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A method of calculating the energies of bound states associated with imperfections described by short-range
potentials in semiconductors is presented and applied. The method is based on solid-state scattering theory
and involves expansion of physical quantities in terms of the Wannier functions for a many-band system.
The properties of Bloch functions and Wannier functions are investigated to enable the numerical computa-
tion of matrix elements. Application is made to the neutral vacancy in silicon. A pseudopotential is employed
to represent the change in the crystal potential produced by the vacancy. It is found that the vacancy
produces a localized state in which low-lying energy bands and interband couplings are important, in con-
trast to the shallow donor and acceptor states which have been studied in the past.

I. INTRODUCTION

N imperfection or an impurity in a semiconductor
may produce a state with an energy within the

band gap of the crystal. The states associated with many
common dopants —the shallow donors and acceptors-
have been well understood for many years and are
amenable to theoretical treatment. ' The potential ex-
perienced by an electron at large distances from the
center is just the electrostatic potential of the excess
(or deficit) ionic charge screened by the static dielectric
constant of the perfect crystal. If the defect state lies
close to a nondegenerate band, it is possible to write
a simple Schrodinger equation for the envelope of the
wave function in which the effective mass for the nearby
band appears.

Some impurity systems, for instance transition metals
in germanium, have long been known to produce levels

lying farther within the band gap; these levels are not
given correctly by the simple theory mentioned above. '
Other interesting examples are the so-called isoelectronic
traps. ' In the case of certain isoelectronic substitutional
atoms of which nitrogen and bismuth in gallium phos-
phide is an example, discrete levels are produced within
the gap. This situation is altogether inconsistent. with
the usual simple picture of the defect state due to the
lack of a long-range Coulomb potential. There is no
adequate theoretical treatment of these systems.

Defect states which are produced in experiments con-
cerning radiation damage do not conform to the pre-
dictions of the simple theory either. '' Of particular
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interest to us is the isolated vacancy which can ap-
parently exist in a number of charge states, It is our
intention to present in this paper a general method for
dealing with localized states. It treats those potentials
which, although strong, are of short range as compared
to the effective-mass theory which treats weak long-
range potentials. %e will apply this method to the
isolated, neutral vacancy in silicon. Our interest in the
vacancy is due to the circumstance that, if lattice re-
laxation is neglected, it is possible to represent the
change in the crystal potential produced by the vacancy
in a simple way by a pseudopotential.

There have been several previous studies of energy
levels associated with vacancies in materials with the
diamond structure. ' "One of these calculations, that
of Brennemann" is similar in some respects to our work.
Brennemann empolys a t-matrix method, which is close
to ours in spirit, but makes the drastic initial assumption
of using free-electron wave functions in zero order. This
approach might be more appropriate for a polyvalent
metal. The semiconducting character of the host crystal
evolves in higher order through multiple-scattering
theory. Our method involves an extension of the Koster-
Slater approach" to a multiband system. The general
theory has been discussed elsewhere in connection with
the theory of scattering in solids. "We expand functions
relating to the defect in terms of Kannier functions
for the perfect crystal. Similar methods have been
applied to other defect systems. A few references are
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given below. " '~ In contrast to previous calculations,
however, we have obtained matrix elements of physical
quantities on the basis of Wannier functions for a many-
band system by numerical calculation. In order to make
such calculations possible, we have investigated the
symmetry properties of Bloch functions and Kannier
functions. Since the calculations require a very sub-
stantial computing effort, we have been forced to adopt
a pseudopotential approach. The wave functions and
energy levels for the unperturbed system are obtained
from a pseudopotential band calculation and the
vacancy is represented by the (negative of) an atomic
pseudopotential.

Rather reasonable results are obtained. We 6nd that
Wannier functions can be used in practical computations
as well as in formal arguments. It is now possible to
study systems, like the vacancy, for which interband
couplings are important. The plan of this paper is as
follows: The remainder of the introduction contains a
qualitative discussion of experimental information con-
cerning the levels associated with vacancies in silicon.
The formal machinery with which defect levels are
located in a multi-band system is presented in Sec. II.
Section III contains a discussion of the properties of
Bloch functions and Wannier functions that are required
in the calculation. In Sec. IV, we describe the manner
in which the pseudopotential is employed. The band
structure of the perfect silicon crystal is discussed in
Sec. V. with regard to the identification of bands and the
construction of Wannier functions. Application to the
neutral silicon vacancy is made in Sec. VI. In Sec. VII,
our results for the neutral vacancy in silicon are pre-
sented, and our conclusions are summarized in Sec. VIII.

Much of the experimental information concerning
vacancies in silicon is based on electron-paramagnetic-
resonance (EPR) measurements. A detailed discussion
can be found in Refs. 4 and 5. Unfortunately, defects
which involve an even number of spin-paired electrons-
and this includes the neutral vacancy —cannot be
studied directly by this technique.

KPR studies of p-type silicon irradiated at low
temperatures with 1.5-MeV electrons have revealed
spectra associated with two different charge states of
the isolated lattice vacancy. In Watkin's notation4 these
two defects and their associated EPR spectra are
labeled Si-61 and Si-G2. They have been identified
as +1 and —1 charge states, respectively, of the single
va, cancy. For the Si-G1 (V+) spectra three defect elec-
trons are to be localized at the vacancy. In the molecular
orbital picture, two of the electrons go into the same
orbital with spins paired. The resonant third electron is
considered to be in a localized orbital associated with
all four of the nearest-neighbor silicon atoms consistent

'~ A. M. Clogston, Phys. Rev. 136, A1417 (1964).
'6 R. K. Turner and D. A. Goodings, Proc. Phys. Soc. (London)

86, 87 (1965)."A. Seeger, in Metallic Solid Solutioe, edited by J. I'"riedl and
A. Guinier (%. A. Benjamin, Inc. , New York, 1963), p. VII-1.

with a four-silicon hyperfine interaction. The location of
the V+ state is not certain. Since neither it nor the V
state represents the stable charge state when the Fermi
level is pinned to shallow acceptors near the valence
band, it is believed that the V+ state must lie lower than
8„+0.05 eV, where 2&'„ is the valence-band energy. lt
seems likely at the present time that this metastable
charge state may be a resonance or scattering state
lying inside the valence band. "

The energy level for the neutral vacancy V' is some-
what more certain. This charge state is stable when the
Fermi level is locked on the shallow acceptors at ap-
proximately E,+0.05 eV. The energy level for V' is
believed to lie somewhere below Z,+0.05 eV and may
be quite close to the valence bands. Attempts to move
the Fermi level closer to the valence band by heavier
doping in order to further delimit the energy level un-
fortunately would involve deterioration of the EPR
spectra due to the increased doping.

Further electron irradiation raises the Fermi level in
the forbidden gap. When the Fermi level rises to ap-
proximately 0.25 eV above the valence band the Si-G2
(V ) spectra appear as the stable charge state of the
single vacancy. We therefore tentatively consider the
V defect to be a deep acceptor located at roughly
0.25 eV above the valence band. One additional charge
charge of the single vacancy may be inferred. Neither
the V+ nor V spectra are observed in low resistivity in
is-type silicon. It is presumed that in this case the V
charge state is the stable charge. Watkins indicates
this schematically as lying somewhere below the con-
duction band.

Estimates for the migration energy of both V and
V are available. The vacancy migration energy in p-
type silicon is about 0.33 eV and disappears in a 15-min
anneal at about 170 K. From the energy-level structure
and a consideration of the Fermi level as related to the
stable charge state, it was deduced that this migration
energy was that of the neutral vacancy. The V spectra
disappeared after a 15-min anneal at about 60 K and
suggested an activation energy for V of less than
0.16 eV.

II. GENERAL THEORY

The computation of the properties of localized defect
states in semiconductors can be based on the general
methods of solid-state scattering theory. '4 In this
section we will review the formal theory which is ap-
plied in our calculation.

I.et the Hamiltonian of the perfect crystal including
the periodic potential be denoted by Ho and the change
crystal potential produced by the introduction of the
defect be denoted by V. We define a Green's function
6, by

G=(E—Hp) '.
"We are grateful to Dr. James %'. Corbett for a very helpful

discus sr on.
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The quantity A which appears here may be taken to
be a real energy as long as we are concerned with
bound states: that is, with states rvhose energies do not
coincide with any energy in the spectrum of IIO. In a
scattering problem in which continuum states are of
interest, L~' must be allowed to have an infinitesimal
imaginary part. Consider the determinantal function
D(F) defined by

D(E)= detr I—GV], (2.2)

where I is a unit operator. For every real Eo for which
the det. erminantal function vanishes, i.e.,

D(J.'0) = 0, (2.3)

the operator / —GV is singular. Hence, there must exist
some vector ~&) which is annihilated by the operator
I—G(I.'0) V;

8/(I-'. —Ho)]VI@)= le), (2 4)

which implies that
~ p) is a solution of the Schrodinger

equation for energy F() .

(a,+V) (y)=S, !y). (2.5)

AltcrIlativcly, the problem of solving the Schrodinger
equa, tion for the energy of a defect state may be ap-
proached by looking for the roots of D(J.':).

It is necessary to have a suitable basis for the repre-
sentations of operators. For localized defect problems
the &Vannier functions are most appropriate. In this
section, we will neglect complications caused by band
degeneracies, and treat the %annier functions as if
they were derived from Qloch functions belonging to
simple noncrossing bands. Lct the Bloch function for
band e and wave vector k be denoted by %„(k,r). It is an
cigenfunction of F/0.

II,% „(k,r) = E„(k)+ (k,r), (2.6)

in which 5''„(k) is the energy-band function. Then the
AVaIlnlcr fu1ictlon 1s dcfiIlcd by

There is a double infinity of Wannier functions, since
both the band index and the site index must be con-
sidered. Therefore, it is possible to evaluate the deter-
minant only approximately in contrast to the case of
localized spin-wave modes in a Heisenberg ferromagnct,
for example. Ke must replace V by a finite matrix.
It is therefore necessary to investigate the convergence
of the results, and this will be described subsequently.

The elements of the Green's function on the %annicr
basis may be expressed as

(nv, iGifv) = a *(r—R„)——ai(r —R,)d'r
I-'—IIO

(2m)'

eik (Rp—Rv}

PA--
E-J.'.(k)

(2.8)

I'hese integrals may be calculated in a straightforward
way if the ba,nd structure is known. Since we are con-
cerned here with states in the band gap the dcnomiIiator
in Eq. (2.8) will. not valllsh.

In order for the present met, hod to be a, useful one
it is necessa, ry to approximate the defect potential V

by a mat, rix which, on the Wannicr basis, has only a
finite number of nonzero elements. I.ct us suppose tha, t
wc decide to consider elements of the potential involving
tLg bands and s sltcs. Then thc nonzclo portioIl. of thc
V niat. rix is of dimension ~V&(&'lt, where iY = e~,n„before
thc factorization of D due to symmetry is considered.
For instance, in the present problem in which 8 bands
and 10 sites are included, the matrix V is So&80. The
Green's-function matrix has, however, an infinite
number of nonzero elements. Fortunately it is necessary
to consider only an E)&iV portion of G in evaluating
D(L') To see this, . it is necessary only to write G and
V in block form. Let us denote the nonzero portion of
V by VNN, and the corresponding diagonal portion of G

by GNN. The remaining portions of G will be labeled

GNz, GyN, and Gs s. Thus,

a„(r—R„)=-
(2~)'~'

d'l~ e '" "~4„(k,r), (2.7)
(2.9)

in which R„ is a lattice vector, 0 is the volume of the
unit cell, and the integration volume is the Brillouin
zone. As is well known, the 6'annier functions are
orthonormal:

Then we find

IN'N GNN VNNI—GV= —Gv v~vN JI, i, (2.10)

a.*(r—R„)a)(r—R,)d'r = b„)5„„

(the integral includes all space). The Wannier function
a„(r—R„) is, approximately, localized around site
R 19—21

po

"%.Kohn, Phys. Rev. 115, 809 (i959).' E. I. Blount, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , Ne~v York, 1962), Vol. 13."J.des Cloizeaux, Phys. Rev. I35, A685 (1964); 135, A698
(~96&).

It. is now easy to see, by expanding the determinant
D(E) accordlllg to tile Illlnors of tile columns m the
right-hand portion, that

D(~-') = dett I-GV]=detLI~~ —G~xV~v] (2.11)

For computational purposes, the matrix INN —GNN VNN

has the disadvantage that it is not Hermitian, even

though both GNN and VNN are Hermitian. It is conven-
ient to rewrite Eq. (2.11) as

D(E)=det(G~~) det(G~~ '—VN~), (2.12)
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in which G~~ ' is the inverse of the submatrix G~~
(and this not the same as the XE portion of the inverse
matrix G—'). In the present calculation, we are interested
only in bound states, so we can therefore restrict our
considerations to the determinant

D(&)=det[&~ ' -V—~~j . (2.13)

We see from the preceding argument that if we find
an energy Eo such that

D(Ep) =0,
then there is a solution of the full Schrodinger equation
with energy Eo. Also, obviously, the matrix G~~ '
—V~~ has a zero eigenvalue for E=Eo. I.et us consider
the corresponding eigenvector, which we will now call
PN. It satisfied

where now we use t for t +R„, and that the inverse
operator is given by

{nit} '={n "I —n 't}. (3.3)

In order to determine the symmetry properties of
Wannier functions, we must begin by studying the
e6ect of a general space-group operation on a Blocb
function. This has, of course, been discussed by other
authors. "However, we require the results in a more
specific form. In particular, since Wannier functions
may be altered by a change in phase of the Bloch func-
tions from which they are constructed, it is necessary
to specify phase factors brought in by transformations
completely. Let us consider the Bloch function 4' (k,r)
for a state of wave vector k in band e. It satisfies Bloch's
theorem in the form

'&X 4N VNN4'N ~ (2.15) {p
I R„}@„(k,r) =+„(k, r—R„)= e n "~%' (k,r), (3.4)

P~ is not the complete eigenvector of the full Hamil-
tonian, since it has only X rows, but the required eigen-
vector of H can be found directly from @~.I et us write
P= {P~,Pr}.Then (I GV)/=0—yields

O'T GTXVNNAN ~ (2.16)

Therefore, to determine the defect wave function, we
must compute not only the elements G~~, but the G~~
as well.

Computations with this method may be substantially
simpler when the defect potential has some symmetry
if appropriately symmetrized functions are introduced.
Then one finds that the determinant D(E) factors into
a product of terms coming from the irreducible repre-
sentations of the symmetry group. The subdeterminants
involved may be substantially smaller than the original
D(E). To investigate how this symmetry analysis may
be applied in the present problem, we need some results
concerning the symmetries of Bloch functions and
Wannier functions, which are contained in Sec. III.

III. SYMMETRY PROPERTIES OF BLOCH
FUNCTIONS AND WANNIER FUNCTIONS

In this section we will investigate some of the sym-
metry properties of Bloch functions and Wannier func-
tions. We will consider only isolated energy bands; that
is energy bands which do not touch or cross other
bands. This situation can be analyzed quite simply and
rigorously.

We will denote an operation in the space group of
the crystal by {nit +R„}.In this notation n is a ro-
tation or reflection, t is a nonprimative translation
associated with n, and R„ is a lattice translation. That
is, acting on an arbitrary vector r, we have

{n I
t +R„}r=r'=nr+t +R„(3..1)

where f pl R„}is a pure lattice translation. Now consider
the more general operator {nl t +R„}:

{nit.+R„}e„(k,r) =~„(k,n- (r—t.—R„)).
But n R„ is a lattice translation if R„ is, so we have

{nl t.+ R„}e„(k,r) ={.I R„}{nit.}e.(k, r)
=e ' ~ "~4„(k,n '(r—t )). (3.5)

The exponential factor in Eq. (3.5) tells us, after com-
parison with Eq. (3.4), that the function on the left
satisfies Bloch's theorem for a state of wave vector nk
We may now drop the R„and consider just the operation
{nl t }.This operation, being a space-group operation
leaves the crystal lattice unchanged, and this must also
leave the charge density of the electron system un-
changed. We see from Eq. (3.5) that the operation
must interchange members of the star of k, but the
result must be a wave function belonging to the star.
Since we have assumed we are dealing with a simple
band, there is only one wave function for each k in the
star. Thus, we must have

{nI
t }4'„(k,r}= e' &~)%'(nk, r), (3.6)

where 0 is a (real) phase. It is possible to set 0' = 0 but
this turns out to be an undersirable choice as we will
see below. In fact, we will choose

{nl t~}4„(k,r) =x„(' (n) e '~ '«4'„( k, r)n, (3.7)

in which X„('&(n) is the character for the operation n in
the jth one-dimensional representation of the point
group and has numerical value &1. The particular
representation j is chosen in order to insure, as far as
possible, smooth behavior of the wave function as its
argument, k, goes around the Brillouin zone. We shall
show that the factor e—' "', which would appear if we
replaced the Bloch function 4'„(k,r) by a plane wave, has

We recall that the law of multiplications is

{pit'}{ lt}={P I&t+t'} (3.2)
~~ J. S. Lomont, Applications of Finite Groups (Academic Press

Inc. , New Vork, 1960).
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a desirable effect on the expansion coeKcients of the
wave function when expanded in plane waves.

Since we are using a pseudopotential method, it is
desirable to expand the Sloch function in the form

%„(k,r) = Q b„(k,K,)e'&'+x" (3 8)
(2rr)'&' s

in which K, is a reciprocal lattice vector. The quantity
b is the momentum wave function for band e. It is
possible to show that"

b.(k,K,) = b„(k+K,), (3.9)

but since we prefer to use the reduced zone scheme in
which the range of variation of k is conf'tned to the
first Brillouin zone, the notation of Eq. (3.8) is more
appropriate for our purposes. The factor of (2ir)

—"'
in. Eq. (3.8) insures that the Bloch functions have the
conventional deLta, -function normalization

e„'(k,r)e, (k', r)dsr = b„,b(k —k')

if the b„are orthonormal:

P b.*(k,K,)bi(k, K,)= b„r.

= (2rr)
—'i'e "' Q b „(k,K,) (3.10)

~
—i' Ks ter~irX (k+Ka) ~ rXe

On the other hand, if we substitute the plane-wave
expansion directly into the right side of Eq. (3.7) we get

(r'i (rr)
(rr~t }0 (k r) = ——e *""

(2rr) 'i'
p b„(irk, Ki) e'&'+x" (3.11)

for all k. Ke will assume below that this has been done,
so that the b„are always real. It will be in~mediately
observed that this choice reduces the indeterminacy
of phase of the Hloch functions to a question of algebraic
sign, and this question can be settled by the require-
ment that the b (k, K,) be smooth functions of k.

Integrals involving Wannier functions and/or Bloch
functions may be expressed in terms of integrals involv-

ing the functions b„(k,K,).We must therefore determine
how the b vary throughout the zone. To examine this
in detail, let us consider the effect of (rr

~
t } on 4'„(k,r)

when the wave function is given hy Eq. (3.8):

(rr
~

t }e (k,r) = (2rr) "'Q b„(k,K,) (rr
~
t.}e'i'+x"

TAal, K I. The components 5 (k,K,) are given for the highest
valence band and lowest conduction band at the points k= (2~/u)
(sr, -'„-',) and k=(2rr/a)( —8, ——',, sr) as obtained from the band
calculation described in Sec. V. These results illustrate the be-
havior of eigenvector components of planes on symmetry in the
zone, and also show the relation between eigenvectors for two
members of the star of k. The reader may verify that Eqs. (3.12)
and (3.13) are satisfied.

0 0 0
1 1 1—1 1 1
1—1 1
1 1—1—1—1 1
1—1—1—1 1—1

—1—1—1
2 0 0—2 0 0
0 2 0
0—2 0
0 0 2
0 0—2

& = (2~/e) (2, 8, 8)
Highest Lowest
valence conduction

band band

0.00000
0.00000
0.00000—0.08412
0.08412
0.65376
0.00000—0.65376
0.00000
0.00000
0.00000
0.13615
0.21677

—0.13615—0.21677

0.22181.—0.10624
—0.50770

0.12900
0.12900—0.50758
0.02104—0.50758
0.18339—0.00710
0.22237—0.02155—0.15603—0.02155—0.15603

b = (2~/e) (
Highest
valence
band

0.00000
0.00000
0,08412—0.08412
0.00000
0.00000
0,65376—0.65376
0.00000—0.21677—0.13615
0.21677
0.13615
0.00000
0.00000

I 1 1%
8) 8& 2J
Lowest

conduction
band

0.22181—0.02104
0.12900
0.12900—0.18339
0.10624—0.50758—0.50758
0.50771
0.15603
0.02155
0.15603
0.02155—0,00740
0.22237

"J.C. Slater, Rev. Mod. Phys. 6, 209 (1934).

It is frequently possible, as in the case for the
diamond lattice, to choose the original of coordinates or
the calculation of energy bands in the prefect crystal in
such a way that the perfect-crystal Hamiltonian is
represented by a real symmetric matrix on a plane-wave
[or orthogonalized-plane-wave (OPW)] basis. Then it is
possible to find eigenvectors b„(k,K,) which are real

In the diamond lattice, the factor exp[—iK, t ] is

always real.
Ke illustrate this relation in Table I in which a few

eigenvectors in sHicon are compared.
We have not yet discussed how the characters x„&'&(n)

are determined. This may be done by inspection of the
behavior of the components b (k,K,) on planes of sym-

metry in the Brillouin zone. Such planes include ones in
which k,= ky, with k, arbitrary; A, = 0, ky and
arbitrary; etc. Whenever k is in such a plane, there is an
operation, say 0,~, such that o.~k=k. Then we have in
this case from Eq. (3.12)

b„(k,K,) =X„vari(n, )b„(k,err
—'K, )e

—'"'".~. (3.13)

We may use this relation between components of the
eigenvector b„at the same point of the Brillouin zone to
determine the X„&'&(n). Let. us consider the specific
reciprocal lattice vector E,= 0. In this case, Eq. (3.13)
reduces still further to

b, (k,0) X &" (=err)b. (k,0). (3 14)

Thus, if b (k,0) AO, X= 1. In order to have X=- —1, we

must have b„(k,0) = 0. Thus, we may look at the K, = 0
component of b„on a symmetry plane to determine the
character to be associated with a given band for some

symmetry operation,

Comparison of Eqs. (3.10) and (3.11),plus the fact: that
[X„&i( )]-i=X„& ~(n), yields

b„(nk, K.) =X„f'i(n)b (k u 'K )e
—'"'-'- (3 12)
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On the basis of these results, we can understand why
the character X„t&'(n) should appear in Eq. (3.7). The
basic subzone (containing 1/48 of the volume of the
Brillouin zone) in which wave functions and energies
are calcula. ted is bounded by symmetry planes of the
type mentioned above. Suppose k is in such a plane.
Then %„(k,r) must be a, basis function for an irreducible
representation of the space group for that 1c, and in view
of the existence of a symmetry operator n~, as above,
the plane-wave expansion coeScients b„(k,K,) will obey
Eq. (3.13) in which X(n~) is the character of n& in the
small group of k. We now demand that the wave func-
tion on either side of the symmetry plane must join
smoothly with that on the plane. This requirement
forces %„(k,r) to transform in accord with Eq. (3.7) even
when k is not on a symmetry plane.

In the cubic point group, there are four one-dimen-
sional representations, usually denoted by F~, F~, F~',
and F2'. To determine which of these should be used in
in Eq. (3.7) it is necessary to consider only two sym-
metry planes in the Brillouin zone, and apply Eq. (3.14).
The planes (1) k, =0 and (2) k,=k„suffice. A F~ func-
tion has nonvanishing b„(k,0) on both planes; whereas
b„(k,0) vanishes on both planes in the case of F~'. A
function belonging to F2 has b„(k,0) = 0 when k, = k„but
not when k, =0; while I'2' has b (k,0)=0 if k, =0 but
not if jt' =kg.

These considerations permit us to choose the phases
of the Bloch functions so as to give satisfactory Wannier
functions in the case of an isolated band. Choice of the
proper characters in Eq. (3.7) insures that the Bloch
function varies smoothly going around the zone. If this
choice is made in a manner inconsistent with Eq. (3.14),
a Wannier function can still be defined, but the com-
ponents b„(k,K,) will not go smoothly through the
planes of symmetry in the zone, and as a result, the
Wannier function will not be properly localized. It is
therefore necessary only to choose the sign of the eigen-
vector b„within 1/48 of the zone so that the components
vary continuously from point to point within this
region, and the functions will then vary smootlhy
throughout the zone. Since the choice of phase was
reduced to one of algebraic sign by the requirement that
the b„be real, an unambiguous prescription for the phase
has, in effect, been given.

We can now proceed to a, determination of the trans-
formation properties of the Wannier functions. We con-
sider only space-group operations for which t may be
taken to be zero, for only in this case is a simple result
obtained. We use the definition of the Wannier function
given in Eq. (2.7), and apply Eq. (3.7):

(n i 0}a,„(r—R,)=
(2m) 'i'

X d'k e '~ "~{n~0}O„(k,r), (3.15)

(n~ 0}a„(r—R„)=
0'i'X„&» (n)

(2a.)'i'

e
—'" R~e„(nk, r)d3k,

@„(k',r)d'k' (3.16)

a„(r—R„)=X„&i&(n'la.t n(r —R„)]. (3.18)

These equations describe the transformation properties
of the Wannier functions for a simple isolated band.

We can use Eq. (3.18) to establish a relation between
certain matrix elements of the defect potential on the
basis of Wannier functions. Suppose that the potential
is unchanged by some operation (P~O}. We consider
the matrix element

(np~ V
~
tp) = a„*(r—R„)V(r)ai(r —R,)d'r. (3.19)

Let R„=PR, and R„=PR,. Then, since V(Pr) = V(r),
we Gnd that

As an example of the use of Eq. (3.20), suppose that
the defect potential is invariant under the group C3„.
Then the central cell matrix element of this potential
(R„=R,=O) vanishes if band ri is either I'~ or f'2' and
band 1 is either F2 ol F] . Other useful relations are
obtained immediately.

We now want to consider the factorization of the
determinant D(E), which is de6ned in Eq. (2.13),
through the use of symmetry considerations. Since the
Wannier functions for a given band form a,n orthonormal
set, Eq. (3.16) tells us that the Wannier functions for a
given lattice vector type (by type, we mean that set
of lattice vectors which can be formed from any one
of them by applying all the operations of the group
considered) a,re basis functions for a (reducible) repre-
sentation of the group of the operator (nt 0} (or of any
subgroup of this group). We may now apply standard
techniques to construct symmetrized linear combinations
of Wannier functions which transform according to ir-

=x„U&(n)a„(r—nR„) .

On the other hand, we have directly from Eq. (3.1&)

that
(n~O}a„(r—R„)=a (n 'r —R„).

Equations (3.16) and (3.17) hold for all n; therefore, we

may proceed as follows: Equate (3.16) and (3 17);
replace n by n ', and let R„=nR„.Then we have
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reducible representations of the symmetry group of the
defect potential. This was implicitly assumed in Ref. 14.

In particular, if we want a linear combination of
Wannier functions which belong to the 0.th row of the
sth irreducible representation of the group of the po-
tential (we will denote the operators in this group by P),
we form the combination

If there is more than one combination of Wannier
functions from band n and lattice vectors of type R»
which belong to row 0. of representation s, the functions
obtained from (3.21) for (o, s) will usually have to be
orthogonalized to each other, possibly by the Schmidt
process. Apart from this possible complication, the
elements of the unitary transformation U(s, ,R») intro-
duced in Ref. 14, may be determined immediately.

According to the general principle of group theory,
there will be no matrix elements of the Green's function
or potential between combinations of Wannier functions
which belong to diRerent rows of the same representa-
tion. Consequently, the determinant D(E) defined. in
Kq. (2.13) will factor into a product of subdeterminants
coming from the various irreducible representations.

(3.22)

with

V„(q) =g v „,(r—R„;)~ q), (4.2)

in which ()»,(r—R„;) is the atomic pseudopotential for
an atom at the jth site in the unit cell located at R„.
To 6x the normalization, we will suppose that the plane-
wave states

~
k) and

~ q) satisfy

potential calculations have been quite successful in
reproducing the essential features of the observed band
structures for the common semiconductors. Harrison, "
using the general analysis of the pseudopotential method
given by Austin, Heine, and Sham'6 has shown that a
crystal pseudopotential can be expressed as a sum of
contributions from individual atoms. Therefore, we may
simplify our calculations not only by using a pseudo-
potential method to determine energy bands in the per-
fect crystal, but we may represent the vacancy as the
negative of an atomic pseudopotential, We will also use
pseudopotential wave functions to construct the
Wannier function of our calculation.

Brust" has found empirical pseudopotential parame-
ters for silicon which yield energy bands in good agree-
ment with experiment. This is a local potential in the
sense that the matrix elements of this pseudopotential
V„. between two plane-wave states ~k) and ~q) are
functions only of the vector diRerence q —k. We write

(k i q) = ()(k—q) . (4.3)

in which g, is the degeneracy of representation s. Conse-
quently, in order to solve Eq. (2.14) it is necessary only
to examine the simpler equation

D,(E )=00. (3.23)

A solution of Kq. (3.21) belongs to representation s.

IV. THE PSEUDOPOTENTIAL

In order to determine the energy levels of the bound
states (if any) associated with a vacancy, it is necessary
to have some expression for the change in potential
produced by the removal of a silicon atom. To begin,
we will ignore the eRects produced by the relaxation of
atoms near the vacancy, Then since the total crystal
potential can be represented as the sum of potentials
due to individual atoms, the vacancy perturbation mill

be the negative of the potential of a single atom.
The true potential of a silicon atom is quite strong and

gives rise to core eigenstates as well as to the valence
states of principal interest. Wave functions for valence
states, including those associated with a defect, must be
orthogonal to the wave functions of core electrons. This
leads to inconvenient complications, which are circum-
vented through the ps cud opotential method (see
Harrison" for a review of this procedure). Pseudo-

~4 W'. A. Harrison, Pse~opoteeHals in the Theory of Metals
(%'. A. Benjamin, Inc. , New York, 1964).

(np
~

V
( lv) = — u„*(r—R„)r)„(r—d) a)(r—R„)d'r

—0

(2~)6»~
e'("'R» & R")b *(k K )b((p I,)

der e—i(k+K») r~ (r d)~((y+K&) r d3ydap

We have placed the perturbation in the cell at the origin.
Each unit cell in the diamond lattice contains 2 atoms,
located at ~d with respect to the cell center; hence we

obtain the argument I—d if the atom at d is removed.
The pseudopotential coeKcients given by Brust are

"Reference 24, p. 19."B.J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276
(&962)."D, Srust, Phys. Rev. 134, A1337 (1964),

Strictly speaking, the assumption that the pseudopo-
tential is local is not correct, but it is not known if the
neglect of nonlocal character is of experimental impor-
tance, and we will assume we have a local potential.

By combining Eqs. (2.7) and (3.8), we obtain the
following expression for the matrix elements of the
vacancy potential between Wannler functloIls:
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effectively given by

U(q —k) =cosL(q —k) dj

TABLE II. The coe6cients n in a polynomial 6t to Brust's
silicon pseudopotentisl [see Eq. l4.7}].

n„(Ry)

where
2

(q k) — e
—ik rs (r)sis rdsr

Q
(4.5)

Xu.,(q-k) P 8(q-k —K,), (4.4) —0.610000
0.177311

—0.016250
0.000530

0 being, as before, the cell volume, and K, a reciprocal
lattice vector. Then we find

(nu
~

V
j lv) =

2(2s.)s ~i
exp fiL(k+K, ) (R„—d)

u.i(k) =g n. , i
k

i

'(48'-'/a'
n 27r

u. i(k) = 0,
~
k~ s&4g~s/, s

The coeKcients n„are given in Table II.
The matrix elements of the pseudopotential were com-

puted numerically as wiH be described in the next
section.

V. APPLICATION TO SILICON:
ENERGY BANDS

We shall now discuss the extension of Sec. III con-
cerning the symmetries of Bloch functions and Wannier
functions for isolated simple bands to silicon. The
actual band structure of silicon contains both degener-
acies required by symmetry (which occur at isolated
symmetry points and along certain symmetry axes in
the Brillouin zone), accidental degeneracies and quasi-
degeneracies which occur when energy bands approach
each other at general points of the Brillouin zone.
Quasidegeneracies are found to be rather numerous.
Near a quasidegeneracy the wave functions behave as if

—(y+K,) (R,—d) j)b„(k,K,)u.,(p+.K,—k —K,)

Xbi(y, K,)d'kdsp. (4.6)

A problem arises immediately in that band calculations
for perfect crystals use (and hence "determine") the
Fourier coeKcients of the atomic pseudopotential only
when the argument is a reciprocal lattice vector. This is
apparent from Eq. (4.4). In the present calculation, we
must know u, &(k) for all k. In order to approximate this,
we simply make a four term polynomial fit to the
pseudopotential parameters given by Brust. It is neces-
sary to obtain u„(0) by other means since this quantity
is not determined in a calculation which is concerned
with the relative position of the bands. We have used the
prescription of Harrison to find a value of —0.61 Ry
for this quantity, and it has been included in the con-
struction of the polynomial below:

H„qi„(k,r) =E„(k)4„(k,r), (5.1)

where H„= ( A'/2m) V'+—V~, (r) On a pl.ane-wave

J. von Neumann and E. P. Wigner, Z. Physik 30, 467
(1929)."Y'. Takeuti, Progr. Theoret. Phys. (Kyoto) Suppl. 12, 75
(1O5O).

their E(k) surfaces would cross but in fact they do not
(von Neumann and Wigner). ss The existence of degener-
acies and quasidegeneracies in the energy bands of real
crystal requires extension of the analysis of the previous
section. Attempts in this direction have been made by
Takeuti" Blount" and des Cloizeaux. "However, at
this time, a usable and complete analysis does not seem

to exist. In this section we describe the manner in which

we have proceeded to form the energy bands. The dis-
cussion will be primarily descriptive. It is hoped that a
more detailed theoretical analysis can be given in the
future.

In order to utilize the results of Secs. III and IV we
have chosen to define energy bands pertaining to a
single symmetry. Quasidegeneracies are rather un-

common in the four valence bands, so that it is possible
simply to arrange these states in order of increasing
energy. The conduction bands, on the other hand, are
more complicated and exhibit many near crossings
which shall henceforth be called quasidegeneracies. In
the presence of quasidegeneracies we have departed,
where necessary, from the ordering of bands according
to increasing energy. We have instead followed the sym-

metry of the wave functions as indicated by the behavior
of the coefficients b„(k,K,). Our Green's functions are
calculated consistently with this procedure, and thus the
conduction-band Green's functions may not, strictly
speaking, decay exponentially at large distances. Within
the limits already imposed by the numerical accuracy
we can achieve, this problem is probably not particularly
serious. It turns out, as will be seen, the conduction
bands are not particularly important in the determi-
nation of the energy of the vacancy bound state we are
considering. The vital question from our point of view
concerns the convergence of the bound-state energy
value, and this will be seen to be satisfactory.

To obtain energy bands and wave functions, we have
employed the pseudopotential plane-wave method as
discussed in Sec. IV. In the pseudopotential diagonali-
zation procedure we seek the energy eigenvalues E (k)
and the pseudo —wave function%'„(k, r) of the equation
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basis the secular equation is

ie, ' —Z~„i =0, (5.2)

~.' =(~"., I~,l~".,),
with +i,+x,=exp[i(k+K, ) rJ. In order to keep the
numerical labor within reasonable bounds we have
truncated the secular equation after fifteen plane waves.
The fifteen plane waves employed were the (000)
plane wave, the eight plane waves of the type (111),and
the six plane waves of the type (200) (units 2ir/a).

The diagonalization of the secular equation wa, s
carried out numerically by the Jacobi method at a num-
ber of points in the Brillouin zone. As solutions to the
15X15 secular determinant at a point k we obtain
numerical eigenvalues E (k) and the associated eigen-
vectors (b„(k,Ki),b„(k,K2), ,b (k,K»)) with m=1,

. , 15.The subscript m here labels columns of a unitary
(and real) matrix 5 which diagonalizes the Hamiltonian
matrix II~, and in general does not rank the eigenvalues
in any particular order. In particular, m is not a band
index. It is found that usually tmo or three subscripts
m will be involved in obtaining a band over the entire
Brillouin zone. The signi6cance of the m subscript is
clear in the limiting case of free electrons. In that case m

would refer to an energy level (k+K )' and a wave
function with coefficients given by b„(k,K,)= b;.

It is, of course, not necessary to diagonalize the sec-
ular determinant over the entire Brillouin zone. In
particular we need to consider only the fundamental
subzone of the Brillouin zone containing 1/48 of the
volume of the Brillouin zone and characterized by k„
k„, k, . The bounding interior planes of this subzone D
are k, =o, k =k„, and k„=k,.

It follows as a general consequence of the theory of
the space group of the Hamiltonian that if the energy
bands and wave functions within the 1/48 subzone D
are known, then energy bands and wave functions
throughout the entire Brillouin zone may be obtained
from those in D by a suitable transformation.

Before proceeding to numerical examples of the
method used to de6ne the energy bands in silicon, let us
consider briefly what extensions and modifications to
Sec. III are required by the various types of degener-
acies present in silicon. As in Sec. III, we shall restrict
ourselves to situations in which only one-dimensional
irreducible representations need. to be considered. We
therefore exclude from det, ailed consideration those
E(k) points in D which are degenerate, either by sym-
metry or by accident. Examples would include the
various threefold degenerate energy levels at I", the
twofold degeneracy at the point X and any accidental
degeneracies along symmetry axes and symmetry
planes. Apparently points of quasidegeneracy must be
similarly excluded. This point of view is similar to that
of Bouckaert„Smoluchowski, and Wigner30 who, in a

' L. P. Houckaert, R. Smoluchowski, and E.Kigner, Phys. Rev.
SQ, 58 {1936}.

somewhat different context, excluded from the proper
definition of an energy band those points where two
energy surfaces "stick together. " Ke emphasize that
points k in the vicinity of points of quasidegeneracy k,
are not excluded.

Consider a point k in D, an energy E„(k), and the
wave function + (k,r) =Px,. b„(k,K;)exp[i(k+K~) r].
The subscript n, mill be referred to loosely as the "band"
index but its precise meaning in the present discussion
is merely that of a label between F„(k) and 0' (k,r) at
k in D Since .%„(k,r) at k is nondegenerate, Eq. (3.12)
must be applicable at the point k. To emphasize the
applicability at the point k we write Eq. (3.12) in a
slightly different form:

b.(~k,K;) =X„i~i(k; n)b„(k,&-'K,)exp(—iK,"t.). (5.3)

X„'&'(k; n) is the character of the operation a for the
particular one-dimensional representation j which per-
tains to %„(k,r) and B (k) at the point k. Next consider
a collection of points E,„(k), one for each point k in D,
selected so that taken together the E„(k) points form a
fairly smooth E(k) surface in the Brillouin zone. We
emphasize again that the subscript m is merely a label
and neither ranks the energy level E„(k) atk n, or is
required to have the same indicial value at the different
points k in D.

Define a given energy band, say the mth, to consist
of all the energy values L'„(k) selected above and their
wave functions 4 (k,r), and characterized by the sym-
metry characters X„'&'(k; a). Two types of situations
will arise. Either the characters depend on and vary with

k, or else they are independent of k. In the first ca.se the
energy band, as defined, consists of Hloch functions of
different symmetries and is a "mixed" band. Equatio»s
(3.14) through (3.20) therefore are not applicable. In
the second case the energy band consists only of Bloch
functions of the same symmetry and Eqs. (3.14)—(3.20)
are applicable. Ke have consistently defined our energy
bands such that they are always of the single symmetry
type so that the "simple" band analysis is applicable.

This prescription is of considerable convenience in
tha, t group-theoretic analysis and simplifications may be
applied to the Kannier functions and to the determi-
nation of the bound state of the defect. Since both ap-
proaches yield orthonorrnal Wannier functions, neither
the single symmetry prescription nor the mixed sym-
metry prescription can be considered to be the more
"correct" procedure, Any preference would apparently
have to come from a consideration of the relative
amounts of labor required to obtain convergent so-
lutions for the defect problems to which the general
method is applicable. It is possible tha, t other, more
complicated, constructions of V,"annier functions and
energy bands might also prove useful in some problems.

I.et us begin the discussion of the results for the
energy-band calculation by considering the four valence
bands (levels I'i and I'2„at k=0) lying below the for-
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TAsx,x III. Symmetry assignments for the calculated energy
bands as required for the energy-band analysis (Oh) and for the
vacancy potential (C3,). All Wannier functions formed from a
given band are thus either pure real or pure imaginary as indicated
in the fourth column.

8aIld (o)
r,
F /

F1
r, '

F1F'
r 1

2

F2

(C3,)

A1
A1
A1
A2
A1
Al
A1

A2

I4
I
R
J

J

bidden energy gap. These four bands are, at general
points in the Brillouin zone, separated from one another
and seldom exhibit either degeneracies or quasidegener-
acies. These are therefore "simple" bands and the analy-
sis of Sec. III is applicable in toto. These four bands
are labeled in order of increasing energy. The behavior
of the coefficients b„(k,K;) on the bounding planes was
examined and the symmetry assignments made in
accordance with Sec. III. These symmetry assignments
are given in Table III.

We next describe the conduction bands. For definite-
ness we must describe how the bands are to be labeled.
It is observed that through much of the 1/48 subzone
D the bands may be arranged and labeled in order of
increasing energy. In particular most of the volume of k
space lying in the vicinity of the I"-Q line in D (end
points I"[0,0,0] and Q [(27r/II)(4, —,',—,')] are points of
degeneracy and are excluded) does not appear to exhibit.
degeneracies or quasidegeneracies. We have therefore
determined an energy ranking and labeling of the energy
bands in this region. The four conduction bands we
denote by bands 5, 6, 7, and 8 are 5th, 6th, 7th, and 8th
in order of increasing energy at approximately the mid-
point of the I'-Q line. We sha, ll see however tha, t the
bands as defined do not maintain this ranking over the
entire subzone D.

For purposes of discussion we lay out a regularly
spaced mesh of general points in the interior of zone D.
We choose a grid such that we obtain 60 general points
in the interior of D. In order to label the 60 points with
integers a mltiplving scale factor of 960 has been used.
We now start at our reference point and follow the pre-
viously defined bands out in all directions along the
mesh, maintaining the same energy ordering until
either a degeneracy or quasidegeneracy is encountered.
Figure 1 represents the four conduction bands along a
line between the points (240, 144,48) and (528,144,48)
with a scale factor of 960. This graph is fairly typical
and exhibits two quasidegeneracies. The energy bands
and the symmetry assignments are labeled consistently
in our notation. The quasidegeneracies are identified
from a detailed consideration of the coeKcients b (k, K;)
and the energy graphs. An example will illustrate the pro-
cedure. Let the column vector (b„(k,KI),b„(k,K&),

(1"2 )

(8)

I.30—

I.20—

I.IO—
()
(I 2)

1.00—
k, =(240, i44, 4S)

I I I I I I

I 2 3 4 5 6

(5)
(1 )

k, = (52S, I44, 4S)
I I I I I I I I

7 S 9 IO I I l2 I3 l4

FIG. 1.A graph of the four lowest conduction bands along a line
in the Srillouin zone between the points k1=(240,144,48) and
&13= (528,144,48) for a scale factor of 960. The figure illustrates a
very close quasidegeneracy between two bands (j. 2 and F2') of
diA'erent symmetry and a more widely separated quasidegeneracy
between two bands (F2') of the same symmetry. At the point k&

the labeling of the bands is 6, 8, 7, 5.

fI (k,Kq~)) for band 77 at the point k in D be denoted by
B„(k;K;). Let us now compare the vector B7(k5, K;)
with both B6(k8, K,) and B7(k8, K,), where kq and kII
are as labeled at the bottom of the figure. It is found
that, coefficient by coeKcient, B7(ks, K,) is recogniz-
ably more similar to B7(ka, K,) than it is to B6(ks,' K,).
The evaluation of scalar products of these vectors
shows that B7(ks, K;). B7(k, ; K,) is greater than
B7(k5, K;) B6(k8, K~). In many instances this difference
may be as large as a factor of 10. Of course at the point
of closest approach ko between bands 6 and 7, the dot
product is zero since band 6 and band 7 represent two
different eigenvalues of a Hermitian matrix and are
hence orthogonal. In addition, the reference points
(here k5 and ks) cannot be located too far apart and
still retain their significance. Apparently band 6 should
be regarded as the "first" solution with symmetry F&'

and band 7 as the "second" solution with symmetry F~'.
The band structure is then analyzed point by point

until the bands have been identified at each of the 60
general grid points. In most instances two neighboring
points have been connected together by two or more
diferent paths. This is done to achieve internal con-
sistency since any particular path may not always yield
a coefFicient analysis which is conclusive. After the
bands at the 60 points have been labeled, then the
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Fxo. 2. A graph of band 5(F1)
and. band 7(I'2') along a hne given
by (590+x, 410—2x, 80+@) with
a close quasidegeneracy in the
vicinity of the point (603,384,93}
for a scale factor of 960. The energy
scale is that of Fig. 1. The energy
of the two bands appears, on the
scale of this graph, to be linear in
k and a crossing would seem to be
indicated.
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energy bands and wave functions at those general
points lying adjacent to the bounding planes of D are
continued on into the planes and the symmetries identi-
6.ed. The symmetry assignments for the four conduction
bands we have treated are given in Table III.

As an example of these considerations, we show in
Fig. 2 a close quasidegeneracy between two bands which
we will temporarily call A and B. The energy bands
appear to vary linearly near the point (606,384,93)
(scale factor of 960) where an accidental degeneracy
appears to occur. The region within the box in Fig. 2 is
shown on an expanded scale in Fig. 3. It is apparent
from the expanded diagram that the bands do not
actually cross. The minimum energy separation is,
however, extremely small —approximately 0.001 Ry.
The behavior of the wave function in the vicinity of this
quasidegeneracy is quite interesting. Prom this point
of view, the bands appear to switch. The eigenvector
8 (k,K,) belonging to band A at the point, (600,390,90)
resembles that of band 73 at the point (606,378,96) much
more closely than it does that of the lower band at the
latter point. Similarly, the band 8 eigenvector at
(600,390,90) resembles that of A at (606,378,96). This
resemblance can be described quantitatively by the
scalar products of the eigenvectors as was mentioned
above. We find

Point (600,390,90) Point (606,378,96) Scalar Product

Band A
Band B
Band A
Sand B

Band B
Band A
Band A.
Band B

0.99604
0.99630—0.08314
0.08323

With present computational techniques and equip-
ment it is impossible to consider rapid changes in the
wave function and energy in regions of this size in the
determination of matrix elements of the Green's func-

tion and the potential. We are therefore forced to treat
the bands in the vicinity of a quasidegeneracy as if
they went smoothly through the degeneracy, making
the 3-8 and 8-A connection illustrated above.

We have found examples of quasidegeneracies with
minimum energy separations in the range between 0.05
and 0.001 Ry. The large separations are generally as-
sociated with attempted crossings of bands of the same
symmetry t as described by the representation character
in Eq. (3.7)], and the extremely small separations with

bands of different symmetry. In addition, the quasi-
degeneracies tend to occur in k space close to points at
which actual degeneracies w ould occur for free electrons.
The pseudopotential couples free electron bands in
6rst order unless the Fourier coeKcient of the potential
for a wave vector equal to the difference of the vectors
of the degenerate pair vanishes, and thus replaces the
degeneracy by a quasidegeneracy. The interaction
between free-electron wave functions for a general k
can never be zero on the basis of symmetry alone in

distinction to the case of free-electron wave functions

for symmetry planes, axes, or points.
I.et us finally indicate how the Green's functions were

calculated. Once the energy bands are known, the
Green's functions can be calculated in a straightforward
manner from Eq. (2.8). By properly symmetrizing the

exponential, it is of course possible to work only within

1/48 of the zone. Our conduction energy bands contain

discontinuities at the various quasidegeneracy points.
We might anticipate that the conduction-band Green's

functions would have somewhat different asymptotic

properties at large distances than would the valence-

band Green's functions. We have, however, not investi-

gated this. The asymptotic properties of the Green's

functions would be difficult to obtain numerically.



LOCALIZED DEFECTS IN SEM I CONDUCTORS 871

I. I I70-

I. I I 60

I. I I 50

I. I I50-

I . I I20

FIG. 3. An expanded scale graph of
the region of Fig. 2 enclosed by the
rectangle. The two energy bands are ~ I. I I40
shown along the same line as in Fig. 2. —
On this expanded scale it is clear that ~
the bands do not cross. The minimum
energy separation is, however, quite
small and is approximately 0.001 Ry.
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We note from the denominator in Eq. (2.8) that the
Green's functions for the eth band will tend to receive
important contributions from those portions of the
E(k) surface which lie nearest the forbidden energy
gap. For the conduction-band Green's functions we
have employed a mesh of 60 general points in 1/48 of
the zone. This mesh contains a reasonable number of
sample points in the vicinity of the local minimum
near the point X and the (100) axis.

For the valence bands a finer mesh containing 356
sample points in 1j48th of the Brillouin zone was em-

ployed in order to more adequately represent the im-
portant region near k=o. In summary, the Green's
functions were calculated for eight bands (four valence
and four conduction) at eighteen different uniformly
spaced energies within the forbidden gap. Calculations
were done for lattice vectors, in units of (2~ju), of the
five types (000), (110), (200), (211), and (220).

VI. APPLICATION TO THE NEUTRAL
SILICON VACANCY

We now turn to the numerical problem for the neutral
silicon vacancy. As described in Secs. III and IV, the
origin for the Sloch functions and hence for the defect
problem is located midway between the two atoms in a
silicon unit cell. The two atoms are then located at +d.
We then remove the atom at +d to create a vacancy.
The vacancy potential is then of the form V&(r —d). In
Cartesian coordinates d is (aj2)(4i,xi, 4i) so that there are
six group operations, each of the form (n~0), within
the silicon space group which leave the vacancy in-
variant. The group of the defect potential is therefore
C3„(isomorphic to Dq). Table IV lists the operations
and the character table.

Our choice of origin, which leads to C3„symmetry,
requires some comment. It is not the most obvious

TABLE IV. Character table for the group C3„with operations
expressed as substitutions on the Cartesian coordinates.

xys
E
1
1
2

sxy
ySx
2C3

1
1—1

yxs
syx
xsy
30~

1—1
0

choice. If we were to take the origin at the site of the
vacancy, the group of the defect potential would be T~.
We would then be able to reduce somewhat the number
of independent matrix elements. However, a price
would have to be paid. When the origin is at an atomic
site, some of the matrix elements of the crystal potential
are complex, and this means that the plane-wave expan-
sion coefiicients b„(k,K,) will be complex. Complex
b's would greatly complicate our calculation of matrix
elements, compensating for the reduction in number. In
addition, the use of real b s greatly facilitates investiga-
tion of the transformation properties of wave functions.

No obvious relation between the expansion coef-
ficients of the defect wave function using our origin
is to be expected on account of the "hidden" Td sym-
metry. This results because a shift of origin leads to
substantially different Wannier functions: Each shifted
Wannier function is a linear combination of all the
original Wannier functions of the various bands. Thus,
to make apparent the hidden T~ symmetry of the final
wave function, we would have to obtain the complete
defect wave function and perform a transformation.
However, the partitioning technique described in Sec.
II enables us to avoid computing the entire wave
function, and we have used this option.

The matrix of the defect potential expressed on the
basis of Wannier functions has been described in Secs.
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T~LE V. Column 1 contains the site group index. Column 2
lists the vectors in the three-site groups. Column 3 is the distance
squared from a site R„ to the defect at +8. R„ is a Wannier func-
tion lattice site vector. Column 4 is the decomposition (A, =PILI
+P2&2+P3~3) of a reducible representation A into irreducible
components A.I, A2, A3, for the site groups, and for I'I and I'~' bands.

Site
group I R„l

(o o o)
(1 1 o)
(1 0 1)
(o 1 1)
(1 10)
(1 1 0)
(0 1 1)
(0 1 1)
(101)
(I o 1)

[R —1['
3

16

iI6

216

Symmetries

PI=i, P2=0, PR —-0
PI=i, P~=O, P3——i

PI= 1, Pg= 1, P3=2

TA&LK VI. The fourteen types of potential matrix elements
which must be considered for the three-site group problem in-
volving ten lattice site vectors. For particular bands s and t
certain of the above matrix elements are zero as explained in
the text.

Group index

2

3

5
6

8
9

10
11
12
13
14

Matrix element

(s, ooo

(s, 11O

(s, 110
(s, 110
(s, 110[
(s, 110

i

(s, 110i
(s, 110i
(s, 11O

(s, 000[
(s, 000[
(s, 110
(s, 110

V it, 000)
V it, 110)
V it, 101)
V t, 110)
V t, 101)
V t, 011)
V t, 1I.O)

V t, 101)
V t, 011)
V t, 110)
V [t, 110)
U[t, 110)
V[t, 101)

(s, 110
i V

i t, 011)

Sand indices

t&s
t)s
t)s
t)s
t&s
t)s
t&s
t)s
t&s
t, s

t, s

t, s

t, s

t, s

III and IV. Ke note that as a consequence of the
manner in which we have chosen to define our energy
bands, all Kannier functions for any given band are
either purely real or purely imaginary (Table III).
Thus, after performing a simple transformation on the
matrix, only real arithmetic need be considered.

A total of eight bands and ten lattice site vectors
have been considered. The ten lattice vectors and the
site groups to which they belong are given in Table V.
As the problem is now phrased, the defect potentia, l
matrix would be of order 80&(80; Hermiticity reduces
this to a consideration of 3240 elements. The labor that
would be involved in evaluating this many matrix
elements would be entirely prohibitive. Fortunately,
the number of matrix elements which must be calcu-
lated may be reduced by about a factor of 9 by an ap-
plication of the group theory developed in Sec. III.
The actual number of matrix elements which must
actually be computed is smaller than 3240 due to three

related circumstances. First, matrix elements may not
be independent; secondly, certain matrix elements can
be shown to be zero; and thirdly, although independent
and nonzero, certain matrix elements wiH not contrib-
ute to the symmetrized combinations of matrix el.e-

ments which we shall subsequently form. The first
two cases are consequences of Eq. (3.20) and the last
case is a consequence of Eq. (3.21).

When we apply Eq. (3.20) to determine the number
of independent matrix elements for the ten site prob-
lem, we hand that there are fourteen different site
vector pairs which must be considered. These a,re
listed in Table VI. For eight bands Table VI represents
644 matrix elements.

Using Eq. (3.20) several of the matrix elements can
be shown to vanish by symmetry. In particular the
matrix elements in groups 1„2, and 10 vanish if s
(or t) is F& or F&' symmetry and t (or s) is Fs or F&'

symmetry. Therefore matrix elements belonging to
groups 1, 2, and 10 involving bands 4 and 8 vanish
except for the band pairs (4,4), (4,8), and (8,8). Ap-
pa.rently no other matrix elements vanish identically.

No further simplihcations can be achieved using
single %'annier functions as basis functions. Ke there-
fore take as basis functions symmetrized combinations
of Wannier functions constructed according to Eq.
(3.21) and the discussion in Sec. III. The new basis
functions are characterized by a band index, a site
group index and are labeled according to the various
irreducible representations of the defect potential. This
labeling must of course include rows if the representa-
tion is degenerate and must include all independent
combinations that can be formed. In particular we note
from Table V that for site group 3 it is possible to form
two linearly independent functions transforming ac-
cording to A3 and both must of course be included.

A preliminary examination of our numerical matrix
indicated that the localized state, if one exists, would
probably belong to the totally symmetric A~ represen-
tation. Ke therefore limited our attention to this
representation although we do not completely rule out
the other representations from possible interest. All

subsequent discussion and the numerical results we
present will pertain to the A~ representation.

Valence band 4 (Ft') and conduction band 8 (I'2)
have small matrix elements of the potential and do not
couple strongly to other bands. In particular, bands
4 or 8 are not at all coupled to each other or to the other
six bands by site groups 1 or 2. This is a consequence
of the fact that it is not possible to form any (non-
vanishing) t4 combinations of Wannier functions with
site groups 1 or 2 for band 4 or 8. Site group 3 does
provide some interband coupling but this is expected
to be smaller than the couplings between the other six
bands. It appears to be sufficient therefore to consider
six bands only. For six bands and the A~ representation
Table VI contains 369 matrix elements which must be
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evaluated for the three-site group problems. A re-
striction to 6 bands and site groups 1 and 2 only requires
99 matrix elements while the single-site group problem
requires 21 matrix elements. It is seen that the number
of matrix elements which must be calculated increases
rapidly with increasing number of site groups.

Let us next describe briefly how the matrix elements
themselves were evaluated. This portion of the program
involved most of the numerical effort. Referring to
Eq. (4.6) it is seen that a double integral over the
entire Brillouin zone is required and hence represents a
major undertaking. This has been reduced considerably
by transforming the problem so that we could work
only over the subzone. We shall not go through the
transformation because it is quite lengthy, but merely
indicate what was done.

We note that each of the single integrals over the
Srillouin zone can be written as an integral over the
subzone and a sum over group operations. Thus
two separate and independent sums over group oper-
ations are involved. Actually one of these two sums
can be written in closed form. The considerably simpli-
fied computer program resulting from this fortunate
circumstance saves about a factor of 20 in computer
time over the program in which the two sums were
both programmed.

In calculating the matrix elements we were able to in-
clude a maximum of ten points in 1/48 of the zone. Even
with this limited number of points, each potential matrix
element required about 6 min of high-speed computing
time. Comparisons were made between values of some
potential matrix elements evaluated with only three
points in the subzone and the values obtained using
the full ten points in the subzone. The values were in
much closer agreement than wouM have been expected.
It is tempting to speculate that the group-theoretic
transformation around the zone plays a more important
role in the matrix elements of the potential than does
the variation within any individual subzone. At any
rate, the problem has been handled in as much detail
as appears practical at this time.

We then proceeded to combine the matrix elements
which had been calculated with the previously calcu-
lated Green's functions in order to form the determinant
in Eq. (2.13). From this the zeros of the determinant
were obtained and the bound states located. The results
and analysis thereof is contained in the next section.

VEI. RESULTS

is important to recall, however, that the method we
use yields an exact eigenvalue of the Hamiltonian for a
given potential matrix V.

In addition, it turns out to be quite instructive to
introduce another degree of freedom into our problem.
We multiply the potential matrix V by a parameter X

without changing the elements in any other way. This
allows us to study, for a potential matrix of given di-
mension, the dependence of the bound-state energy on
the strength of the potential. Thus, we consider instead
of Eq. (2.11) a modified equation

det. (I—XGV) =0. (7.1)

TAaLE VII. Bound-state energy Eb(eV) as a function of the
potential parameter X for the single-site problem. The energy
scale has been shifted so that the valence-band maximum is at
0.0 eV and the valence-band minimum at 0.92 eV in accord with
Brust (Ref. 27). Our energy gap was approximately 0.05 eV larger
than that of Brust. Ke have ignored this small di6'erence.

The root of this equation in the band gap will be a
function of X, and we will describe its behavior below.
The symmetry analysis is, of course, unchanged.

To determine the convergence of the method with
respect to the number of site groups employed we have
determined the bound-state energy for the single-site
group problem (1-site vector), and two-site group
problem (4-site vectors), and the three-site group
problem (10-site vectors). The convergence of the
method with respect to the energy bands included was
also investigated by deleting various bands from the
numerical problem. It is possible in this manner to
establish which energy bands are of primary importance
in making up the defect state.

Table VII contains our results for the single-site
problem with six bands included. They are shown as
the curve labeled (1:1,2,3,5,6,7) in Fig. 4. It is seen
that a potential multiplier of about 1.6 is required to
localize a bound state within the energy gap. Apparently
the effective vacancy potential for this restricted prob-
lem is much too weak to produce a bound state. Tabje
VIII contains the approximate partial eigenvector
which is obtained at E~=0.06 eV with a multiplier
P = 1.620. The size of the components for bands 1 and 2
shouM be noted. Apparently bands 1 and 2 play an
important role in the formation of the defect state. The
eigenvector given in Table VIII is partial in the sense
of Sec. II and represents effectively g& of Eq. (2.16). If
the full eigenvector p= Q~,Pr) were to be obtained,

In this section we present our results for the bound
state of the neutral vacancy in silicon. The root of the
determinantal equation, Eq. (2.11), which lies in the
band gap is the energy of this state. We will consider
how the energy of this state depends on the size of the
determinant, that is, on the number of bands and the
number of site groups which are included. This amounts
to an investigation of the convergence of our method. It

1.60
1.620
1.65
1.70
1.75
1.80
1.85

Six bands
{1,2,3,5,6,7)

gr'
b

0.03
0.06
0.11
0.19
0.285
0.38
0.46

1.90
1.95
2.00
2.05
2.10
2.15

I;b

0.55
0.63
0.71
0.78
0.85
0.91
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PIG. 4. The bound-state
energy Ef, as a function of
the potential parameter X
for the single-site group
problem and for the two-
site group problem. For the
two-site problem the results
for a variety of band combi-
nations are shown and the
curves are labeled according
to the bands included. For
the single-site group prob-
lem only the results for the
six-band combination are
shown. This curve is labeled
(1:1,2,3,5,6,7). The scale of
energy employed places the
valence-band maximum at
0.0 eV and the conduction-
band minimum at 0.92 eV.

Q~ woll e lenold b renormalized but the relative size of the
individual components wouM be unaffected.

Table IX shows the results for the two-site group
roblem involving four-site vectors. A variety of dif-pI'o exQ

ferent band combinations were investigated.d. Several
features s ou e noh ld b noted. The six bands result in Fig. 4

h t bound stRtc Is locRllzcd ln thc gap OI' a,

lti 1 inpotential multiplier of about 1.15. The mu tip ying
f 1..15 mi ht be crudely interpreted as a measure

cI' ofof the error in our calculation. A change of the order o
15% in the assumed vacancy potential might not e an

lattice relaxation in the neighborhood of the defect.
Next we note that as the various conduction bands

are successive y ro~&e1 d pped out of the numerical problem,
~ ~ ~

thc curves of Eg vcIsus X shift toward thc origin an

state at a oub t 0.06 cV above the valence band occurs.
~ ~ ~ ~It is dear that the conduction bands act to inhlb~t e

formation of a localized state, a situation in agreement
with what one expects on the basis of perturbation
theory when higher levels are included.

much as a factor of 30) when the va, rious valence bands
d f the numerical problem. Deleting

h

band 3 results in only a slight shift to larger X. Dropping
band 2 from the six-band problem causes a very large

0

TgaLE VIII. Approximate pa grtial ei envector for the single-

1 d
'

nt are located by observing thefhdpoint at whic
through zero. AB is the actua va ue o
of zero.

0.4551
0.7100—0.2570
0.3683—0.1395—0.2598

shift to higher X with a value of about 3 required to
produce a bound state. Dropping band 1 shifts t e
bound-state energy noticeably less than for band 2,
but the shift is still large compared to the shift when
band 3 was dropped. dphil. e we do not attach great
significance to the bound states which result for large
values of X, it is clear that the valence bands play the
predominant role in the formation of the defect state.

Et,(eV)

3 bands
(1,2,3)

Ef, (eV)

5 bands
(1,3,5,6,7)

1.00
1.05
1.10
1.15
1,20

0.06
0.21
0.41
0.63
0,86

3.50
4.00

0.50
0.88

5 bands
(1,2,3,5,6)

4 bands
(1,2,3,5)

1,05
1.10
1.15
1,20
1.25
1.30
1.35

0.03
0.14
0.28
0.43
0.58
0.73
0.87

5 bands
(2,3,5,6,7)

2.40
2.60
2.80
3.00

0.15
0.28
0.41
0.54

5 bands
(1,2,5,6,7)

1.20 0.06
1.40 0.47
1.60 0.88

1.10
1.20
1.30
1.40

0.10
0.32
0.61
0.86

6 bands
(1,2,3,5,6,7)

1.17
1.18
1.19
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.58

0.05
0.07
0.08
0.10
0.12
0.22
0.33
0.45
0.56
0.66
0.77
0.86
0.91

TABLE IX. Bound-state energy L'f, as a function of the potential
parameter X for the two-site group problem involving four-site
vectors. The zero of energy is such that 8 „i, „=0.0 and L&„., d,t,„
=0.92 eV.
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0.80—
FIG. 5. The bound-state energy

E as a function of the potentialb
o.eo-parameter X for the three-site ~

group problem employing ten lat-
tice site vectors. Ltj

0.00-

0.20—

0.00
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TAax,z X. Approximate partial eigenvector for the two-site group
problem. (X=1.165, Eb=0.06 eV, DE=+0.0002 eV.)

Site group

1
1
1
1
1
1
2
2
2
2
2
2

Band

1
2
3
5
6
7
1
2
3
5
6
7

Component

1
2
3

5
6
7
8
9

.l.0
11
12

Value

0.3742
0.6215—0.2106
0.2927—0.1202—0.2141
0.1788
0.4734—0.1284
0.0389—0.0426—0.0868

This is reasonable on intuitive grounds. What is some-
what surprising is the extreme importance of bands 1

d 2 Having obtained this result, an explanation can
s ofof course be given. In general, the matrix elements o

the potential are larger for the lower-lying bands while
the Green's functions are largest for those bands lying
nearest the gap. The coupling between these two
numerical situations selects band 2 as being of prime
importance in localizing an energy level within the
energy gap. a eT ble X shows the partial eigenvector for
the two-site group problem. The size of the components
pertaining to bands 1 and 2 is again noted and a general
decrease in going from site group 1 to site group 2 is
observed.

Table XI contains the results for the three-site group
problem, again for a variety of band combinations.
These are shown in Fig. 5. The changes brought about
b

' '
the number of site vectors from fourby increasing

to ten are smail. In particular E~ versus P for bands
(1,2,3,5,6,7) is very nearly identical for the two- and
three-site group problems. For three-site groups, the
(1,2,3) band combination apparently produces a bound
state for A. =1 that lies somewhere between 0 and 0.05
eV above the valence band. A major conclusion is that
the two-site group bound-state energy is changed very

E (ev)

3 bands
(1,2,3)

Eb(ev)

5 bands
(1,2,3,5,6)

1.05
1.10
1.15

0.14
0.332
0.553

4 bands
(1,2,3,5)

1.10
1.15
1.20
1.25
1.30
1.35
1.40

0.05
0.13
0.26
0.41
0.55
0.70
0.83

1.10
1.15
1.20
1.25
1.30
1.35

0.10
0.21
0.36
0.52
0.68
0.83

5 bands
(1,3,5,6,7)

3.00
3.20
3.60
3.80

0.15
0.34
0.70
0.85

5 bands
(1,2,5,6,7)

5 bands
(2,3,5,6,7)

2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10

0.07
0.13
0.19
0.26
0.33
0.40
0.47
0.53
0.60

6 bands

(1,2,3,5(6,7)

1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65

0.04
0.13
0.24
0.36
0.48
0.59
0.71
0.81
0.91

1.20
1.25
1.30
1.40
1.45
1.50

0.0725
0.170
0.285
0.517
0.633
0.74

little in more than doubling the number of lattice sites
included in the calculation. Apparently the convergence
of the method is satisfactory.

Table XII contains partial eigenvectors for three
different values of E~. These were obtained in order to
see what changes take place as one moves from an

TAIir.z XI. Bound-state energy Eb as a function of the po-
tential parameter P for the three-site group problem with ten-
site vectors. The zero of energy is such that E,i, „=0.0 eV and
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TABLE XII. Approximate partial eigenvectors for the three-site
group problem at three diferent energies L't, within the forbidden-
energy gap.

Site
group Band

1
1 2
1 3
1 5
1 6
1 7
2 1
2 2
2 3
2 5
2 6
2 7
3 1
3 2
3 3
3 5
3 6
3 7

Com- L:f,=0.06 Bg=0.46
ponent P = 1.193 X = 1.376
number ~Z= —0.0013 AB= —0.0023

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18

0.3567
0.5784—0.2543
0.2694—0.1016—0.2010
0.1765
0.4099—0.1472
0.0269—0.0478—0.0818—0.0449
0.1953—0.2770
0.0502—0.0096
0.0149

0.3879
0.5776—0.2155
0.3596—0.1232—0.2500
0.1933
0.3728—0.0953
0.0389—0.0556—0.1010—0.0475
0.1291—0.1983
0.0587—0.0109
0.0202

Ey= 0.86
x=1.558

4E= +0.0008

0.3835
0.5430—0.1848
0.4602—0.1.370—0.2862
0.1922
0.3333—0.0730
0.0507—0.0577—0.1139—0.0456
0.0937—0.1561
0.0555—0.0107
0.0265

energy near the valence band (Ei,=0.06 eV) to an
energy near the center of the gap (Ei, 0 46 eV)——an. d
finally to an energy near (Ei,=0.86 eV) the conduction
band. Only small changes are evident. The state vector
appears to be dominated by the valence-band contri-
butions for all energies in the gap.

VIII. CONCLUSIONS

Although one expects that the most appropriate way
of treating localized defects is to employ localized
basis functions, i.e., Kannier functions, these functions
in the past have been employed principally in formal
arguments. Their utilization in realistic calculations
has not been attempted, partially because of the pre-
sumed ambiguities concerning the phase of the Bloch
functions, and partially because of the computational
labor involved. A more dificult question concerns the
proper and useful definition of an energy band.

One important conclusion to emerge from this investi-
gation is that these problems can be solved. It is pos-
sible to use Wannier functions in practical computations

concerning localized defects in crystals, and thereby
obtain numerical results in moderate agreement with
experimental results in the one important case investi-
gated in detail.

The theoretical methods we have developed appear
applicable to the calculation of formation and migration
energies of localized defects. The formation energy may
be considered a,s the change in the one-electron energy
of the system and is obtained from an expression in-
volving a, determinant identical in form to the determi-
nant in Eq. (2.11). For problems of this class, as
opposed to the bound-state energy problem, the Green's
functions must be evaluated for energies lying within
the valence bands. The evaluation and the resulting
Green's functions are consequently more complicated.
However, in the case of the formation energy of the
silicon vacancy, the numerical values of the matrix
elements of the potential previously calculated would
be directly applicable. Other logical extensions of the
present method i.nclude the silicon divacancy, the
vacancy-oxygen pair and the vacancy-phosphorous
pair. %e hope that the results of our present work will
open the door for many further investigations of the
properties of localized defects.

The application of the general method we have de-
veloped to the vacancy, the particular defect chosen for
detailed calculation, has shown that a localized state is
produced in which low-lying energy bands —in par-
ticular, the lowest two valence bands —and interband
couplings are important. This contrasts with the results
for the shallow donor and acceptor states which have
been studied extensively by different methods in the
past, for which only the band or bands closest in energy
to the impurity state are important, and for which,
except in ca,ses of band degeneracies, interband couplings
may be neglected.

The method we have developed appears to be the
most powerful approach presently available for the
investigation of localized defects. It should yield the
most realistic results since, in contrast to methods
previously employed by others, it incorpora, tes de-
tailed information concerning the energy band struc-
ture of the perfect crystal.


