered;

y up xcate the results (4.3)—(4.6).
n ig. our calculated ei enfre

I'-M are shown.
'gen requencies in direction

F-X: (Wxxrtzite)

(Xx—X»)+f(&x+ &xx),

(Xx+Xxx)+f(I'x —I'xx),

(4 8)

(4.9)

space here for E as above for 3f wve or we 6nd as subspaces:

At wave vector E th d' l
spans

e esp acement representation E3.
nL(Xx+Xxx) —Z(I'x —I'xx) j, PZx

~L(Xx—i'») —f(l'x —I"xx)j ~»
2(ExQ+E 2Q+2Kx), (4.7)

of @(E).Using the same Cartme artesian dksplacement treat
Again observe that the s dis lacem

space In contradiction to earlier work. '" '
Phonon

Energy
cm-

I&

I'5 {L)
500—

Dispersion Curves of Cds 0/ur tz i te
Direction ti 0 i Oj

ted phonon dhsperssonPro. 6. Calculate"
%urtzite, direction F-M. R

r

r, {T)
rl

200

loo
M,
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Phonon
CN

Energy
Dispersion Curves of CdS V/urtzite

Direction t. 0 I I 0]
r'5 (L)

500

1I Q

I"5

r, (T)
1 i

4 zoo

T2~
T2M

Ti ~
T2

T2

K2
K~

pro. /. Calculated phonon dispersion
CdS wurtzite, direction F-E. Results
include valence and Coulomb force
Geld contributions.

I 00

Ki

K~

K~
K2

Calculated eigenvectors verify these assignments of
bases, again adding the Cd degrees of freedom.

The calculated phonon dispersion results in direction
I -Q arc glvcn ln Flg. 7.

@~LEJJ. Phonons at critical points in CdS vrurtzite.

Point 1'
(cm ')

rf ~ O~~s axis
I'I 0
I'g 0
I'6 45
I'4 171
14211
I'fi 257
I'6 240
I"g 298

g-+0/ g axis
I'I(T) 228
I'g(L) 308

Point A
(cm ')

A3 32
Ag 93
AI 249
Ag 270

Point E
(cm ')

E2 89
E3 90
E3 120
EI 133
E3 198
EI 254
Eg 257
Eg 279

Point 3f
(cm

—')

M4 43
Mg 68
3f3 71
MI 99
3fg 130
Mg 131
MI 214
M2 215
Mg 243
Mg 257
Mg 2693' 275

~ L van Hove pcs. Rev. ~9 1189 (953), I. C. Plulljps, sbg4

104, 1263 (1956).

Critical-Point Phonons (Wurtzite)

Rashba" has given an analysis of the vanishing of the
matrix elements of the operator V„which is relevant to
the enumeration of the analytic critical points» in
wurtzite. At such a point, one or more components of
p'~(&

~ y) =0, for the branch j.From Figs. 5, 6, and 7 it is
very like]y that there are other critical points due to
dynamic effects, i.e., "accidental degeneracies" (or
crossings of thc dispclslon surfaces, not due to sym-
metry) as well as vanishing slopes, components of

V~(rf~ j), along symmetry lines. Comparing Figs. 4
and $ we can observe how the change in the dynamics

by inclusion of the Coulomb-Geld CGects, causes addi-
tional cl'osslngs of the 64, 65, and 66 curves.

In the present paper we did not carry out a detailed
density-of-states analysis of phonon dispersion through-
out the entire zone, consequently we do not present
a list of the calculated critical points. " Rather, in
Table II we give a listing of our calculated values of
phonon frequencies at those wurtzite critical points
for which the calculation was carried out: I', A, &, 3f.
The values given wiB be used below in our interpreta-
tion of the observed" 2-phonon Raman scattering
spectrt. lm in CdS.

One-phonon and two-phonon density of states have
been calculated from our model and will be reported
elsewhere.

Syhalerite

For sphalerite we used the values of the spring
constants (3.3I)—(3.38) except for the two modi6ca-
tions, previously mentioned. The third-neighbor con-
stants 8 was taken to vanish: 8=0. For the Coulomb
part of the dynamical matrix, the dipole sums 8 were aQ
recalculated in the two directions in which the phonon
dispersion was calculated, using the correct geometry for
sphalerite and the exact Kwald method. In this manner
the 6&6 dynamical matrix was constructed, and the
secular equations (3.5)-(3.6) solved for waves propagat-
ing in the direction I'-A (or I'-1.), and I'-cV sphalerite
structure of CdS.

I -A. : (Syhaleritel

In sphalerite the mode symmetries at g= I'=0 are
classi6ed according to irreducible representations of

as As given, for example by F.A. Johnson and R. Loudon, Proc.
Roy. Soc. (London) A23 „2N (1964) for diamond, germanium,
and silicon.
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Phonon

Energy
Ji'

Lo ——

500

Dispersion Curves of CdS Sphalerite
Direction tl I I]

To

I'"xo. 8. Calculated phonon dispersion
in CdS sphalerite, direction F-I. Re-
sults include valence and Coulomb
force Geld contributions

I 00

Q(1')i+=T~. Omitting the Coulomb 6eld, the dis-
placement representation spans'

of which one I"15 corresponds to the acoustic modes with
rd'(O~Fqs)=0. The other optic triple is split by the
Coulomb Geld into a doubly degenerate TO and a
higher LO. At I., which has no higher symmetry than
points on A,, the line joining I'-I., the modes span
representations

of the bttle group.

In Fig. 8. the calculated phonon spectruln of a
sphalcrite Cds ls shown in this direction. Note the IDalk
on the abscissa in the Ggure corresponding to a wave
vector whose magnitude is half the maximum (vy =I./2).
This "corresponds" to the wave vector A of wurtzite. '

F-M: (Syhalerite)

The direction I'-3f in sphalerite is one of low sym-
metry with the modes being classiGed along the direc-
tion, as well as at the end point M, only as even or odd
under the mirror plane which is the only operation in

Phonon
Energy

' Ji

Dispersion Curves of Cds Sphalerite
Direction [llOl

500

FIG. 9.Calculated phonon dispersion
in Cd8 sphalerite, direction I'-M.
Results include valence and Coulomb
force Geld contributions.

200

l00
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Phonon
cm '

Fnergy

Dispersion Curves of Cubic and Hexagonal CdS
Directions I ) I )] 5 [OOO I ]

LO
300

r, ~L~

r5(T}
TO

Li rl
4

Li r2

I' IG. 10. Comparison of phonon
dispersion in CdS wurtzite and CdS
sphalerite. The wurtzite F-A-I" curve
(Fig. 5) has been "unfolded" to cor-
respond to sphalerite 1' I. iFi-g. 8l
and both then plotted on a common
scale, In the figure, the transverse
modes (acoustic curve labeled I'-A-F3
and optic curve labeled TO-A3-L3}
are identical in corresponding wurtzite
and sphalerite. The longitudinal modes
differ (solid curve is sphalerite,
dashed curve is wurtzite). The sphal-
erite longitudinal branch is at higher
frequency than the corresponding
wurtzite branch.

L]2
A

$(M)/'Z. The representations spanned are apparent from observation of Fig. 10, and Tables II
and III are that:

4.13

In Fig. 9 the calculated phonon spectrum of sphal-
erite CdS is shown in the direction I'-HID. On comparing
Fig. 9 with Fig. 8 one observes certain similarities in
energies of the highest optical, and the acoustic,
branches in the two cases, at the zone end points 3E. As
discussed elsewhere4 the matter of comparison of wave
propagation (electron or phonon) sphalerite and
wurtzite in these two directions is neither simple nor
unambigous. In Table III computed phonon energies
at I", I., and 3E are given for CdS sphalerite.

TmLE III. Phonons in CdS sphalerite.

Point I'
(cm ')

LA 0
TA 0
TO 240
TO 308

Point M
(cm ')

3II2 51
Afar 109
M1 180
F1 207
351 242
3E2 261

Point L
(cm ')

L3 42
LI, 178
L1 220
L3 257

Comyarison of CdS Wurtzite and Spha1erite

The directions I'-A-F in wurtzite and I'-I. in sphal-
erite may be compared since planes of constant phase
are similar in the two cases. 4 "To facilitate the sphal-
erite-wurtzite comparison we plot the phonon disper-
sion curves along I'-I. in sphalerite and along I'-3-I"
in wurtzite, on a cornrnon cv(g) plot in Fig. 10. To
obtain the wurtzite result we "unfolded" the wurtzite
Srillouin zone4 as shown in Fig. 3. Results immediately

(a) The sphalerite transverse frequencies are identical
with their wurtzite counterparts.

(b) The sphalerite longitudinal frequencies are at
larger energy than their wurtzite counterparts.

S. DISCUSSION AND CONCLUSION

The most valid comparison of our results with ex-
periment would rely upon a comparison of calculated
phonon frequencies with those measured, for example
by inelastic neutron scattering. To our knowledge, the
only wurtzite material for which phonon frequencies
have been so found' is BeO.

Consequently we must examine other more indirect
possible checks of our calculation. One possibility is
multiphonon optical spectra, , due to infrared" or
Raman'" processes. In view of the "weakness" of the
selection rules" for infrared multiphonon processes,
which allow almost all corn. bina, tions we examined the
observed two-phonon Raman spectrum. " %e shall
give our interpretation of the seven observed active
two-phonon processes, using the selection rules, plus
our numerical ca,lculation for wurtzite. As is usual in.

work of this kind, '4" we restrict attention to the
allowed multiphonon processes originating from those
critical point phonons whose energy we calculated. In
essence this approximation replaces the actual crystal
and its oscilla, tors by a collection of discrete Einstein.

'4 J.L Birman, Phys. Rev. 131, 1489 (1963)."F.A. Johnson and R. I oudon, Proc. Roy. Soc. (London}
A281, 274 (1964); H. Bilz, R. Geick, and K. Renk, in Lattice
Dynamics, edited by R. F. Wallis (Pergamon Press, Inc. , New
York, 1965), p. 355.
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oscillators of frequency and symmetry corresponding
to the critical points used. Even so, it should be noted
that we did not calculate phonon frequencies for all
the critical points. "In Table IV this interpretation is
given. It can be seen that we are able to account in a
simple way for all observed two-phonon energies in
terms of various combinations and overtones, consistent
with selection rules. A complete comparison of infrared
and Raman multiphonon observations and our theory
in CdS, involves calculation of the joint multiphonon
density of states. This comparison will be reported
later.

An important check on our calculation was already
mentioned earlier in discussing the fit of the one-phonon
optical data. In order to 6t our springs to real values,
we found it necessary to alter the symmetry assign-
ment of two of the phonons: the 210-cm ' mode sym-
metry I"4, and the 256-cm ' mode of symmetry I'6.
The revised interpretation given in Table I was con-
firmed independently, and subsequent to our work by
Raman scattering. " Since all springs appear in the
equations for these mode eigenfrequencies, this tends
to confirm the validity of the model used.

Additional one-phonon confirmation of our model
can be observed from Table I.Ke predict displacement
of both the I'r and I's modes when observed for rtj~x
compared to rt ~~s. In very recent work, Le Toullec has
observed the predicted shift in the infrared absorp-
tion. "This predicted displacement was not observed
in Raman scattering. "We cannot explain the lack of
observation of the shift by Raman scattering, unless
this is a "dynamical" effect involving a numerically low
cross section. Also, regarding one-phonon energies,
infrared absorption of CdS sphalerite and wurtzite
suspensions (pressed powders) and 61ms have been
reported. '~ The sphalerite structure was reported to
show a higher-frequency "strong absorption band" than
wurtzite. No quantitative data was given, so the
significance of the report is difficult to determine.
However, the reported shift of peak frequency of 10
cm ' from 260 cm ' (wurtzite) to 270 cm ' (sphalerite)
corresponds to our calculated difference in IO fre-
quencies, see Fig. 10, and Table I and Table III.
Since the electrostatic field in a small particle (or
film) is shape-dependent, and hence also the LO-TO
frequency shift, this numerical agreement should be
considered as possibly fortuitous.

A reasonable feature of our model is the numerical
values of the short-range force constants (3.31)—(3.38)
If we compare our force constants to those obtained by
Musgrave and Pople in their treatment of diamond,
then we easily see that our short-range force constant
X scales in accord with a simple rule: co'= X/sl, where oo

is a typical Raman frequency, m the appropriate
(reduced) mass. The reduced mass appropriate for

ss R. Le Toullec (private communication).
» A. Mitsuiski, H. Yoshinaga, and S. Fujita, J. Phys. Soc.

Japan 13, 1235 (1958).

TABLE IV. Two-phonon Raman scattering
in CdS wurtzite. '

Exp erimentb
(cm-I)

97

207

328

347

556

605

Interpretation

2I 6

2%4
MyQ+ Ms
MsQ+Ms
E2+K3
Es+Eg
M2+M4
MsQ+M4
E,Q+Es
A gQ+A s

MsQ+Mr
M,Q+M,
MgQ+Ms

MsQ+Ms
E,Q+E,
EsQ+Es
EsQ+Es
EsQ+Es
ArQ+Ar
E,Q+E s

E1Q+Es

2ICI

23I3
2Fq

2rs(l. l

Calculation
(cm ')

86
201
202
209
210
323
328
33|
342
345
344
346
342
346
347
346
344
346
363
368
369
368
558
550
596
616

a Interpretation of the observed two-phonon Raman scattering processes
in CdS wurtzite in terms of permitted two-phonon processes with energies.
as calculated by the valence-Coulomb field as described in the text.

b Reference 29.

"M. J. P. Musgrave (private communication).
"Reference 17, Chap. II. Also P. Aigrain and M. Balkanski,

Selected Cossstalts Retatiee to Semicossdssctors (Pergamon Press,
Inc. , New York, 1961).

wurtzite is (3fsMca)'t'= 60; that for diamond Mo ——12;
Raman frequencies 298 cm ', versus 1332 cm ', re-
spectively. Taking the diamond Grst-neighbor spring
constant" as about 4.5X10' dyn/cm, a "scaled" CdS
spring constant would be about 1.1X10' dyn/cm. This
agrees with our result (3.31), which includes only bond.
stiffness. The angle stiQnesses k|t and ke. also scale
properly at about 0.1P as in valence force models of
this kind" and in agreement with the work of Musgrave
and Pople."The Coulomb parameter p may be used to
compute an effective charge. We 6nd in this way ion
charges ~q~ 1.0~a~; this is in reasonable agreement
with the Szigetti charge" of 0.7~e~. Thus the model
parameters of the valence force field part of our model.
have values in good agreement with other work of this.
kind, and likewise the Coulomb-held parameter appears
correct.

Using our calculated dispersion curves, the velocity
of sound for elastic wave propagation parallel and per-
pendicular to s was computed. Results are presented.
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TABLE V. Velocity of sound in CdS.'

Propagation
direction

Calculated
(m/sec)

LA 4000
TA 1850
I.A 4300
TA(J z) 2500
TA(biz) 1800

Experiment&
(m/sec)

4500 (C )
1850 (C44)
4300 (C )
3350 (C66)
1806 (C44)

Calculated elastic constants using calculated phonon dispersion in
Figs. 5-7.

b Measured elastic constants taken from D. Berlincourt, H. Joe, and
L. R. Shiozawa )Phys. Rev. 129, 1009 (1963)j.Parentheses indicate elastic
constants involved in the indicated phase velocity.

in Table V, and compared with experiment. In most
cases a respectable agreement has been achieved. The
only serious discrepancy is for the phase velocity in-
volving the elastic constant c66, corresponding to a
transverse-polarized mode propagating perpendicular
to the a3 or s axis.

In all ways immediately accessible to us, the pre-
dictions of our calculation appear in satisfactory accord
with experiment. Comparing the one-parameter (first-
neighbor bonds only) model results given in Fig. 4,
with the results in Fig. 5 we see clearly the qualitative
and quantitative importance of both valence (short-
range) and Coulomb (long-ra, nge) contributions to the
force Geld in CdS. Since work on mixed crystals of
various stoichiometries in the wurtzite and zincblende
structures is now under may, "it seems likely that, as a
matter of principle the quantitative interpretation of
these results too, for compounds like CdS:CdSe will

necessitate the proper inclusion of both short-range
valence, and long-range Coulomb forces. The relative
significance of short-range versus long-range forces
can be quantitatively appreciated from the magnitude
of the contribution of the particular "spring" to the
particular frequency in which it appears. Observe that
the Coulomb spring p appears at g=0 with the dimen-

sionless lattice sums, u, 6, c, d, c', d', c",d", whose values
are tabulated in (3.39)—(3.46). Clearly in a partially

'0 M. Balkanski, R. Besserman, and J. M. Besson, Solid State
Commun. 4, 201 (1966); H. Verleur and A. Barker, Phys. Rev.
149, 715 (1966);Y. S.Chen, W. Shockley, and G. L. Pearson, ibid.
151, 648 (1966); D. %. Langer, Y. S. Park, and R. N. Euwema,
ibid. 152, 788 (1966).

ionic material like CdS (or Cd: Se, etc.) the Coulomb
Geld not only provides qualitative splittings such as
F&-F5 but also quantitatively locates the frequencies as
is seen from inspection of the equations (3.21)—(3.30).

It is apparent that a central problem in lattice-
dynamic studies is the correct inclusion of a proper
mixture of long- and short-range forces. ' ~ It was the
failure of oversimpli6ed short-range (valence) force
models to account for experiments which led to intro-
duction of a pseduo-long-range interaction via shell-
model displacements in dealing with germanium and
silicon; conversely, the rigid-ion purely long-range forces
required modification via introduction of short-range
deformation dipoles in addition to the usual overlap
repulsion in the alkali halides. Even these models are not
entirely satisfactory, and basic modiGcations are still
being made in these models, e.g., via the introduction
of additional parameters, 7 some of which have no
evident physical meaning, or new models such as the
"breathing-shell model. "4' The situation is then such
that no single model is completely satisfactory for all
materials. The present work, in the context of related
studies" """indicates one way in which a model may
be designed to include both the short-range and long-
range fields, via a combination of valence forces and
Cou].omb forces, which may have general validity for
materials with mixed binding.
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