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Determination of the Fermi-surface anisotropy of alkali metals by the de Eiaas —van Alphen effect has pro-
vided reliable numerical values for electronic energy gaps at Brillouin-zone boundaries. These determinations
allow a quantitative comparison of interband optical absorption power with theory. Serious discrepancies
with standard theory are found. For Na, the theoretical absorption is too small by a factor of 4, whereas for
Rb and Cs it is too large by a factor greater than 3. We observe that interband matrix elements must include
not only the direct interaction with the photon held, but also the Hartree-I"ock potential arising from
collective motions of all electrons responding to that field. The interband matrix elements are calculated
using time-dependent, self-consistent perturbation theory. If only the Hartree term arising from collective
motion is added, matrix elements are reduced by a few percent. However, inclusion of the exchange potential
profoundly alters the magnitude of the matrix element. For Na the theoretical absorption power is en-
hanced by a factor of 4, and for Rb and Cs it is suppressed by a factor of 6 or more. This apparent success of
the time-dependent, Hartree-Fock. method indicates that exchange interactions can contribute unexpectedly
to electronic processes in solids.

I. INTRODUCTION AND DISCUSSION
OF RESULTS

'HE theory of interband optical. absorption in
simple metals has been given by Butcher. ' Since

the model employed was the nearly free-electron ap-
proximation, quantitative application of the theory is
limited to the alkali metals. The vertical transitions in
k space, corresponding to intrinsic absorption, are in-
dicated in Fig. 1 for Na. The initial state of the transi-
tion must lie below the Fermi energy Ep, indicated by
the dashed line. The object of the theory is to determine
the energy dependence of the optical absorption power.
This can be expressed in terms of an effective con-
ductivity os(fi&o) With . the notation employed here,

SOOIUM

Butcher's theory is

~o(h )=
me'G'(&co —Wp) (W,—M)

4x-O'Q Pie)) '

Q is the wave vector of the (110) reciprocal lattice
vecto r; Q=2v27r/a, where a is the lattice constant. Q is
the energy gap at the Brillouin-zone boundary. ' S'0
and W1 are the threshold and cutoff energies.

Wo ——O'Q (Q—2h z)/2',
Wt ——h'Q(Q+2k p)/2m.

The expression for Wo is valid for sufficiently small
G/Zz. , otherwise, the threshold energy is slightly larger.

The absorption power given by (1) cannot be com-
pared with experiment quantitatively unless reliable
values for the energy gap G are known. Such data have
become available recently from precise determinations of
the Fermi-surface anisotropyby the de Haas —van Alphen
eBect.' ' The analysis of Ashcroft' can then be used
to deduce G. Table I summarizes the information rele-
vant to a comparison between Eq. (1) and experiment.

Wo G =.45eV

TABLE I. Data pertinent to the interband absorption
power of the alkali metals.

G =2 Viip Threshold
(eV) (eV) Max a.p Max 0-) expt.

Ll
Na
K
Rb
Cs

1.0
0.45
0.39
0.9

3.0
2.1
1.3
1.2
1.0

0.6X10"
0.2
0.3
2.0
6.2

~1.2 X 10'4
0.9

~ ~ ~

0.6
&2

.4 .8
k, IO8cm ~

l.O l.2

FIG. 1. Electronic energy spectrum of Na in the nearly-free-
electron approximation. Wp indicates the threshold energy of
interband absorption.

~ P. N. Butcher, Proc. Phys. Soc. (Londonl A64, 765 (1951).

&56

2 The reader may elect to translate G, whenever it appears in
this paper, into G=2Viip, where Viip is the pseudopotential co-
efEcient for wave vector Q at the Fermi surface.

'D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London)
A281, 62 (1964).

4 K. Okumura and I. M. Templeton, Proc. Roy. Soc. (London)
A287, 89 (1965).' M. J. G. Lee, Proc. Roy. Soc. (London) A295, 440 (1966).' N. Ashcroft, Phys. Rev. 140, A935 (1965).
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The data for each alkali metal need individual discussion:

Lithilm. The Fermi surface anisotropy of Li is not
known, so the first row of Table I does not test the
validity of Eq. (1). The value for G given here was
deduced from the experimental value of r, using the
theory developed in this paper. Since this represents
the only empirical determination of G in Li, it was
included here to provide a complete summary. The
experimental value for the interband contribution to a.

was taken from the data of Hodgson, ~ and corresponds
to the irtcrease in a(Aco) between about 3 and 4 eV.
Should optical data of greater resolution become avail-
able, the derived value of G should be altered by the
square root of any correction factor to the quoted
interband 0-. It is noteworthy that G 1.0 eV is about a
factor 3 smaller than predictions of typical band
calculations. s

Sodium. The Fermi surface anisotropy of Na has
been determined recently by Lee.' G=0.45 eV is ob-
tained from an Ashcroft analysis. The experimental r
is taken from Mayer and Hietel. ' The significant dis-

crepancy between 00 and 0., about a factor of 4, provides
motivation for the present theoretical study. This dis-
agreement was first pointed out by Appelbaum, "who
investigated a modi6cation of Butcher's theory based
mainly on the use of orthogonalized plane wave (OPW)
functions. He found that the discrepancy was not
alleviated. "

I'otassilm. Shoenberg and Stiles' have measured the
K Fermi-surface anisotropy by the de Haas —van Alphen
effect. Their results indicate G=0.39 eV."No value is
given for the interband 0., although the optical absorp-
tion has been measured by Mayer and El Naby. "The
reason is that the interband absorption is completely

' proceedings of the International Cottogninnt on Optical Properties
and Electronic Structure of 3fetals und Alloys, Puris, 1965 (North-
Holland Publishing Company, Amsterdam, 1966), p. 60. (The
data in Fig. 4 must be converted to esu by multiplying by c.)

8 F. S. Ham, Phys. Rev. 128, 82 (1962); V. Heine and I.
Abarenkov, Phil. Mag. 9, 451 (1964}.' H. Mayer and B. Hietel, in Proceedings of the International
Colloquium on Optical Properties und Electronic Structure of M'etals
and Alloys, Paris, 1965 (North-Holland Publishing Company,
Amsterdam, 1966), p. 4'7, Fig. 6, T= —183'C.

~o J. A. Appelbaum, Phys. Rev. 144, 435 (1966).
"Appelbaum found a suppression of the interband matrix ele-

ment by about 40%. We have repeated his work analytically and
have found that his initial- and final-state wave functions were
seriously nonorthogonal. We found that the suppression of the
interband matrix element associated with core orthogonalization
could be attributed almost entirely to those terms in the matrix
element responsible for the above-mentioned nonorthogonality.
Omission of such spurious terms leads to interband matrix ele-
ments essentially the same as those employed by Butcher. We have
concluded that conduction-band wave functions based on the
nearly-free-electron approximation are sufBciently accurate for
the theoretical elaboration of the present paper.

"This value diBers slightly from that quoted by Ashcroft,
Ref. 6. The value given here is that which optimizes a fit to the
Fermi surface in all three symmetry directions. Ashcroft's value
was obtained by forcing an exact 6t in the L110) and 100
directions, allowing an unnecessarily large deviation in the I 111
direction.

"H. Mayer and M. H. El Naby, Z. Physik 174, 269 (1963);
174, 280 (1963); 174, 289 (1963).

masked by the large optical absorption anomaly which
occurs at Lr=0.62 eV. Such anomalies have been re-
ported in all 6ve alkali metals. ~' A quantitative theory
of the anomaly in K has been published, '4 which at-
tributes the absorption to magnetic interband transi-
tions arising from a spin-density-wave ground state.
Although this interpretation remains tentative, it ac-
counts for the observed 0 between 0.6 and 2.0 eV. This
is surprising since the ordinary interband absorption 0.

()

should be superposed additively between 1.3 and 2.0
eV. The standard theory, Eq. (1), cannot in any case
account for the anomalous absorption. "Subtraction of
a theoretical spin-density-wave contribution, normal-
ized to the anomaly, leaves little if any remaining ab-
sorption attributable to interband processes.

ENbidilm. The de Haas —van Alphen work of Shoen-
berg and Stiles' leads to an energy gap G=0.9 eV."The
experimental 0. is taken from Mayer and Hietel, ' and
is about a factor of 3 smaller than that predicted by
Eq. (1). This discrepancy is inverted relative to the
one found above for Na.

Cesium. The Fermi-surface anisotropy, determined
by Okumura and Templeton, ' implies a value G=1.4
eV. Like K, the interband 0- appears masked by an
anomalous absorption of lower threshold. Here, how-
ever, the predicted 0.0, 6X10",is about a factor of 3
larger than the totul absorption observed' near Ace=1.5
eV. A discrepancy of at least a factor of 3 is indicated.

In summary, the standard theory of interband optical
absorption fails to agree with observation where com-
parison is possible. Perhaps the nearly free-electron
approximation is too crude for the heavier alkali metals,
for which theoretical values are too large by at least a
factor of 3. But such an excuse can hardly apply to Na,
where theory underestimates the absorption by a factor
of 4. The problem at hand is to discover a theoretical
improvement that yields a correction factor, multiplying
Eq. (1),with a range of variation (with electron density)
of 12 or more.

It is not hard to find an omission in the standard
theory which can be easily corrected. The interband
matrix elements employed in the derivation of Eq. (1)
ale merely the matrix elements of the electronic inter-
action with the macroscopic photon field. However, the
electric field of the photon causes all of the conduction
electrons to oscillate adiabatically with the photon fre-
quency. Since the conduction-electron density has a
periodic spatial variation with wave vector Q, caused
by the crystal potential, this co1lective motion will
generate an oscillatory Hartree-Fock potential having
spatial periodicity Q and temporal periodicity co. The
contribution of this potential must also be included in
the transition matrix element. Since the collective mo-
tion depends on the total perturbation, the calculation

' A. W. Overhauser, Phys. Rev. T.etters 13, 190 (1964).
. H. Cohen and J. C. Phillips, Phys. Rev. Letters 12, 662

(1964),
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FIG. 2. Variation of the optical absorption enhancement factor
F with lattice constant, for a monovalent bcc metal. Since I' is
also frequency-dependent, the value of F for Ace 30 jo above
threshold is shown. The points show the (theoretical) lo
the alkali metals.

core &ca ) ocation of

must be carried. out by a self-consistent procedure. This
is done in Sec. II. Collective eRects in solid-state optical
processes have been considered previously. "However,
we are not aware of any prior calculation of interband
matrix elements by the time-dependent, Hartree-Fock.
method.

1nclusion of the above-mentioned collective eRects
modifies the theoretical absorption power.

0(A(u) =op(App)P(A~). (2)

The correction factor Ii depends only on frequency and
electron density, and is independent of G. Figure 2

shows the density dependence of Ii for a photon energy
30% above threshold. This result predicts that the ab-

sorption power is enhanced by a factor of 4 in Na, and

is significantly suppressed in K, Rb, and Cs. Since no
adjustable parameter entered the derivation of F, this

apparently successful explanation of the discrepancies
cited above may have significance. The pronounced
deviation of Ii from unity arises from exchange inter-

actions. If only the Hartree term were included, Ii

would. have been a few percent less than unity throu h-roug—
out the density range. The apparently critical role of
the time-dependent exchange potential warrants ex-

tensive discussion, given in Sec. III.
The theoretical o (A~), Eq. (2), for an electron density

appropriate to Na is shown in Fig. 3. The experimental
data of Mayer and HieteP and op(App), Eq. (1), are

indicated. A more extensive analysis" of the Fermi-

surface anisotropy of Na suggests that G may be as

large as 0.50 eV. The corresponding 0 (Aa&) is also shown.

1' P. A. Wolff, Phys. Rev. 116,544 (1959);H. Ehrenreich, H. R.
Philipp, and B. Segall, ibid. D2, 1918 (1.963); J. J. Hopfleld,
ibid. 139,A419 (1965).The time-dependent, Hartree-Fock method
has been applied to atomic polarizability problems by A. Dalgarno
and G. A. Victor /Proc. Roy. Soc. (London) A291, 291 (f966)),
The reader is referred to this paper for earlier references to the
time-dependent, Hartree-Fock equations.

'7 M. J. G. Lee, in Proceedings of the 10th International Con-
ference on Low-Temperature Physics, Moscow, 1966 (to be
published).

e somewhat larg«maximum 0- «i this value o
agrees equally well with the data.

Th«apid decrease of o (Aa&) between 3 and 4 eV does
not agree with experiment. This failure may possiblssl
be caused by an oversimplification of the theory, which
we now discuss. The Fermi surface and Brillouin zone
in a {111)plane are shown in Fig. 4. Consider a repre-
sentation of interband optical processes in the extended
zone scheme. Processes just above threshold correspond
to transitions from 2 to 8 in Fig. 4. For Aco 50'Po or more
above threshold, transitions from C to D will participate.
Note that energy states near D will be perturbed by the

The
energy gap arising from the (101) crystal potential.

he energy of states near D will be lowered. This will
enhance the joint density-of-states factor that controls
the transition rate. Such energy perturbations have
been neglected in the elementary theory leading to
Eqs. (1) and (2). Consequently, a much more elaborate
calculation is required before discrepancies near A~
=2$"0 can be held signi6cant.

In Sec. II the only collective eRects that are calcu-
lated are those arising from the conduction electrons.
The ion-core electrons will also participate in collective
motion. Their contribution will be proportional to the
ionic polarizability. These effects are very small for Li
and Na, but for Rb and. Cs they are large enou h to

arrant inclusion. To do so would obscure the strategy
g 0

o the calculation given below. We prefer to let this
eRect be the subject of a future study.

II. THEORY OF THE INTERBAND OPTICAL
MATRIX ELEMENT

Consider conduction-electron states near one of the
twelve equivalent faces of the Brillouin zone. A periodic
potential

V(r)=G cosQ r

generates an energy gap G at the zone face. The wave
unction y~ of an electron near that face, below the

I.O — o SOD lUM (- I83'C)

:::=THEORY

0.
0 ('ho)) G=A0.8-

op

o
A

3

o.4—

0
0.2 ~ oo 0

o
0

4
he, ev~

FIG. 3. Absor tisorption power versus photon energy for Na. The data
are taken from the work of Mayer and Hietel.
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FIG. 4. Fermi surface and Brillouin zone of Na in a (111)plane.
In the extended zone scheme, absorption processes near threshold
correspond to transitions from A to 9. For photon energies 50%
or more above threshold, transitions from C to D contribute.

gap, can be adequately described by

tttt,
——sin0 expik r co—se expi(k —Q) r. (3)

are the one-electron energies above and below the gap
and c («) =«'«'/2'

The macroscopic photon field in a metal can be de-
scribed by a vector potential

A(a) =Apx exp( —keeps/c) cos[(mps/c) —tpt],

where x is the unit polarization vector of the electric
field, e and k are the optical constants, and Ao is the
amplitude of the vector potential at the surface s=0.
Since the spatial variation of A is slow, it can be
neglected. Accordingly, for a sufficiently small volume
within the penetration depth of the light,

A=A Ox coscok.

The interaction Hamiltonian of an electron with this
potential is

The corresponding state above the gap, which is con-
nected with (3) in an optical absorption event, is

tpt,
——coso expik r+sine expi(k —Q) r.

These are the wave functions associated with the nearly
free-electron approximation. The coefficients obey the
relation

sin28= G/(E~ —A' ),
where

g~ —2[p (k)+ p (k—Q)]~-, ([g (k) —p (k—Q)]P+G&)»&

Without loss of generality we have chosen g parallel
to the polarization vector x.

8=eA pGg/mctp,

and I a,nd rt are dimensionless, real parameters (de-
pendent on pt) to be determined by the requirement of
self-consistency. The choice 1—e for the coefficient
of singlet is dictated by later convenience. Conceivably a
term in cosgx, similar to the second term of (7), might,
also be required. We omit such a term from the outset
only because, if included, its coefficient turns out to
be zero.

The strategy of the calculation is to calculate the
perturbed wave functions resulting from (7), compute
from them the time-varying Hartree-Fock potential,
and require that it equal the second term of (7).

The one-electron Hamiltonian, incorporating the self-
consistent perturbation, is

H = (p'/2m)+G cosgx+H„.

We seek solutions, p'(t) exp( —iEt/«), of the time-
dependent Schrodinger equation, correct to terms linear
in II„.They are

+ et~t P (g)
E E+ j2M

where &p and tp are the functions (3) and (4). The
infinitesimal ig defines the contour for future integra-
tions. II„+ and II„are the positive and negative fre-
quency parts of II„.

H =H +e—tet+H —etat

The required elements a,re easily evaluated, (Wave
functions are taken to be normalized in unit volume. )

«I P*l ~)=«g»» coso=«gG/2W.

The la, st equality follows from (5), where Itlt =—I:+—p
is the transition energy. Also,

«l»ngxl ~) =i/2
H'= (e/mc)A p. (6) Accordingly, the matrix elements of H„are

This perturbation is employed to derive the interband
conductivity, Eq. (1).

We observed previously that the correct perturbation
must include, in addition to (6), the time-varying
Hartree-Pock potential arising from conduction-electron
col]ective motion. This must be found by a self-con-
sistent procedure. The total self-consistent perturbation
It„will have the form

II„=(eA p/mc) p, coscpt

+8[(1—tt) sintpt+tt costpt] singx. (7)

«IH-'I. ) =!I~[(«-/Il )-1+ +.],
8 IH--I ~)=-.'Il[(« /Il )+I—.+ .].

It is convenient to define real parameters g(t), S(t)
by rewriting (g) as follows:

y'(t) = tc+[It.'(t)+iS(t)]tp.

The linear deviation in probability density of the state
p caused by the perturbation is

I
ttt'I' —

I y I'=2S singx+2E(sin'0 —cos'0) cosgx. (10)
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The last term is disconcerting at erst sight since it
would give rise to a Hartree-Fock potential 90' out of
phase (spatially) with the one assumed in (7). This
new term is the one we have previously asserted would
not arise. However, for every state q near the gap
where ir —-', Q=O, there is a corresponding state of
equal energy near the gap where ir+-', 0=0. One can
show that the coefficient of cosQx for this corresponding
state is the negative of that in (10). Consequently the
cosQx term drops out by pairwise cancellation when

(10) is summed over all occupied states. From (8) and

(9) the coefficient of sinQx in (10) is evaluated.

uTV 1—
2S= vb(W —Ace)+ — ——8 sin(ot

2 W' —(h~)' W

to the definition given previously,

W(k) = {I e(k) —e(k—Q)]'+G') "' (15)

The coefFicient D, which determines the feedback eGect
of the collective motion, is

D= (8—e'k p'/3v Q') —(3e'k p/v) .

The standard theory of interband absorption is re-
covered by setting D=O. The feedback eAect of the
Hartree term alone can be found by dropping the second
term of D.

For the alkali metals, G can be neglected in (15) for
states below the Fermi energy. This approximation,
together with the almost spherical shape of the Fermi
surface, allows analytic evaluation of the f 's.

+ g8 (W— /i ~)—
2

3D 1—(p+w)' 1+p+w
(11) fg((o) = 1+ 1+ ln

8Ep 4p 1—p —w

The Dirac delta functions arising from the infinitesimal
ig in the denominator of (8) have been exhibited ex-
plicitly. Integrals over the remaining singular terms of
(11) are principal values.

The total change DN(r, t) in electron density caused
by the collective motion is

1—(p —w)' 1+p —w
ln-

4p 1—p+w

f, (M) = 3v.D(h(v —IVO) (IFg
—he)/(8' p)',

' p' '+p
f3 1+ - — 1——+— —ln

SEE 2p 1—p
t1N =4 sinQx 2S(d'k/8v. 3) . (12)

where p=—Q/2k~ ——(2v'/9)" and w—=m~/AQk~. The
solution to the simultaneous equations for N and v is

The integration is over the occupied region of k space.
The factor of 4 accounts for spin degeneracy and the
contribution to the oscillatory electron density from
excitations near the opposite Brillouin-zone face. The
Hartree-Foci' potential U(r, t) associated with EN is

U =
I

(4v.e'/Q') —(9v e'/2k g')]AN . (13)

The first, or Hartree, term is derived from Poisson's
equation. The second term is an approximate exchange
potential, derived in Sec. III. In order that the time-
dependent perturbation be self-consistent, U must equal
the second term of (7).

U=BL(1—u) sincot+v cosset] sinQx. (14)

Equation (14) generates a pair of linear equations
for u and v, after substitutions from Eqs. (11), (12),
and (13):

iQ 2'V =

f,u —f&v=0.

The functions appearing here are defined as follows:

fg (a&) = 1+D(W/[W' (A(o)']). ,
—

f2(co) = ~2vD(b(W —k(u)), ,

f,=1+D(1/W), .

The indicated averages of the functions of W(k) are
over the k~'/6v' occupied states of k space. According

u= fifa/(f2+f2'),
v=f2f3/(f~'+f ')

(16)

The interband matrix element with and without the
Hartree-Fock terms can now be compared. The optical
transition rate is of course proportional to the square
magnitude of the positive-frequency matrix element.
This is obtained for the bare interaction H, Eq. (6),
by setting u=1 and v=0 in Eq. (9) and noting that
lV=kco for energy-conserving transitions.

I Q I@"
I
~&l'= (l~)'

The square matrix element of the self-consistent per-
turbation is, from (9),

I (P I
H„+

I p) I

'= (-'8)'(u'+ v')

The ratio, F(ken) =u'+v', of the latter to the former is
the enhancement factor appearing in Eq. (2). Its Anal

analytical form is obtained from (16).

F(ka)) =f3 / (fp+f2 ) .

III. THE EXCHANGE POTENTIAL

(17)

%ere it not for exchange interactions, the feedback
parameter D would be positive and the enhancement
factor (17) could never depart signi6cantly from unity.
The exchange potential employed in the foregoing deri-



VRtlon n'ccds consldclRble discussion bccausc lt involves
a crucial approximation. Furthermore there is wide
variation of opinion on the proper way to treat ex-
change potentials and correlation potentials generally.
A major difhculty in Hartree-Fock theory is that the
exchange potential operator is a functional of the wave
functions being sought. Consequently an exact formal
treatment leads invariably to insolvable integral equa-
tions. Replacement of the exchange operator by a
function of the local electron density —such as the
Slater-Dirac approximation'8 —frequently allows one to
carry on analytically. The appropriate manner of ap-
proximation depends, however, on the nature of the
problem and on the particular one-electron wave func-
tion to be determined.

The exchange operator A that arises in the Hartree-
Fock scheme is defined. by the following operator equa-
tion for arbitrary f:

("/r») v.*(r2)4 (r2)d'r2 ~k(r~) (18)

The sum is only over states k with the same spin direc-
tion as f. We are interested in the (k' —Q~A~ k')
matrix element of A when a set of wave functions
having the form (g) is inserted in (18) for the &p's. It
is sufdcient, however, to consider a simpler set of wave
functions having the form (3), which differ from (8)
only in the spatial phase of the electron density modula-
tion. The (off-diagonal) matrix element of A between
the plane-wave states k' and k' —Q is

=P (47re'/
~

k' —k
~

') sin8(k) cos8(k) . (19)

The challenge of a&l problems, such as this, is to guess
the numerical value of Vo. In principle V() will depend
on Q, co, and other characteristics of the deformation.
For the problem at hand, Q is larger than the diameter
2k' of the Fermi surface. Consequently, participation
in the deformation is not restricted by the exclusion
principle to a selected group of states in k space. With
appropriate uncertainty, we tal~e the unweighted aver-
age (over k and k') for Vo.'

Vo= 9~t,'/k p'.

Substitution of this value in Eq. (20) leads to the ex-
change potential term employed in Eq. (13).

It is well known that exchange interactions exag-
gerate magnetic instabilities of an electron gas. Many
workers studying magnetic problems 6nd it appropriate
to use statically screened or dynamically screened inter-
actions to avoid such exaggeration. The question of
whether screened exchange should be used in the optical
problem considered here arises naturally. We believe
the answer is no. In Hartree-Fock theory the exchange
potential is just the Coulomb interaction of, say, a
spin-up electron with the surrounding correlation hole
(of unit positive charge) in the spin-up electron gas.
There is no corresponding correlation hole in the spin-
down electron gas. The effect of dynamical corrections
to the Hartree-Fock scheme is to redistribute this cor-
relation hole, allowing some of the correlation potential
to arise from the spin-down gas. Such dynamical CGects
could not occur if the total correlation potential were
diminished in magnitude. This redistribution of the
correlation potential between the up-spin and down-
spin electrons, for an up-spin electron, can be repre-
sented heuristically by a parameter p&1, so that the
total correlation potential Vt is

Now, the electron density associated with the set q k is

E(r) =So—2(e'o'+e —'o') Q sin8(k) cos8(k),

where Xo——k~'/3n'. The factor 2 is the spin degeneracy.
Consequently, the Fourier coeKcient AÃg of the density
dcvlatlon ls

6Ã@———2 P sin8{K) cos8(K) .

Equation (19) can now be written symboHcally:

(k' —Q~A
~

k')—= ——',(4nP/[k' —k~'), ASq. {20)

This equation is really R definition of a suitable
(weighted) average:

"J.C. Slater, Phys. Rev. 81, 385 I'195j.). For a discussion of a
recent controversy regarding the optimum numerical coeKcient,
see J. C. Slater, M. I.T. Solid State and Molecular Theory Group
Quarterly Progress Report No. 58, 4965 I',unpublished).

where Et and Eg are the spin-up and spin-down e/ec-
tron densities. A similar equation would apply to a
spin-down electron. It is an instructive exercise to
compute the spin susceptibility X on the basis of this
model. The result is

x=xy(1 —L3(2@—1)&oVO/4&x]) ',
where X„is the PauH susceptibility. This indicates that
X is enhanced Rs long as p, &-'„an expected result. A
phenornenological value for the redistribution parameter
p, could be obtained by fitting X either to a measured
spin susceptibility or to values calculated" by ernploy-
ment of dynamically screened interactions.

We conclude from the foregoing discussion that
screened exchange can be employed only if a correlation
potential (with electrons of opposite spin) is added. For
problems of the type we have considered in this paper,
where variations in Et and Eg are in phase and equal,

1 D. R. Hamann and A. %. Overhauser, Phys. Rev. 143, 183
(1966).
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the redistribution parameter in (21) cancels out. The
distinction between a treatment using unscreened ex-
change, and one using screened exchange plus anti-
parallel correlation, is primarily semantic.

The apparently successful comparison of the theory
developed in Sec. II with observed, interband optical
absorption in the alkali metals can be interpreted in
two ways. It is either an amusing coincidence, or it is a

corroboration of the approximate treatment of exchange
and correlation interactions given in Sec. III.'0

"The alert reader will surmise that the strength of exchange
and corre1ation interactions employed in this paper leads to an
adiabatic instability of the electron gas. This observation wouM
be a serious objection were it taken for granted that such an in-
stabiHty does not occur experimentally. Many observed anomalies
in alkali metal properties can be explained provided an exchange
instability has in fact altered the electronic ground state.
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Excitons and the Absorption Edge in ZnSe
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The optical absorption threshold at about 2.7 eV, near the lowest-energy fundamental edge, was investi-
gated for cubic ZnSe single crystals. Absorption spectra are reported for temperatures between 2 and 200'K.,
and absorption coefIjcients between 4 and 600 cm . Although contributions associated with defects domi-
nated the results in most crystals, intrinsic absorption could be observed for T &60'K. in the purest avail-
able crystals. This intrinsic absorption results from longitudinal-optical-phonon-assisted creation of excitons,
as is shown by the good agreement between the observed magnitude, the temperature, and photon-energy
dependence, and the absorption calculated for this mechanism. The relevant exciton states involve electrons
and holes from band extrema near the center of the Brillouin zone; when created without phonon assistance,
excitons from these same extrema also give the relatively very intense "direct transition" absorption lines.
Xo evidence is found that any band gap is smaller than that at the zone center.

I. I5'TRODUCTION

~ PTICAL absorption spectra at the low-energy
threshold for intrinsic electronic excitation have

been studied for several elemental and compound semi-

conductors. Analysis of the temperature and energy de-

pendence of these spectra have shown that in some

lllstRIlccs, e.g. ) Gc Rnd Si) thc Rbsolutc cxtrcnlR ln thc
conduction and valence bands are at widely separated
points in the Hrillouin zone, while in others, e.g.,
CdS' 3 and CdTe, ' ' these extrema are at or very near
the same point. In the former case (Ge and Si), the ab-
sorption processes and corresponding band gap are
called "indirect" and absorption is forbidden unless

assisted by the simultaneous emission or absorption of
one or more phonons of wave vector comparable to the
differences between the wave vectors at the two band
extrema. ' In the latter case (CdS and CdTe), the
processes and corresponding band gap are called

~ Present address: Department of Physics, University of Illinois,
Urbana, Illinois.' T. P. McLean, in

Progressism

Semk ondmctors, edited by A. F.
Gibson (John Wiley k Sons, Inc. , New Vork, 1960), Vol. 5,
pp. 55—101'' D. G. Thomas and J. J. Hopfield, Phys. Rev. 116, 573 (1959).

' D. G. Thomas, J. J. Hopfield, and M. Power, Phys. Rev. 119,
570 (1960).

4 D. G. Thomas, J. Appl. Phys. Suppl. 32, 2298 (1961).
' D. T. F. Marple, Phys. Rev. 150., 728 (1966) (referred to as I).
' B. Segall, Phys. Rev. 150, 734 (1966) (referred to as II).
' See, e.g., R. J. Elliott, Phys. Rev. 108, 1384 (1957).

"direct" and absorption is allowed without phonon
participation. Absorption processes assisted by phonons
of small or zero wave vector are also allowed for a direct
gap."These are of central importance in the discussion
of the absorption spectra of the cubic (zinc-blende)
modification of ZnSe presented in this paper.

Low-temperature optical studies of ZnSe' have
already shown the existence of a very intense, narrow
absorption band at an energy a few millielectron volts
below the absorption continuum due to interband elec-
tronic transitions. This band was interpreted as re-

sulting from the creation of excitons associated with a
direct gap, without phonon participation. Some other
electricaP and optical" studies also suggested that the
absolute conduction-band minimum was at the center
of the Brillouin zone, and since the fluorescence emission
spectra"' (presumably due to bound excitons) were not
signi6cantly broadened by auto-ionization to a lower-

energy continuum state, it was suggested' that the
direct, band gap associated with the excitons was, in

fact, the smallest so that the absolute valence-band
maximum was Rlso Rt thc ccntcl of th.c zone. In co11-

trast, optical transmission studies had been reported

SM. Aven, D. T. F. Marple, and B. Segall, J. Appl. Phys.
Suppl. 32, 2261 (1961).

9 M. Aven and B. Segall, Phys. Rev. 130, 81 (1963).
"D.T. F. Marp1e, J. Appl. Phys. BS, 1879 (1964).
» D. C. Reynolds, L. S. Pedrotti, and 0. %. Larson, J. Appl.

Phys. Suppl. 32, 2250 (1961).


