
MAGNETO —OPTICAL EFFECTS IN CdSe

remains a puzzle, since all of the splittings should be
anisotropic. In many respects, however, the CdSe lines
were similar to those of CdS and ZnO, as can be seen
from the typical line complexes of Table II. Not unlike
CdS, the CdSe complex lines also showed both linear
and nonlinear magnetic splittings, as well as zero-
hcld-spht pairs and isotropic electron g values. Several
of the linearly split lines undoubtedly arose from
neutral complexes, but thcrmalization effects were not,
obscI'vcd ln th.c split coInponcnts of thcsc hncs) con-

sequently, it was not possible to deterrrune, in the usual

way, whether the neutral complex was of donor or
acceptor origin. The excited sta, tes of a bound-exci. ton
complex werc rather dramatically demonstrated in the
magnetic splittings of. the line group, I9,—I9~. Since
diamagnetic shifts are observed in intrinsic exciton
spectra, 4 and since such shifts are to be expected from
theory, '" the observed negative diamagnetic shift in
the spectral splitting of /9 serves as fur ther confirmation
of excited states in this bound-exciton complex.
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By making use of the translational symmetry associated with line and plane defects in crystals, we define
certain subbands of the unperturbed electron and phonon bands. Certain %annier functions and Green's
functions associated with these subbands are dered and are used to study the existence of localized electron
and phonon states and scattering resonances associated with extended defects. By firstly considering very
simple examples of such perturbations, of arbitrary strength and secondly considering perturbations of quite
general form but of small strength, we establish the general existence of electron and phonon bound states
for line and plane defects, and the existence of electron and phonon scattering resonances for line defects.
The efFects of different characteristics of the unperturbed band structure are indicated. In contrast to the
above results, bound states for point defects and scattering resonances for point and plane defects do not
occur unless the perturbation exceeds a certain minimum strength. Our results underli~e the basic im-
portance of including the band structure in scattering problems of this type and also the dangers of relying
on perturbation approaches. Attempts which have been made to arrive at properties of crystal defects by the
study of one dimensional models should also be reviewed in the light of our results. The above-mentioned
bound levels form continuous bands which may lie partly between or within the allowed bands of the un-
perturbed crystal, and those electron levels that lie in the forbidden regions should have an important in-
huence on the properties of semiconductors and insulators. Such efFects have long been observed, and have
been interpreted usually in terms of the "dangling bond" theory of Shockley and Read; our theory gives a
much more general basis for their existence and, although the difhculties are considerable, seems to offer a
means of quantitative investigation which previously did not exist. The electron and phonon scattering
resonances seem to afford a natural explanation of the long-standing discrepancy between theory and experi-
ment on the subject of dislocation contributions to electrical and thermal resistivities.

I. INTRODUCTION
' 'HE problem. of the scattering of couduction

electrons in metals by localized point imperfec-
tions, using the %annier-function —Green s-function
technique of Koster and Slater' has been treated by
several authors on the basis of silnplihed models, and
has been discussed by Seeger' and CRHaway, ' who give
further rderences. For our purposes, the important
point to emerge from this work is that a localized point
perturbation can give rise to neither bound states nor
scattering resonances4 in the electron spectrum unless

Present address: School of Mathematics and Physics, Mae-
quarie University, New South 9'ales, Australia, .' G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954).

2 A. Seeger, J. Phys. Radium 23, 616 (2962).' J. Callaway, J. Math. Phys. 5, 783 (1964).
4To avoid confusion we use the term scaNering resonance

its strength exceeds a certain value. Similar techniques
have also been applied by several authors to the problem
of phonon scattering by point defects, and Callaway'
gives appropriate references. Again we 6nd the pertur-
bation must exceed a certain minimum strength in
order to glvc I"lsc to either bound states oI' scattcI'lng
resonances in the phonon spectrum.

In this paper we adapt these methods to the study of
electron RIld phoDoD scRttcllDg fI'om linc Rnd surface
defects which preserve the crystal periodicity in one
and two dimensions, respectively. In Sec. II we make
usc of this pcl.lodlclty to dc6nc ccl.tMD subbRnds of
the unperturbed electron and phonon energy bands,
and we use these subbands to generate Green's func-

rather than eirtlat bognd state, so that bognd stake refers to a real
localized state whose amplitude is significant only near the
perturbed region.
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tions analogous to those appearing in the point-defect
problems, but differing from these in one important
respect as shown in Sec. III. On the basis of simplified
models it is shown in Sec. IV that for line perturbations
of any strength both bound states and scattering reso-
nances associated with these subb ands occur for
phonons and electrons. For surface defects the same
results hold for bound states but the existence of
scattering resonances depends on the strength of the
perturbation. In Sec. V we consider more general
perturbations and indicate in what way the existence of
bound states and resonances may depend on the form
of the perturbation and on the degeneracy of the
sub-band edges. We deduce the existence of bands of
resonances and bands of bound-state energies associated
with each band of the original crystal. In Sec. VI we
brieAy discuss some implications of these results.

The existence of real phonon bound states associated
with a line or plane of isotopes has been shown by
Kobori' on the basis of a simple model and using a
Green's-function method, but he does not extend his
argument to other defects, to electrons, or to the
existence of scattering resonances. Using more restricted
techniques, other authors' " have examined the
existence of bound states for simple models of plane
defects and dislocations. The "dangling bond" acceptor
states of dislocations in semiconductors are well known;
we give some discussion of semiconductors in Sec. VI.

Regarding the experimental. observation of localized
and resonant states, it seems possible"" that localized
phonon states, associated with point defects, could be
observed by Mossbauer or neutron-scattering experi-
ments. Resonances in the phonon scattering by point
defects have been observed" by their effect on the
thermal conductivity, while FriedeP4 has explained
trends in the electronic properties of transition metal
alloys in terms of resonance scattering associated with
the d band of the impurity.

Direct observation of bound and resonant states
associated with line or surface defects is obviously
complicated by the fact that such states occur right
through the unperturbed energy bands, as indicated in
Sec. V; hence we do not expect any sharp resonance
effects such as those observed"" for point defects.
However, the existence of localized states associated
with dislocations in semiconductors is well established

on the basis of photoconductivity and excess carrier
lifetime measurements. Moreover, it seems that the
resonance scattering of conduction electrons and
phonons from dislocations affords a natural explanation
of the high electrical and thermal resistivities which
are experimentally attributed to dislocations and which
perturbation treatments of the scattering severely
underestimate. This point is taken up in detail in
another paper" where it is shown that the resonance
scattering can indeed lead to resistivities of the right
order of magnitude.

II. GENERAL FORMULATION

In this section we will derive in some detail the
equations necessary for the study of electron and
phonon bound states and scattering resonances associ-
ated with a straight-line defect; the procedure for plane
defects follows in an obvious manner and we shall merely
quote appropriate results.

For simplicity we consider a crystal having one atom
per unit cell which is defined by the primitive vectors
a~, a~, a3, and containing a single line defect with period
a3."We impose periodic boundary conditions so that
the electron and phonon states of the unperturbed
crystal are characterized by, amongst other labels,
a wave vector 4=k.+43, where

k.= 2m g m, b;/N; and k3 ——2me8b~/X3. (2.1)

Here 0~&vi~&Ã;—1, the X; arising from the boundary
conditions in the usual way. The b, are the primitive
reciprocal lattice vectors derived from the a;. If the
unit cell volume is 0, then our crystal is of volume SQ,
where E=EiE~Ã3. As far as notation is concerned, we
shall use throughout this paper the letters k and 1 with
or without primes, and with appropriate subscripts as
in (2.1), to denote wave vectors; likewise the letters m

and I will be used to denote lattice vectors of the
unperturbed crystal, so that, e.g. , m=m, +m&, where

m. = P e,a, , m, =e,a, , and 0~(n;~(X;—1. (2.2)

At this stage we need to consider the electron and
phonon problems separately,

' I. Kobori, Progr. Theoret. Phys. (Kyoto) 33, 614 (1965).' B. Lengeler and W. Ludwig, Phys, Status Solidi 7, 463 (1964).
'O. Litzman and K. Kunc, J. Phys. Chem. Solids 26, 1825

(1965).' R. Landauer, Phys. Rev. 94, 1386 (1954).' V. Celli, A. Gold, and R. Thomson, Phys. Rev. Letters 8, 96
(1962).' V. L. Bonch-Bruevich and V. B. Glasko, Fiz. Tverd. Tela
3, 36 (1960) t English transl. : Soviet Phys. —Solid State 3, 26
(1961)j.

» H. . Brout and %. Visscher, Phys. Rev. Letters 9, 54 (1962).
~ A. D. Dinhofer, Phys. Rev. 131, 535 (1963)."C. T. Walker and R. O. Pohl, Phys. Rev. 131, 1433 (1963)."J. Friedel, J. Phys. Radium 23, 692 (1962).

A. Electron States

We denote the one-electron Hamiltonians of the
unperturbed and perturbed crystals by' II'p and II= IIp
+V, respectively. Since H is invariant under transla-

"R. A. Brown, this issue, Phys. Rev. 156, 692 (1967)."If the perturbation has some other period, we can still regard
this as a primitive translation of the unperturbed crystal which
we must now regard as having more than one atom per unit cell.
The results of the following sections are essentially unaltered by
considering more than one atom per unit cell and it does not seem
justified to deal with this added complication at this stage.
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tions aa we can, as discussed by Holland, '~ label the
perturbed wave functions by the wave vectors ks, as
well as other labels bearing one-to-one correspondence
with the E,=EjE2 vectors h, and the band indices j.
So with b, ( ks+ k„r) denoting the Bloch function corre-
sponding to the jth band and wave vector ks+k, of the
unperturbed crystal and normalized over the crystal
volume EQ, we define the orthonormal %annier
functions

a (n r k)=E —'~sP b(k+k r)e—*' '* (23)

the sum being over all E„vect or sk, .
These %annier functions are localized" about lines

parallel to the line defect and through the points n..
They also have the Bloch property of transforming
irreducibly under the translations maaa. It follows from
this and from their completeness property that any
wRvc fuIlctlon of thc pertuI'bcd clystR1 collcspondlng to
the wave vector k3 can be expanded

4'g, (r) =P P C;(n. ,k,)u, (n. ,r; k ). (2.4)

On substituting this expansion in the Schrodinger
equation for + and carrying through the procedure of
Seeger, ' we get, for the coefFicients

Although not explicitly labelled, V and G in (2.5)
depend on k3 and are given by

V„(m.,n.)= a,*( mr; ks) V(r)a, (n.,r; ks)d'r, (2.6)

C, (n. ,k,)= P C;(m. ',ks) V„(m.,m. ')
Jt~tr~k

XG„(n,—m.). (2.5)

8@,s (n» —II4) = llm G@y~g s (na II4—) .
e-++0

(2.11)

Following Callaway we associate our resonant state
energies with the (complex) poles of the scattering
amplitude so that from (2.9) we need the roots E of

n(E)—=det/h„b „„—P V„(m.',n.)

Xgp, ,(m. —m. ')]=0. (2.12)

The only physically important solutions of (2.12) are
those close to a real Eo satisfying

N.LS(Ep)j=0, (2.13)

where R denotes real part. The scattering cross section
near such an Eo has a large value independent of the
strength of the perturbation. '

various ks subbands, 's separated. from the subband
edge by an amount independent of S,."

To study the scattering resonances, which lie within
the k3 subbands, we And it convenient to treat the
problem explicitly from a scattering viewpoint and,
following Callaway, ' verify that the C, (n„ks) represent-
ing an outgoing scattered wave of energy 8 and cor-
responding to an incident Hloch wave of wave vector
ks+k„and band s such that Ee,,(ks, k„)=E, are
given by

C, &'& (n. ,ks) =Ce,,&'& (n. ,ks)+ P C;&'& (m. ',ks)
pJi~4rm4

X V„(m.,m. ')g, ,(n.—m.), (2.9)
where

Cs, &*&
(,n. ,ks) =S. "'b„e'"" a '(2.10)

is an appropriately normalized solution of the un-
perturbed problem, and

the integral being over the crystal of volume EQ, and

|t'&* (11*—~*)
Gs,,(n*—m.)= — Q—,(2.7)X. ~. Ep, ,(ks, k.)—E

where Es, ,(ks, k,)=—Es, ,(ks+k„) is the eigenvalue of
Ps, corresponding to b, (ks+k„r).

The eigenvalues E of the perturbed problem are
obtained from (2.5) as the roots of

B. I honon States

Ke start from the classical equat'ions of motion' "in
terms of the Cartesian components" U (m) of the
displacement of the atom at the lattice site m from its
equilibrium position. Thus, for atoms of mass M we
f1nd fol R wave of RngulRI' flcqucncy M,

Mro'U (m) —Q C p 'Up(n) =Q 6 p~"Up(n). (2.14)

Here the C p =C p are the coupling constants for

O(E)=—detLS„S „.,—P V„(.„',„„)
IQ y

' I'ollowing Holland, we refer to the set of levels formed from
the EQq(kg & kg) as k~ runs over its X, values, as a gas subband of

~G (m m I)j 0 (2 g) the unperturbed crystal. Thus a bound state, which lies outside a
given subband, may still lie within an allowed band of the original
crystal.

and this equation is particularly suitable for the study "M. Lax, Phys. Rev, 95, 1391 (1954).
of the real bound levels which lie" above or below the A A. Maradudin, K. %. Montroll, and G. H. gneiss, i

State I'byes, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1963), Suppl. 3.

"Unless otherwise speci6ed, Greek subscripts take the values' B. W. Holland, Phil. Nag. 8, Sl (1963). 1 2 3.
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the unperturbed crystal and the 6 p
' represent the

perturbation. For our line defect, 6 depends on ms
and n3 only through the diRerence m3 —ns so we write

Anp = Anp (Inn, nn) In((—118) .

Because of this property it is readily veri6ed that the
solutions of (2.14) can be labeled by the wave vector
kp and can be written as a normal coordinate expan-
sion" over the k3 subbands of all three polarizations
as foHows:

U.k (m) = (MX)-'(' P p. (k,+k., j)Q (k,+k., j)
&&exp[i (k +lk ).m$. (2.16)

U ka(ln) = V ks(In, )e"I m3. (2.23)

Uslllg (2.23) lxl (2.21), wc gc't 3E„ Independentcqua-
'tlolls 111 tlM 3Xg, var1ablcs 'vn"'(Inn), viz.

P e,k'(n. ')((l„5,„, —Q Ap, (n. ,n. ')

XF.p(ln. —n. , (o'; k3)) =0, (2.24)

Ap, (n, ,n. ') =Q Ap, (n. ,n. ',n,„)e
—*k3'~, (2.25)

wc CR11 1"c(lllcc tllls by llotlclllg floni (2.16), tERt thc
U's are of the form

1 p (k3+k. , j)pp(k3+k. , j)
&VX. k., ~ (o'—(p, '(kl, k.)~, '(k)p (k,j)=p D p(k.)ep(kj),,

Hclc thc polRl lzatlon index J takes the vRlucs jt. 2 3
and the polarization vectors p, (k,j), real for monatomic F p(ln* —n*, ~'; kk)

CI'ys tais sRtlsfy

X~(k, (m —n, ) (2 26)and consequently the orthogonality and completeness
relations

(2 18) Thus the eigenvalues (n' of the perturbed problem are
thc roots of

(2.19) M((d') —=det[b„,b „„,—P Ap, (n. ',n.)

The (pP(k), being the squares of the eigenfrequencies of
the unperturbed lattice, are the eigenvalucs of the
3&3 matrices

D (k) —~—

(gal

mp —(k m (2.20)

We substitute the expression (2.16) into the left
side of (2.14), multiply both sides by p 'm'"', and sum

over m. Then, simplifying by use of (2.20) and (2.17),
we get

—
(half iver)

—I/2 p A mnU ka(n)& (m k—
nl, n, P

III' k. ,j

e.(k,+k., j)pp(kp+k. , j)
&ik (m —n) (2 22)

(n' —(nI2(k3 k.)

Now multiply by e (k,j') and sum over n using (2.18)
to solve for Q(k, j), and then substitute this expression
back in (2.16) to obtain finally

U' ks(nl) p p ks(nI)g nn'

n, n', P, y

&&G p(m —n, (n'; k,), (2.21)
where we have written

G.p(m —n, (n'; k;)

yF.p(In. —n, ', (n'; k,)]=0, (2.27)

snd as with (2.8) we use this equation to study those
states which lie outside the unperturbed subbands.
The fact that such states are localized near the dekct
follows from Eq. (2.21) or (2.24) using the arguments of
HOHand ) thc method of stRtlonary phase shows thc
Green's functions (2.7) and (2.26) decrease expone11-

tiaHy for large Iln, —n, I. One difference to be observed
between the phonon and electron problems is that only
solutions aP)0 of (2.27) are acceptable in order to
yield real frequencies of vibration.

As in Sec. IIA, we use a slightly different forlnalism to
study the in-band scattereD states, and using Eqs.
(2.17)—(2.20) wc vcllfy tllRt with 'vn ~(lng) given by
(2.23), the solution of (2.14) representing an outgoing
scRttclcd wRvc 0'f flcqucncy u, corresponding to Rn

lncldent wave of polallzRtlon J Rlld wave vcctol k3+k
such that (n, (ks+k, ) =(d, is

v„k&(In.)= vo ."'(m.)+ Q Ap, (n. ,n.-')

X5: p(m. —n. , (v'; kg)(,k3(n. '), (2.28)
where

r- p(m.,—n, , (v';kl)

= lirn F.p(m. --n. , (n'+i&; k,). (2.29)

The set of equations (2.21) is of order 3'&&3', but Thus the poles of the scattering amplitude are at the
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solutions co' of

m(~ )—=det[S.,S...,—g Xs, (n. ',n.)

Using (3.2) and (3.1) in (2.7) we show in Appendix A
that, as E—h, (k,) ~ —0,

Gg(0) —& a(ks)0. 1n[8ii(k3) —E], (3.3)

)(P s(m n I (g2. ks)] 0 (2 30) where

Again we are interested in solutions ~' ~0', where

61[m(«')]=0.

C. Plane Defects

(2.31)

The equations of Secs. IIA and IIB can be made to
apply to plane, rather than line, defects simply by
interchanging "' and. 3 subscripts on the wave vectors and
lattice vectors. The only significant effect of this is to
change the behavior of the Green's functions (2.7),
(2.11), (2.26), and (2.29) as the energy approaches a
subband edge. This will be discussed in the next
section.

which exists unless a~2'= u~~u~2, in which unlikely case
further terms of (3.2) need to be considered. Since the
quadratic form in (3.2) is positive definite, a(k,))0;
thus by (3.3)

Gg (0) —+ —~ as L~' h ii —& ——0. (3.5)

Precisely the same considerations apply as E approaches
the top, Bz, of a subband from above and we find

1 2

a(k3) =- [aii sin'0+2ai2 sin8 coso
2 0

+Q„cos'0]—'iS | (3.4)

Gs(0) ~+ ~ as E—h~ —++0. (3.6)

Q -+ X.o.. d'k. , (3 1)

where" there are E,a,d'k, points k, in the area element
d'k, .

Now since Eo, ,(ks, k„) is an analytic function of k. ,
we can expand it about the bottom of the subband in
a power series in ~~ and ~2, the Cartesian components of
k, relative to an origin at the subband minimum, thus

Ep(k3, k.)= Sg(k3) = g a;, (ks)g;N,

III. BEHAVIOR OF THE GREEN'8 FUNCTIONS

The proofs of the existence of bound and resonant
states depend on the fact that the Green's functions
mentioned above became infinite as the energy ap-
proaches a subband edge, as we now show.

First consider (2.7). We replace the sum over the
two-dimensional space of k* by an integral22 over
the subband,

Gs(n„) ~ e*"~"*Gs(0), (3 7)

as E approaches the edge from outside the subband.
I'or a degenerate subband maximum or minimum
Gs(n, ) approaches a sum of such terms, one for each
degenerate state. In Sec. IV we are mostly concerned
with the behavior of G~(0).

Moving on to the Green's function (2.11) we write
it as, using (3.1),

Note that we have implicitly assumed in writing
(3.2) that there is a unique state k corresponding to the
subband minimum. If on the contrary this level is
degenerate, we simply expand about each such mini-
mum point and add their separate contributions to
the integral. The conclusions (3.5) and (3.6) are
unchanged.

It is clear from (2.7) that for a subband edge at a
nondegenerate state k3+k, ',

+higher powers, (3.2)
1.e.)

E+ie—Ep(ks, k.)

where the quadratic form is positive definite. Here
Sii(k,) is the bottom of the k3 subband and we have
dropped the band index q. If the minimum occurs in
the interior of that section of the Brillouin zone corre-
sponding to the k3 subband the absence of linear terms
in (3.2) requires no explanation; if the minimum occurs
at a boundary of this section it is explained by the
orthogonality of the energy surfaces to the Brillouin
zone boundary. The terms corresponding to small a;
dominate in the sum (2.7) as E hii ~ —0, so —we do
not need to consider the higher-order terms of (3.2).

"This is permissible for E outside the subband when the
integral is a slowly varying function of k, . We have to be more
careful when considering the in-band scattered states.

2'o-~ depends on the crystal structure and the direction of the
defect line, but is of order a' for a crystal of lattice constant u.

g~(0) = [I(E)—ivrg(E)], (3 g)

where E~rI(E) is the number of subband states per
unit energy range in the unperturbed crystal, and

I(E)= I' g(E')/(E Li')dE'. —(3.9)

Eo(ks, k.) = Sii(k3)+ +O(k. ') (3.10)
2''(k3)

Here I' denotes principal part and the integral is over
the k3 subband.

We can proceed using the general expansion (3.2),
but nothing essential is lost if we adopt the simpler
vel sion



R. A. BROVvN

in which we write the constant explicitly as an. effective
mass. For the bands (3.10) we readily find

q(E) ~ 2m.o.h—'m'(kg) (3»)
independent of E, as E—hei —+ +0. Thus, from (3.9),

I(E) -+ 2 r70k 'm*(ka) log[E —Sp(ka)], (3.12)
i.e.,

I(E) —+ —~ as E—8p —+ +0, (3.13)

and likewise we And

I(E) —+ + oo as E Sq -+ ——0. (3.14)

Regarding Eo(ka, k,) as a function of k„ its absolute
maximum and minimum for the ks subband are
Bz and Sz, respectively. If it also has local maxima
8is., and minima 8;, we similarly find (see appendix A)

I(E) -+ —Qo as E~ 8;, all j, (3.15)

I(E)~+ oo as E~ B~;, all i. (3.16)

The general existence of such local extrema is a conse-
quence of the general existence'4" of saddle points of
the function Ep(k3+k ) when regarded as a function of
(ka+k, ); the intersection of this generalized surface
with the plane ks ——constant yields the surface Eo (ks,. k,)
which will have either maxima, minima, or saddle points,
depending on the relative dispositions of the plane and
the generalized surface. 7(e show in Appendix A that
I(E) does not become infinite near saddle points of the
surface Eo(k3, k*), so that resonances are not generally
associated with these points.

In considering the phonon Green's function (2.26),
much the same considerations apply. In general the
sub-bands corresponding to different polarizations will

have different maxima and minima, cd=or(j; k3) or

Qii(j; kl). Also" ~p(ks+k, ) is an even function of k so

we expand, for instance, in the same spirit as (3.10),

&,2(k,yk. )=n, '(j; k,)+.,2(k,)k.2+0(k.'), (3.1/)

where, in the Debye approximation, v; is the velocity
of sound at the minimum of the jka subband.

Using (3.17) and (3.1) in (2.26) we find, if the
minimum of the jk3 subband occurs at k= k;,

I'"
p (0,~', ks) —+ ire (k, ,j)ep (k, ,j)

3f
XlogLQp2(j; k3) —o)2], (3.18)

as Qp'(j; k3) —oi' —++0, j= 1, 2, 3. In particular then

F,(0,oF; k8) —+ —~ as Op'(j;ka) —cu'-++0, (3.19)

and likewise we find

P, (O,a)'; ka) ~ + m as Qr'(j; ks) —oF —+ —0 . (3.20)

'4 L. van Hove, Phys. Rev. 89, 1189 (1953)."Reference 20, Chap. III, Sec. 3.

(3.22)

the integral being over the subband and E,$ (~')drd'

being the number ofj ka subband states in the range
doi2. For the bands (3.17) we find

&, (o0') -+ xo.i; '

near the subband minimum, and so

(3.23)

I ( ') ~ " '»gk~' —»'(j;k)] (324)
Thus

J, ((o') ~ —~ as oF—Qp'(j; k3) —++0. (3.25)

Likewise

I;(o~2) ~+ ~ as (a2 —Qi2(j; k3) -+ —0, (3.26)

and equations similar to (3.15) and (3.16) also follow.

Similarly it is a simple matter to verify that for a
plane defect the Green's functions behave in the same

way as the corresponding line-defect ones G and Ii

when the energy approaches the subband edge from

outside. On the contrary, those Green's functions corre-

sponding to g and F remain finite as the energy ap-

proaches the subband edge from Reside, and also as

the energy approaches subsidiary extrema.
As a point of comparison it is also readily shown that

the corresponding Green's functions for the point-

defect problem remain finite in all cases.
Ke shall show in the next section how these dif-

ferences in behavior of the Green's functions lead to
fundamental differences between the three classes of

defects with regard to the existence of bound and

resonant states.

IV. SIMPLE MODELS

The models employed in this section are the obvious

analogs, for the line and plane defects, of the usual

simple model used to represent a point defect. ' ' %e
consider it best to use them here, as they facilitate direct

comparison of the bound-state and resonant-state

properties of the three types of defect, and in Sec. V
we consider models which more closely represent

dislocations and stacking faults, which are of obvious

interest. The use of this one-band, highly localized,

model has been criticized by Beeby."His objections

do not affect our arguments where, for the energy near

a given subband edge, the divergence of the Green's

function corresponding to that band swamps the contri-

~6 J. L. Beeby, Phys. Rev. 137, A933 (1965}.

Similarly we find

r.p(0,&p'; k,) -+M 'e (k„j)pp(k;, j)
&& LJ, (co') —Ar) (oF)] (3.21)

where
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bution from all other bands and so makes the one-band
approximation redundant.

i, I(E)

Ke put

A. Electron States

V„(m„n.) =8p,8 „,p5, ,pVp (4 1) Vo ~ (Vo &0)
Y) Y

in (2.8), which then reduces to

1—VpGg(0) =0. (4 2)

Now from (2.7) it is obvious that G~(0) —+ 0 as E moves
a long way from the subband, either above or below.
Further, for E outside the subband, (2.7) is a finite
sum of continuous functions, and so Gs(0) is a con-
tinuous function of E. Then using (3.5) and (3.6) it is
clear that (4.2) has a solution below the subband if
Vp(0, and above the subband if Vp) 0, so that at least
one bound state always exists. On this model, owing
to the monotonic nature of the function Gz(0) for E
outside the subband, there can be only one bound
state; however, if the one-band model is not used, there
may be more than one bound state between two given
subbands.

The existence of bound states for the corresponding
model of a plane defect is established in the same way.

To study the resonant states we use (4.1) to reduce
(2.13) to

1—Vg(E,) =0. (4.3)

Then from (3.13) and (3.14) there is obviously at least
one resonance within the subb and, whatever the
value of Vp.

It is instructive to consider I'ig. 1, drawn for a
subband having no subsidiary extrema. The function
I(E) must have the general form shown there, although
the behavior well inside the asylnptotes 8~ and hz
cannot be determined without detailed knowledge of
«l(E). We see, however, that for any perturbation Vp,

whatever its sign or magnitude, there is an even number
of solutions of (4.3). One of these is the real bound
state discussed above, so that there is always an odd
number of scattering resonances in each subband. We
show in the following paper" that the density of
subband states is increased above «f(E) near points
such as Xs where dI/dE(0, and is decreased near
Xs, X4, and I"t where dI/dE) 0. We further show that
just one state is removed from (or introduced to) the
vicinity of each of these resonances, so that in particular
one considers the perturbation to have shifted a state
from I'~ inside the subband to the bound-state position
I ~, or, for an attractive potential, from X~ to Xi.

If the subband has subsidiary extrema we may be
able to establish the existence of more than one res-
onance state by using (3.13)—(3.16) and without
needing the detailed knowledge necessary to consider
the region between the asymptotes as in Fig. 1. The
situation depends on the relative values of the 8~; and
the h, ; if all the 8; are less than all the B~; we can

Xg Xg++XI,

Fzo. l. The solutions of Eqs. (4.2) and (4.3).

to give us similar insight into edge-dislocation states.
In (4.4) p„ is the shortest of the vectors m, normal to
the slip plane. In the same way as above we find that
independent of the strength of the perturbation this
simple model of an edge dislocation always gives rise
to tzvo real bound states, one below and one above
each subb and. Likewise there is always an emcee

number of resonances, and again there is just one state
excluded from or introduced to the vicinity of each
resonance. The state excluded from each of the two
resonances lying respectively nearest to the subband
top or bottom is regarded as being shifted to the bound
state outside the respective subband edge.

For plane defects, the 6nite behavior of the Green's
functions near subband extrema enables no conclusions
to be drawn regarding the existence of scattering
resonances.

B. Phonon States

In the same spirit as (4.1) we choose for the coeK-
cients (2.15)

6 s(m„n„, ms —np) = —cp'5Mb, .p5„„p5, „h p, (4.5)

for which (2.27) reduces to

detLb «+op'8MF «(O, ops; ks) j=0. (4.6)

For cubic crystals, when" the e (Ir,j) have the sym-
metry of the k we see from (2.26) that

F.,(0,~'; I,)=S.,F..(0,~';1,),

only predict one resonance state from the asymptotic
behavior of I(E), but more than one if the h; and
8~; are interspersed.

Vfe might expect the above discussion, based on
(4.1), to give us some insight into the electronic states
associated with a screw dislocation. Similarly we might
expect analysis of the antisymmetric perturbation

V„(m.,n,)=c„f' ...(S.„,„—S.„, „)V, (4.4)
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so tllR't (4.6) 11Rs thc tliicc soh1tlons

1+oP5MF (O,o&'; ks) =0, n=1, 2, 3. (4.7)

Using Eqs. (3.19) and (3.20), and proceeding as for the
electronic case, we establish the existence of at least one
bound state for each polarization j, whatever the
perturbation 5M. If for a given j and corresponding
subband extremum k;more thanone p (k,j) is nonzero,
then (3.18) shows that more than. one of (4.7) may
have solutions for different ~' outside the subband, and
so we may get up to three bound states per subband
of each polarization. It should be mentioned that,
because of the appearance of ~' in the perturbation,
bound states below low-lyAsg ks subbands will be very
close to the subband edge.

Plane-defect bound states are established in the sanle
way.

For resonances, (2.31) reduces to

1+ra'8%St 5 (O,aP; kI)$= O„n= 1, 2, 3, {4.8)

and analysis using (3.21)—(3.26) gives results analogous
to the above. Again we cannot establish the existence of
scattering resonances for plane defects.

The antisymmetric perturbation

A~p(illy) 11', Illy —Iig)

= —(a'5Mb p5, ,„,8 „,„,(8 „,~,
—5 „, I,) (4.9)

gives the same type of duplication effects discussed for
the electronic case.

The models (4.5) and (4.9) suRer from the obvious
drawback that they do not take into account any
changes in the force constants between atoms, but
simply consider changes in mass. The consideration of
the force constants leads to considerably more com-

plicated equations than (4.7) and (4.8) and we do not
consider the extra effort justi6ed at present. Equations
(4.5) and (4.9) presumably give reasonable representa-
tions of dislocations provided the dilatation about these
defects is their most important characteristic.

V. MORE GENERAL MODELS

Up to this stage we have done nothing Inore than
make an obvious extension, to linear and plane defects,
of a very simple model which has previously yielded
results of interest concerning point defects. Although
the results we have already obtained are clearly of
considerable interest, we need to investigate as far as
is practicable the extent to which these results apply to
perturbations more closely representing defects actually
occurring in crystals. The general situation is too
complicated for any general trends to show through
and in fact requires for its treatment a detailed knowl-

edge, which we usually do not possess, of the Green's
functions and the perturbation matrix elements.
Howcvcl 111 Scc. VA by coIlsldcI'lng a pcrturbatlon of

general form but of very low strength, we are able to
obtain some idea of how the form of the perturbation
and the band structure of the unperturbed crysta, l
effect the existence or otherwise of bound states and
resonances. Unfortunately we are not able to carry these
results over at all exactly to stronger perturbations and
can only regard them as a guide to the situation
existing in a real crystal, which we discuss in Sec. VS.
The arguments for the electron and phonon problems
are very similar, so we consider only the former.

A. Very Weak Perturbations

Kith the crystal undergoing the perturbation V we

firstly treat the problem. corresponding to a perturbation
v(X) =Xv in the limit as X —++0.To avoid convergence
difhculties and problems associated with determinants
of in6nite order we assume that the perturbation only
extends over a finite number of sites m„, say p of them,
such that V,, (m„,n, ) is zero unless m, and n„both
belong to this set of sites.

Now with X —+ 0 we look for solutions close to the
edge of some sub-band; then the Green's functions of
that subband'" dominate all others and Eq. (2.8)
leduces to the olle-band equation

n(E) —=det9.„...—2 & V(m. ',n*)

XGg(m, —m, ')j=0, (5.1)

where we have dropped the band index, and the labels
m, take the p values of the set defined above.

It is easy to show, as in (3.7) that when E~ hg or
hr from outside the subband Gg(m, ) approaches the
form

Gg(m. ) ~ lna P a(k.,')e*' " m'+g(m. )

+0(d ink), (5.2)

where 0,=E—hg or E hr and g(m, ) is inde—pendent of
A. The vectors (kI+k, ") correspond to the level hg
or hq which is assumed v-fold degenera. te. The constants
a(k„") are positive for E near hg, negative for E near
hr. Tllc tciiil of order 6 ink ill (5.2) cR11 Qllly lead to
terins of type 6'(ink)' in {5.1), with s&~ 1. Such terms

approach zero as 6~0 and so we do not need to
consider them. Thus we write (5.1), when 6—& 0 as

D(E) =detP. .„,—X P V(m. ',n.)g(m. —m. ')
lTl g

(5 3)

27 Ke assume the kg subband being considered does not touch
any other jlr3 subband; if it does we must consider a compound
subband, e.g. , that forined by all the states of the qk8 and
I,'q+1) 1&3 subbands. The modifications in the argument are
obvious alld thc conclusions essentially unchanged.
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(2)—k 3

FIG. 2. Illustrating typ-
ical degeneracies of energy
subband extrema.

(1)--k—
3

k(3)
+3

PL
(a)

where

and
p "=ha(k.") inde'~""'m

b . Q V(m~)n. )e
—*". m.

m+'

(5.4)

Now for a determinant of any order p we have

det[a, ,+pb„b,]=deta;;+ pD„(5.5)

where D, is detu;; except for the replacement of the
qth row by the row b; By re.peated application of (5.5)
to (5.3), it is easy to show that the highest power of
ink appearing in the expansion of (5.3) is (ink)", and
it is this term which determines the behavior of D(E')
as 6~ 0. We note this major departure from the case of
the simple models (4.1) and (4.5) where the degeneracy
of the subband extrema makes no difference.

En view of this new behavior we must consider what
values of v are likely to arise for crystals of interest.
We will not concern ourselves with any accidental
degeneracies, but only with those occuring as a result
of symmetry. Thus for cubic crystals we generally
expect either v=1 or 4 for a line defect, although if the
direction of the defect line is one of low symmetry we

may get v= t. or 2 or just v= 1. For a plane defect in a
cubic crystal we expect v=1 or 2, but if the defect
normal is a direction of low symmetry we may just
have v=1. Figure 2 illustrates schematically some of
these cases for the first and second conduction bands of
a typical metal, which for simplicity we have drawn as
if its structure was simple cubic. The solid lines are
sections through the center of the Brillouin zone and
parallel to a zone face of the constant-energy surfaces
whose general shape for various metallic structures is
discussed by Harrison, " and which for any crystal
have characteristics similar to Fig. 2. The broken lines
are sections of ka subband planes; those labeled k3(')
and k3( & represent two diferent subbands for a line
defect parallel to a cubic axis; the line k3('& corresponds
to a defect whose direction has low symmetry, From
Fig. 2(a) we see that kan& has a nondegenerate minimum

m~ in the first band, but a 4-fold degenerate maximum
at points like M&, the situation for k3&" is just the
reverse. On the other hand k3(" has nondegenerate
minimum m3 and maximum M3. The same k3 subbands
of the second band are indicated in Fig. 2(b) and we
see the degeneracies may be different. The point is,
that given the constant-energy surfaces for any crystal,
we can determine the subband degeneracies at any
points of interest. The general features of phonon
constant-energy surfaces are also as in Fig. 2 and the
same remarks apply. The constructions for plane defects
are as for Fig. 2, except that the broken lines are to be
regarded just as lines, not as cross sections of planes.

The proof of existence of bound states and resonances
near certain subband edges depends on the nature of
the perturbing potential, both its sign and general form,
and also on the nature of the subband edge, both its
degeneracy and whether a maximum or minimum.

For example, we first consider bound states near a
nondegenerate subband extreme at point k3+k*. Then
repeated application of (5.5) reduces (5.3) to

D(A) =det[8 „„„—X P V(m. ',n.)g(m, —m. ')]
m„r

—P p-,D „, (5.6)

where D, is just the determinant appearing as the
first term on the right side of (5.6) except that the m. th
row is replaced by the row b„,.

Now as X ~ 0 we expand all determinants in (5.6) as
polynomials in X to get

D(4&') =1—X P V(m. ,n.)g(n. —m.)+0(V)
n+, m+

ging(a(k~) p V(m„n~)e'k, ~ (n —m~)+0(y)} (5 7)

and then keeping P fixed at some small value and letting
the energy approach the qk3 subband edge so that
«s A~ 0, we get

"W. A. Harrison, Phys. Rev. 118, 1190 (1960). D(E) —+1—' 1nha, (k.)v, (k,), (5.8)
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where

v (k.)=—P V (m. n.)e" i'«—m*& (5.9)
find, corresponding to (5.8), that for small X, and
&~0,

and using the definition (2.6) we readily find that

v, (k.) =X. V(r)
~
b, (k3+k. , r)

~

'd'r. (5.10)

Suppose now our nondegenerate subband edge is a
maximum; then a,(k„)(0and (5.8) has the solution

Ink = [&ay,]—' » —~, if v, (k, ))0. (5.11)

Likewise, if the edge is a minimum (5.8) has a, suitable
solution when v, (k„)(0.Thus if we could, for instance,
say that v, (k, ) had the same sign for different subbands
we could be sure that a good proportion of subbands
satisfied (5.8) since, as in Fig. 2, there will always be a
good number of subbands with either nondegenerate
maxima or minima. Now provided V(r) does not vary
too rapidly, we get from (5.10)

v, (k») V(r)d'r = V(r)d'r, (5.12)
+3 NQ NgQ

independent of q,k3 and k, . The second integral in
(5.12) is over a cell of volume 1V„Q extending only the
distance a, in the direction of the (line) defect. This
approximation will be reasonable provided the contribu-
tions to the integral from regions of positive and
negative U(r) do not almost cancel.

Thus for dislocations with appreciable screw compo-
nent, and also for stacking faults, where we expect
V(r) to be substantially one-signed, we have established
the existence of bound states near some, but not all,
k3 subbands.

The approximation (5.12) does not decide the issue
in cases where 1Vl 'J'V(r)d'r~0, such as for a disloca-
tion of almost purely edge character. However in these
cases we can establish the existence of bound states near
degerierate subband edges. By applying (5.5) succes-
sively we find that when v=2 the leading terms of
order (ink)', in (5.3) are

V(m„n, )=5, .„V(m.) . (5.16)

Using (5.16) we reduce (5.15) to

D(E) —+ 1+0(X1na)+ (aX ink)'{[P V(n.)]'
n+

—~P V(n )e' * ~"" " '~'} (517)

Thus, for a potential with a definite bias towards one

sign, when ~P..V(n, ) ~))~Q„, V(n. )e' * """")
~, call

this a type-I perturbation, we have D(E) —++~ as

6—& 0, while for a potential giving P„,V(n, ) 0, a
type-II perturbation, we have D(E) —» —~, the

latter being the case for an edge dislocation. Considering

a 4-fold degenerate subband edge, we are led to the
same conclusions.

Now suppose the degenerate edge we are considering

is the top of the qk3 subband, and is separated from
the bottom of the (q+1)kl subband by a, finite gap;
then by taking E=E, the middle of this gap, we make

all the Green's functions of (5.1) finite, so that we have

on expanding (5.1),

D(E) 1—X g V(m. ,n*)Gg(n„—m.))-.', (5.18)
mq, nq

D(E) —+ 1+0(X1nh)+ (aX luau)'

P' [V(m. ,n.) V(m. ',n. ')
n+, n ms„ms,I I

—V(m. ,n. ') V(m. ',n.)]exp[ik. ' (n.—m. )

haik. ' (n,.'—m. ')]. (5.15)

The a(k, ") will be the same for all r=1, , i if the
degeneracy is due to crystal symmetry and we put them
all equal to a in (5.15). We will be interested in how the
sim of the sum in (5.15) depends on the type of pertur-
bation, and to investigate this without excessive labor
will assume without discussion that the potential is

su%.ciently slowly varying to make acceptable the
approximation

I4~» Iin» Dig(m», n»),
m~, n~

(5.13)

XDi2l4(m», m»', m, ",m„"'), (5.14)

where the primes on the sums indicate that no two
indices are to take the same value, and D„...(m„m, ',
. ) is just the first term of the right side of (5.6) with

the m, th row replaced by the row b„,~, the m. 'th row

by b,"

Considering just the i =2 case and using (5.13) we

and when 4 =4 the leading terms, of order (ink)4, are

I 2 3 4
Pm~ Pm+I Pm+" Vms, "I

for P sufficiently small. Thus for some E between E and

the top of the qk3 subband we must have D(E) =0
for type-II potentials, which establishes the existence
of a bound state near this subband edge. The same

argument applies near degenerate minima.
Since the real part of X&(E) behaves exactly as D(E)

when E approaches a subband edge, the above discus-

sion of bound-state energies needs little modification to

apply to resonances. Thus if both edges of a given

subband are nondegenerate there must be a resonance

just inside one of them for a type-I perturbation.
However, suppose for instance that the bottom of the

sub-band is nondegenerate and the top degenerate;
then as we approach the bottom from inside we see



EXTEND E 0 DEFECTS I N C RYSTAI. S 899

from (5.8) that

(R[n(E)]~ +~ Xm, (k.).
Likewise (5.17) shows that as we approach the top

(R[$(E)$—+ +~ for type-I perturbations

—& —~ for type-II perturbations.

Thus if e,(k„))0 at the nondegenerate minimum, we
see that type-II perturbations have scattering res-
onances in this subband, while if v, (k„)(0, type-I
perturbations have them. The situation is reversed for
subbands with a nondegenerate maximum and a
degenerate minimum. If both edges of the subband
are degenerate the situation is not quite so clear;
however in so far as it is a good approximation to take
the coeflicient of the X ink term in (5.17) as zero for a
type-II perturbation we expect this type of potential
to yield resonances for such subbands.

In problems associated with the dkcts of defects on
the electrical and optical properties (e.g. carrier
mobility, photoconductivity, light absorption, excess
carrier Hfetimes) of semiconductors, the possibHity of
resonance scattering and trapping of holes is of interest.
The above treatment can be applied to holes simply by
changing the sign of each energy eigenvalue in the
Green's functions and also of the perturbation potential
energy, provided this be electrostatic, Thus if an
electron bound state or resonance occurs at an electron
energy E,=E, a hole bound state or resonance, respec-
tively, occurs at a hole energy E&= —E. For reasons
outlined in Appendix 8 we do not believe the concept
of a hole bound state is very useful; on the other hand
the concept of resonance scattering of holes is very
important for transport problems. The above argument
shows that hole resonance scattering occurs for the
same wave vectors ka+k, in the valence subbands as
would electron resonance scattering.

B. Stronger Perturbations

Equations (5.8) and (5.1'/) establish the existence of
bound states and resonances very close to the edges of
certain subbands, for very weak perturbations. We
now try to see what happens when X is increased to the
value unity which characterizes the perturbation we
actually want to study. Intuitively it is hard to imagine
such states existing for weak perturbations and com-
pletely failing to exist for stronger ones; in fact we
wouM expect more such states to appear as the strength
increased. Unfortunately we have not been able
to produce anything like a general proof of these
pl oposltlons.

Nonetheless it is worth observing firstly that both
from (5.8) and (5.1/) it follows for small X and 6 that

(5.19)

so that initial increase of X certainly moves both bound
states and resonances away from the subband edge;
however, this is not really of much help since before
reaching X=1 we generally reach a stage where (5.8) or
(5.17) do not apply, for instance when

i Xa, (k,)e,(k.) i 1.

B(X)=u(k, ) P e'"'~ D e, (5.21)

(5.6) shows that for any value of X, if there is a bound
state or resonance cLose to the seward edge it satisfies

ink=A (X)/XBP.). (5.22)

Now consider X+0; provided A and 8 are of opposite
signs we see, as in Sec. V A, that (5.22) has a solution for
small h. Now as X increases, (5.22) can only have a
solution for those X for which B(X)—+ 0 and for which
A and 8 are of opposite sign. Suppose then that
A(0))0, B(0)(0, and denote the zeros of A and B
for 0&X&1 by Xg") and Xg"', where X~&'&&X~&» if
i&j and likewise for the A&"'. Now suppose X&&')

(X~&"; then as X-+ Xe "—0 we see that (5.22) has a
solution 6 which gets smaller as X~ Ago~ and corre-
sponds to the dissappearance of the initial bound state
or resonance. On the other hand, if X~(') &X~("&P~(')
then Eq. (5.22) next has a solution only as X ~ X~o&+0
and this solution 6 increases as X increases; this corre-
sponds to the emergence of a second bound state or
resonance from the subband edge to which the initial
state still has not returned. We can see from this, since
(R[$(E)j~ D(E) near a subband edge, that the
correspondence between bound and resonant states,
remarked on in the discussion of Fig. 1, is preserved.
Thus by studying the zeros of A(X) and B(X) as X

varies between 0 and 1 we can ascertain the total
number of bound states and resonances to leave a given

Secondly we observe that the simple models of
Sec. IV, and also variations on them which include the
e6ects of more than one band of the unperturbed
crystal, invariably show that on increasing X from very
small values the bound states and resonances move

away from band edges to energies respectively well into
the gaps between subbands or well into the subband
interior.

The difficulty with the general case lies in the
complexity of the determinant (5.3) which itself is
considerably simpler than the original (2.8). As long as
we are only concerned. with the existence of bound states
Rnd resonRnces 1ather than thell exact positions lt
seems sufhcient to study (5.3) rather than (2.8). We
illustrate this for states appearing near a nondegenerate
sub-band edge, so that (5.6) applies.

Writing

A (X) = det[8 „„,—) P V(m. ',n, )g(m, —m„') j, (5.20)
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sub-band edge. Presumably some progress could be
made along these lines for specific values of the V(m„,n„)
but a general treatment appears too difficult. A corre-
sponding procedure for degenerate subband edges is
readily obtained.

We finally observe, from the arguments of Sec, IV
and the present section, that the bound-state and reso-
nance energies, if they exist, are continuous functions
of the parameter ki, since all matrix elements appearing
are continuous functions of k3. Thus we expect each
band, q, of the original crystal to have associated with
it a bard of resonances and a bumd of bound-state
energies, the latter not necessarily lying completely in
the gaps between allowed bands of the unperturbed
crystal.

VI. DISCUSSION

The arguments of Secs. IV and V give excellent
reasons to believe that linear defects generally have
electron and phonon bound states and scattering
resonances associated with a large proportion of
sub-bands. For plane defects the same remarks apply
concerning bound states, but not resonances. For
point defects neither bound states nor resonances need

appear.
Our treatment makes evident the dangers of omitting

the band structure of the crystal from any problem
involving the scattering of phonons, electrons and holes,
and therefore excitons, by defects; such omission
clearly has special relevance to dislocation scattering,
but may be acceptable for point and plane defect
scattering. By the same token, the diversity of our
results for defects localized in one, two, and three
dimensions, respectively, makes evident the difficulties

and dangers of trying to deduce, even qualitatively,
the properties of crystal defects from one-dimensional
models. The forms of the Green's functions indicate
that only for a plane defect can we expect a one-

dimensional model to give reliable information; this is
comforting support for the one-dimensional treatments
used to establish the existence of Tamm states at the
finite surfaces of crystals, to which our treatment does
not apply. Koutecky" has used a very similar treatment
to study states at the surface of a semi-infinite crystal;
being expanded in terms of Wannier functions, and
hence ultimately Bloch functions, his surface-state
wave functions satisfy the periodic boundary conditions

applied to the unperturbed crystal, as indeed do the
wave functions discussed in the present paper. While
this situation is acceptable for the representation of a
fault in the interior of a real (finite) crystal, the use of
such wave functions to discuss finite crystal surfaces
seems to be contrary to the spirit in which periodic
boundary conditions are usually accepted.

The bound-state energies are seen, from (5.8) and
(5.17), to be nonanalytic functions of the perturbation-

"J,Koutecky, Phys. Rev. 108, 13 (1957).

strength parameter X for small X, so one cannot treat
these sta, tes by perturbation theory. Likewise, the
the existence of scattering resonances for line defects
clearly invalidates the usual Born-approximation
perturbation approach'0 to dislocation scattering. It is
known"" " that such treatments of electron and
phonon scattering by dislocations greatly underestimate
the measured eRects, whereas such marked discrepancies
do not appear to exist between experiment and perturba-
tion treatments of point- and plane-defect scattering.
The following paper discusses these points in more
detail, and we show there that a resonance-scattering
mechanism is capable of producing dislocation scatter-
ing effects of the right order of magnitude.

The existence of localized states associated with edge
dislocations in semiconductors was predicted on the
basis of the well-known "dangling bond" model by
Shockley, '4 and the theory developed by Read.""A

great deal of experimental work has subsequently been
carried out and the importance of such states on
optical absorption, photoconductance and carrier
recombination properties is well established. The theory
of Shockley and Read treats the dislocation as a row
of localized (in three dimensions) acceptor sites; the
possibility of these single levels broadening into a one-
dimensional band, " as is our conclusion in Sec. V, has
often been discussed in the literature. Recent experi-
ments" have observed more than one dislocation level,
and indeed3'39 appear to show the existence of a band
of dislocation levels in the forbidden gap; furthermore
it has become apparent" that such states are associated
with screw as well as edge dislocations so that the states
are apparently not specifically associated with dangling
bonds. With the fairly large quantity of experimental
data accumulating, the need for a quantitative theory of
dislocation bound states in semiconductors is apparent,
and the methods of the present paper would seem to
afford a likely line of investigation. In accordance with

the above discussion, the one-dimensional model of
Heine" would apply better to a discussion of plane-
defect bound states; his paper gives several references

bearing on the observation of donor and acceptor levels

associated with grain boundaries.

' J. M. Ziman, E/ectrons and I'homons (Oxford University
Press, Oxford, England, 1960), Chaps. 6, 8, 9."J.M. Ziman, Advan. Phys. 13, 89 (1964).

"A. Seeger, H. Bross, and P. Cruner, Discussions Faraday
Soc. 38, 69 (1964).

"A. Taylor, H. R. Albers, and R. O. Pohl, J. Appl. Phys. 36,
2270 (1965).

'4 W. Shockley, Phys. Rev. 91, 228 {1953).
3' W. T. Read, Phil. Mag. 45, 775 (1954).
36 K. T. R.ead, Phil. Mag, 45, 1.119 (1954).
g7 Y. L. Ivanov, Fiz. Tverd. Tela 7, 788 (1.963) r English

transl. : Soviet Phys. —Solid State 7, 629 (1965)].
"Z. Golacki, T. Figielski, and M. Jastrzebska, Phys. Status

Solidi 11, K35 (1965).
"M. Jastrzebska and T. Figielski, Phys. Status Solidi 14,

381 (1966).
"V.Heine, Phys. Rev. 146, 568 (1966).
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The effect of scattering resonances on electron and
hole mobilities seems to afford another interesting line of
investigation, and the resonance scattering of excitons
is of interest with regard to optical absorption.

Finally we remark that in most of the above-men-
tioned problems we will be interested in the occupation
of the localized levels, and so will generally have to take
some account of interactions between the trapped
electrons, which we have ignored in the one-electron
treatment developed so far. We have not yet tried to
tackle this problem. Read's treatment, ""which regards
the trapped electrons as discrete charges, obviously
needs modification to apply to the states we wish to
consider, but nonetheless probably gives roughly the
right answers. The modification of the perturbation due
to the space-charge region formed when the dislocation
line becomes charged also needs to be treated in a
self-consistent manner. The use of a one-electron
picture, with many-body effects being taken into
account by means of some sort of self-consistent one-
electron Hamiltonian is apparently basic to the concept
of bound states, which cannot be properly defined for a
many-electron system when the totality of single-
electron wave functions is synthesized into a deter-
minantal wave function 4' "

APPENDIX A

We first establish the forms (3.3), (3.7), and (5.2) as
the energy approaches a subband maximum or
minimum from outside the subband. Secondly we
consider the energy approaching a value corresponding
to a saddle point of Eo,(k3, k„) and show that in this
case the Green's functions remain finite, so that
resonances are not associated with these saddle points.

Using (3.1) in (2.7), we have

Ge,,(n.—m. ) = o.
eiks, ~ (n e,

—m g)—d'ti. . (A1)
E—Eo,, (k~,. k.)

Now the neglect of higher than quadratic terms of (3.2)
is a good approximation up to some (small) value Kir
independent of 6=—ha(k3) —E. Thus we break up the
integral (A1),
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where the first integral is over the area of the circle of
radius air (or, if the subband minimum is degenerate,
is the sum of integrals over segments of such circles)
and centered at the subband minimum (or minima,
if degenerate). Iir is the integral over the remainder of
the subband, and clearly

II~I & o.~.(k3)l~~, (A3)

where A, (ka) is the total area, in k, space, of the qks
subband, and Sir is the minimum value of ~P 8'jK'Kj~

for ~x;~ &xir. Because of the definite character of the
quadratic form for a subband maximum or minimum
5~)0 and so (A3) provides a definite upper bound for

~Ixr ~. The form (33) then follows in a very straight-
forward manner; the results (3.7) and (5.2) likewise
follow by expanding the exponential in (A2). The
corresponding behavior of the Green's functions
ge, ,(m. —n„) as E approaches a subband maximum
or minimum (absolute or local) from inside the sub-
band can be determined in the same way, the integrals
existing as principal values.

Near a saddle point, (2.11) takes the form

cJe,,(n.—m. )
eik ~ (n„—m „)d2~

+Ar, (A4)
d —(ai'xi'-u 'e ')

and we can show
~
die

~

is bounded independent of 6 by
considering higher terms than quadratic in the expan-
sion of Eo(ki', k ). Expanding the exponential in the
integral yields

c'e,,(n.—m. ) = Sii+e"*"&"" ~' p 6'"I2„(h), (AS)
n=o

I,„(~)=
e2" 'ir~„(cos'y)

dK

(t1/@2+ @22)—(gP+ g ~)cos~y

(A6)

Here I'„(cos'p) is an iith degree polynomial in cos'P,
with its coefficients independent of d, .

We prove that gg, ~(n, —m, ) remains finite as 6~ 0,
i.e., as E approaches the saddle-point energy, by showing
that

limI2„(6) =I2 (0), a finite constant. (A7)

where k3+k," is the position of the saddle point
(again, if this is degenerate minor alterations which do
not change our conclusions must be made), and I2„(h)
is of the form

Ge,,(n.—m. ) = —o..
e'ikg ~ (n~—m ~)

(A2) We will need the result
sic 6++ 8jjKjKj

' W'. Kohn and C. Majumdar, Phys. Rev. 138, A1617 (1965}.
4' C. K. Majumdar, J. Math. Phys. 7, 682 (1966).

=0, b2&1,
1—b2cos2&

(AS)
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which is readily verified by separating into partial
fractions and realizing that

1 d 5+cosP+ (b' —1)'"sing—ln
(b' —1)'"&0 1+3cosP

(A9)

Io(~) =
(«-1&~)

z (a22+ 6/~')

2g — g 2+g 2 ——1

1— cos'P . (A 10)
a/+6/~'

The result

dP 2m
o2&1 (A11)

0 1—u' cos'y (1—a')'"

is well known, and using it in (A10) we get finally

Now writing

[a+leos'Pj 'cos'P=b '(1—a[a+3 cos'p] '),
we see that, as d —+ 0, any cos'p terms in I' can only
yield terms which behave as A+M, (A), A and 8 being
independent of 6, The same reduction applied succes-
sively to higher terms of E'„yields the same result, so
the proof of (A'I) reduces to showing that Io(A) remains
finite as 6~ 0.

Now using (AS) in (A6), we get

so that I,(A) = Io(0) independent of 6, which establishes

(A7), and so establishes that gs, ,(m, —n, ) remains
finite as E approaches a saddle-point energy.

APPENDIX 3
At the risk of appearing pedantic we wish to brieRy

discuss the foHowing point. In semiconductor transport
theory the concept of holes in the valence band behaving
as positively charged electrons is well known. Since free
holes in this sense are such a useful concept, it seems
reasonable to ask whether it is meaningful to speak of a
localized hole state about a defect in the same way as
we speak. of localized electron states. Such states arise
from the equations of Secs. IV and V if we make the
usual electron —+ hole correspondence of changing the
sign of the perturbation potential energy and the
energy eigenvalues; in fact, we 6ne hole bound states at
hole energies Eq ———E„where Ji, is an electron bound
state. Having posed the question, the purpose of this
appendix is to point out that such states do not appear
to be a useful concept, The hole concept is justified in
transport problems since one can ignore the effects of a
full valence band of electrons on the grounds that they
cannot absorb energy continuously from smaH electric
or thermal field gradients; this does not apply to the
6nite energy transitions involved in occupying bound
states, so the effects of the electrons must be taken into
account, thus robbing the hole concept of its signif-
icance. The only sense in which we should speak of a
hole being trapped by a defect level is when we mean
the evacuation by an electron of a level it previously
occupied, and its subsequent fall to the valence band;
this is in fact the sense in which the term is used in the
literature on traps and recombination centers. Our
treatment of scattering resonances applies equally weH

to electrons and holes in conduction problems.


