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Warm-Electron Effects in n-Type Silicon and Germanium
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The Boltzmann equation describing the warm-electron case is discussed and a review is given of the
scattering mechanisms for n-Ge and n-Si with relatively low doping levels. Taking into account the known
band structure, the Boltzmann equation is solved by a numerical iteration method under the assumption of
weak intervalley scattering. It is shown that this condition can be relaxed for special symmetry directions.
The warm-electron coeKcient P has been measured in the temperature range from 77 to 250'K by an audio-
frequency method based on analysis of nonlinear distortion. Good agreement between measured and calcu-
lated results is obtained using the accepted values of the deformation-potential constants.

I. INTRODUCTION

PPI.ICATION of high electric fields to homogene-
ous semiconductor crystals gives rise to funda-

mental deviations from Ohm's law. Such a nonlinear
relationship between current and voltage was first ob-
served in germanium by Ryder and Shocidey. ' Quali-
tatively the eRect is simple to describe. The electrons
are accelerated in the electric 6eld such that their mean
energy (c) is increased in comparison to the thermal
equilibrium energy eI,. Departures from Ohm's law then
occur when the momentum relaxation time is energy-
dependent.

The electrical characteristic as a function of electric
field is conveniently divided into three regions: (a) the
warm-electron region (low electric 6elds), (b) the region
of intermediate fields, and (c) the hot-electron region

(high electric fields). More specifically, in the warrn-

electron region the difference (c)—ez is small compared
to e~ and only the second-order term in the electric
field Ii in a power-series expansion of p, is important. '
In the hot-electron region (c) is large compared to ez, and
striking deviations from Ohm's law are often found
(current saturation). It should be stressed that we do
not consider field-induced variations in the free-carrier
concentration (secondary ionization, etc.) in the present
treatment.

For experiments on warm- and hot-electron effects
one can, in principle, obtain information about the
scattering of electrons by phonons, impurities, and other
free carriers. Investigations of this type may yield
quantitative information about the mechanism of en-

ergy and momentum relaxation. Also, it is, of course, of
fundamental interest to have a quantitative description
of these nonlinear effects.

Several attempts have been made to draw quantita-
tive conclusions about the scattering parameters from
hot-electron experiments, especially in e-type german-
ium and silicon. ' ' Recently it has been pointed out,
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however, that the assumptions made in these investi-
gations (constant effective mass, neglecting secondary
minima, in the conduction band, etc.) are not realistic. ' '

A demonstration of the importance of the detailed
band structure is found in the case of GaAs. ' These
complications make the hot-electron experiments less
useful for quantitative investigations on the scattering
parameters.

In the warm-electron case on the other hand, the
electrons stay close to the conduction-band minima and
these secondary effects may be neglected. Also the warm-
electron coefficients' Po and yo are strongly dependent
on the scattering parameters. With a complete theory
for the warm-electron eRect we thus have a very sensi-
tive method for determining the magnitudes of these
parameters.

A number of theoretical and experimental investi-
gations have been concerned with warm-electron eRects
in Ge and Si." "Most of the theoretical treatments
have, however, made so many simplifying assumptions,
as to prevent a detailed comparison with experiment.
In some instances a spherical energy band has been used
instead of the established many-valley structure. ""
Also, simplifying assumptions have been introduced
concerning the form of the electronic energy-distribu-
tion function (e.g. , Refs. 12, 13, and 14). Scattering by
optical phonons has frequently been neglected. " "In
a realistic model we must take into account the many-
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valley structure, the anisotropic effective mass, and in-
tervalley scattering in addition to intravalley scattering
and the anisotropic impurity scattering. Recently a
treatment including most of these features has
been published by Tsutsumi, " who presents formal
expressions for a number of higher-order galvanomag-
netic transport coeKcients. No attempt was made, how-
ever, to extract the warm-electron parameters from the
general expressions or to numerically evaluate these so
as to permit a comparison with experimental results.

In the present paper an alternative approach to solv-
ing the Boltzmann equation is presented. It is based on
a simple numerical-iteration method and it leads to
results for the warm-electron parameters which are
directly amenable to comparison with experimental re-
sults. The most important limitation in our treatment
is the assumption that the intervalley scattering is weak
compared to the intravalley scattering. This is fu16lled
in germanium, whereas in silicon it only applies in some
special cases. We, furthermore, assume that the im-

purity concentration is sufFiciently small so that elec-
tron-electron scattering can be neglected.

Experimental results on warm electrons have been
obtained by dc pulse methods for Ge' ' and by micro-
wave methods for Ge" "and Si.""

We have measured the warm-electron coe%cients for
m-type Ge and Si by a technique based on the harmonic
signal generation at audio frequencies. ""The meas-
urements were carried out in the temperature range 77
to 250 K.

Comparison between our calculated and measured
results shows very good agreement both with regard to
temperature variation and to the absolute values of the
parameters when using the accepted deformation poten-
tial constants in the calculations.

The formal warm-electron theory is summarized in
Sec. II. The appropriate transport equation is set up
in Sec. III and the general form of the distribution func-
tion is discussed. The different scattering mechanisms
are explicitly introduced in Sec. IV, while the method of
solution of the transport equation is described in Sec.
V. Po and yo are derived in Sec. VI. A short descriPtion
of the experimental arrangement is given in Sec. VII.
Experimental data are presented and compared with the
theoretical results in Sec. VIII.
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I'I. FORMAL WARM-ELECTRON THEORY

In this section a short discussion of the warm-electron
parameters Po and yo will be given.

At low electric fields we have the following relation
between current density J and field F in a perfect
crystal'.

I,= o p(F;+P h;, i,iF;FiF&),

where terms of the fifth and higher orders have been
neglected. (Because of symmetry only odd terms in F
will occur. ) o.o is the scalar zero-field conductivity.

Schmidt-Tiedemann has shown that the tensor h;, k~

for a crystal of cubic symmetry can be completely de-

scribed by only two independent parameters'.

pO hllll and |'0 Iillll 3hi 1122 ~ (2)

Denoting the current component in the 6eld direction

by JL,, we have'
Jz, ——o oF(1+PF'), (3)

where P depends on the field orientation (longitudinal
anisotropy):

P =Po vo(1 2— &")—

„(001)

FIG. 1. Definition of the angles
a and f.

(110)

' M. H. Jgrgensen, N. I. Meyer, and K. J. Schmidt-Tiedemann,
Solid State Commun. 1, 226 (1963).

The unit vector e is defined by I'=Pe.
The interpretation of warm-electron experiments is

usually simplified by choosing a sample orientation such
that F and J are parallel to a (110)plane in the crystal.
Using this special geometry, P can be expressed in terms
of the angle n' (Fig. 1):

P=Po ——,'6yo(7 —4 cos2n —3 cos4n).

In general J and F will have different orientations
(transverse anisotropy or Sasaki effect). The anisotropy
angle f defined in Fig. 1 depends only on yo and n':

/gal= F'po —,', (2 sin2n+3 sin4n).

The experimental values of Po and yo are usually deter-
mined from Eq. (4b). po may, however, be found if Eq.
(5) is applied to low-field measurements of the Sasaki
effect."

Now we shall turn to the theoretical calculation of

po and yo, where the main problem is to determine the
appropriate distribution function for the electrons.
From the distribution function one finds Jl, as a function
of F, which by comparison with Eqs. (3) and (4) gives
the desired expressions for po and po.



836 H. JPRGENSEN

III. BOLTZMANN EQUATION

We shall first consider the electrons in one of the
equivalent valleys in the conduction band of Ge or Si.
The effective mass tensor is"

The fundamental Boltzmann equation can be de-
veloped a few steps further. Inserting (7) and (g) into
(6) and separating odd and even terms in (k—kp) one
obtains two new equations:

m, 0 0.
m= 0 m, 0

.0 0 m)

r((p) dfp
g(p)=eh — — Q F,

1St 8e
(12)

The fundamental Boltzmann equation for the electronic
distribution function f(k) reads

(
c7f e

+—F gradpf=o,
Bt „

where the first term accounts for the scattering proc-
esses. The distribution function is expanded in the usual
form:

f(k) = fo(p)+g(c) (k—ko), (7)

where kp is the wave vector corresponding to the energy
minimum of the valley under consideration. From a
mathematical point of view, the use of Eq. (7) corre-
sponds to expanding f(k) in spherical harmonics, keep-
ing terms of zeroth and first order only.

The scattering anisotropy is taken into account by
defining an energy-dependent momentum-relaxation-
time tensor:

c7 fp 2e
0= — + p

—'t'(F Q F)
Bl' sc 3mt

d dfo
X—p't'r, (p) . (13)

28
Vg= —0 F

3mt

"p"~( )c/(dfo/dc)d p

c'"fp(c)dp

(14)

In the case of nondegenerate statistics, Eq. (13) ha, s for
Ii =0 the solution

Equation (13) is the warm-electron Boltzmann equation
which we shall solve for fp If fo(.p) is known, the drift
velocity in the valley under consideration can be de-
duced from (12). From simple calculations we get the
well-known result

r (p) 0 0
g(p) = ~ 0 r, (p) 0

o o «(p)

(following the theory of Herring and Vogt"). So long
as the relaxation time approximation is valid" we have

which makes
fp(p) = Co exp( —p/to T),

(c7g/Bt)„= —~ 'g. (g) At low 6elds we can write the general solution to (13)
in the form

In order to simplify the notation we now define a
mobility-anisotropy tensor by fp(p) =Cp exp( —c/IoT)+(F Q F)C(p) (16)

Q= (rl,/r, )m
—' ~.

This can be written in the more explicit form

0 0
Q= 0 1 0

0 0 1/K

if we introduce the mobility-anisotropy coefficient

(10) IV. SCATTERING MECHANISMS

Before a more specific treatment of the Soltzmann
equation can be given, we must discuss the relevant
scatterimg mechanisms with special emphasis on a cal-
culation of the quantities r&, r~, and (c7fp/Bt)

(9) (neglecting terms of fourth and higher order in F). By
inserting (16) into (14) one obtains the characteristic
quadratic deviations in Ii from Ohm's law.

K is, in principle, energy-dependent when different
scattering mechanisms are mixing, but it can be shown
that it only varies slightly with energy in most cases of
interest here. Also, it turns out that the whole theory
becomes much simpler if E is considered as a constant.
We shall adopt this approximation in the following.

"C. Herring and E. Voa, t, Phys. Rev. 101, 944 (1955).

Acoustic-Phonon Scattezing

The relaxation time tensor for this type of scattering
has been calculated by Herring and Vogt. 3I The tensor
components are frequently used in the form

(1/r, g,) = re,g,x"'(T/T„)"', (17)

where x= p/kT is the norma, lized electron energy. The
symbol X represents t or l.

The acoustic coupling constants w„t and x„~ are
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dered by
3X2' sx'~ ~ ' '(kT ) '=- '

O'Ci
(18)

'(1.31r'+1.61rj1.01)

E '= Z '(1.24r'+2. 32r+1.22)
for m-oe.

In the case of e-Si we have"

(20a)

The "temperature" T„appe ari ngin (17) and (18) is a
conveniently chosen normalization factor. C~ is the
average elastic constant for longitudinal acoustic
waves":

Ci= s(3cii+2cjs+4c44) . (19)

& and ~ are simple functions of the deformation poten-
tials g„and "s "P.utting Zq/Z„=r& the results of
Herring and Uogt can be written

relaxation-time tensor derived in this manner should be
suSciently accurate for use in the case of dominating
phonon scattering (consistent with our assumption of
relatively small impurity concentrations) .

As the relaxation times are required for use in nu-
merical calculations only, the scattering integrals were
calculated on a digital computer and simple analytic
functions were fitted to the tabulated results. The im-

purity relaxation-time functions obtained by this ap-
proximation are

=w;x '/' ag ln(1+(b),qx)')—,(25)
&iX 1+(d&/qx) '

where X stands for t or 1. The energy-independent fac-
tors m; and q are defined by

Zip= Z~'(1.33r'+1.15r+1.07)

'(1 40r'+2 40r+1. 62)
(20b)

3ze4Arms
ZOi =

2s/s(4s. ep/r)sr/s/P/s($2')P/s
(26)

=~.,o~ '"—~' o (21)

where
211/sxp//z 2rr/ 1/2(7pT)1/2~~ 2

ph4
(22)

Using K =mi/m, and r= ( q/~~), we can define p by

', ((2+K )—r'+2K r+K ) (23)

(valid for Ge as well as Si).

Scattering by Ionized Impurities

This type of scattering conserves the energy of the
scattered electron, and it follows immediately that

(c/fp/Bt);=0. (24)

The relaxation-time formalism of Herring and Uogt is
valid for energy-conserving scattering processes if the
scattering anisotropy is not too large. This condition
is in fact not very well fulfilled for impurity scattering
in m-Ge. We have, however, applied the relaxation-time
integrals of Herring and Uogt to this problem. The
"C. Herring and E. Vogt, Phys. Rev. 105, 1933 (1957).
8'A. G. Samoilovich, I. Ya. Korenblit, I. V. Dakovskii, and

V. D. Iskra, Fiz. Tverd. Tela 3, 3285 (1961) LEnglish transl. :
Soviet Phys. —Solid State 3, 2385 (1962)j."I.V. Dakhovskii, Fiz. Tverd. Tela 5, 2332 l1963) )English
transl. : Soviet Phys. —Solid State 5, 1695 (1964)].

3' H. Risken, doctoral thesis, University of Aachen, 1962
unpublished).

Using different averaging procedures, Samoilovich,
Dakhovskii, and others" " have obtained numerical
results which deviate slightly from those of Herring and
Vogt.

The energy relaxation due to acoustic phonons has
been analyzed in detail by Risken. "The result is

(4&re p/t) 2zrr/pi(k T) '

e'h'e
(27)

E~ and e are the concentrations of impurities and elec-
trons. ~ is the relative dielectric constant of the crystal.
The numerical factors of Eq. (25) are given in Table I
for e-Si and e-Ge. Intervalley scattering by ionized im-
purities will become important at high impurity con-
centrations or low temperatures. " This mechanism
will, however, be neglected here.

X [Bo(x+xo)'/'+ (No+1)(x xo)'/'] (—28)

TAni, E I. Numerical values of the coefficients in Etl. (25).
Calculated for E =20 (Ge) and E =4.69 (Si).

Si

Ge

1.059
3.765
2.74

34.7

1.226
0.788
0.748
0.324

1.200
5.21
5.75

83.6

4.97
5.87
7.07
9 95

"G. Weinreich, T. M. Sanders, and H. G. White, Phys. Rev.
111, 747 (1958).

"W. A. Harrison, Phys. Rev. 104, 1281 {1956).

Optical-Phonon Scattering

Intravalley scattering by optical phonons is of im-
portance in m-Ge but can be neglected in the case of
n-Si. '7 As the scattering process is isotropic, we can use
a simple scalar momentum relaxation time4:
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Similarly the energy relaxation is described by'

X ((x+xo)"'[(&o+I)fo(x+xo) —&ofo(x)]

+(x—xo)' '[nofo(x xo) (go+1)fo(x)j) (29)

bo= wo/wsoi )

oo= (wo/w-o) (T/T. )"'(oo/T-) .

(30a,)

(30b)

(Both are independent of the arbitrary scaling factor
T„.) From (18) and (22) one gets

3P AM o~g
ap

——bo
SC)m~-o'

(31)

Here mo is the coupling constant for optical phonons,
xo ——Aoio/kT=Oo/T is the normalized phonon energy,
and iso ——1/(expxo —1) is the occupation number. We
are using the convention (x—xo) ' '= 0 for x(xo.
Finally, we define two parameters bo and ao express-
ing the ratio between optical- and acoustic-phonon
scattering:

LA phonons4' with an equivalent temperature. 4'

9o
——Aoi, /k =- 190'K,

and the f-type transitions occur by interaction with a
phonon which is a mixture of the two modes LA and
transverse optic (TO)."The energy is given by4o

Of = hoer/k =630'K.

Long defines a coupling constant z~ for the 630'K.
phonon and another constant w2 for the 190 K phonon.
His experimental results are"

bi ——wi/w«, —2.0 and bo w/o——w~, 0 1—5. .

More recent piezoresistance data seem to confirm these
numerical values. 4'

Electron-Electron Scattering

This type of scattering is not taken into account in

our calculations. It should, however, be included if the
electron density becomes significantly larger than 10"
cm

—' at 77'K or 10' cm at 300 K Neglecting the
e—e scattering may cause large errors in the values of
the warm-electron parameters for v=10" cm ' a,t
77'K.4'

For e-Ge the energy of the active phonon is given by

Oo= Aoio/k=430'K.

ho
——wo/w. „—0.04. (32)

Intervalley scattering in e-Si has been studied ex-

perimentally by Long. "It turns out that one must dis-

tinguish between "f scattering" where electrons are
transferred between two perpendicular valleys and "g
scattering" coupling two opposite valleys. The latter
process can be treated as intravalley scattering in all
calculations on transport phenomena because two paral-
lel valleys may be considered as one single va, lley.

The g-type processes are caused by interaction with

Intervalley Scattering

We shall only consider intervalley scattering by
phonons of high energy. In e-Ge longitudinal acoustic
(LA) and longitudinal optic (LO) phonons with an
equivalent temperature

eo=hoio/k=315 K

will give rise to intervalley transitions between equiva-
lent valleys. ""Isotropic scattering equations in com-
plete analogy with (28) and (29) can be used. The in-

tervalley coupling constant m~ has been determined
from measurements by Weinreich et at. 36 The result is
conveniently written'

fo(x)= Coe '[1+(F Q F)y(x)/Fz']. (34)

The normalization factor Fg is de6ned by

382(k TGJacgWaco T

T„
(35)

Using (33), (34), and (35) and dropping higher-order

field terms, we transform the basic equation (13) into

(
Bp d

=w„ox—'~'e —(xe—*h(x)), (36)

which now has to be solved for y(x).

V. SOLUTION OF THE BOLTZMANN
EQUATION

The warm-electron Boltzmann equation (13)will now

be developed further for the electrons in a single valley.
In the 6rst approximation intervalley scattering is ne-

glected. Later it will be included through the valley
repopulation effect. In order to shorten the notation we

introduce the function

h(x) = r,(x)/r, (x), (33)

where x= e/kT and 1/ri=1/r„i+1/ro+1/r;i+ (us-

ing the relaxation-time components defined in Sec. IV).
Following the idea of Eq. (16) we shall write the distri-
bution function in the form

' M. Lax, Bull. Am. Phys. Soc. 6, 109 (1961)."E.S. G. Paige, Progr. Semicond. 8 (1964).
D, Long, Phys. Rev. 120, 2024 (1960).

4 M. Lax and J. J. Hop6eld, Phys. Rev. 124, 115 (1961).
4' J. E. Aubrey, %V. Gubler, T. Henningensen, and S. H. Koenig,

Phys. Rev. 130, 1667 (1963).
4' J. Yamashita, Progr. Theoret. Phys. (Kyoto) 24, 357 (1960}
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The method of solution used in this work is described
in some detail in Appendix I. It involves a simple nu-
merical iteration procedure. In the following we shall
assume that y(x) has been computed and normalized.
so that the following equation is satisfied:

2
S= Q x'('f (0")(x)dx

0

(44)

where C(F) may depend on F but is independent of ) .
The total number of electrons in the conduction band is
proportional to

e
—*x'('y(x) dx =0. (37) Now we can eliminate C(F) by calculating S and using

the fact that S must be independent of F. From (37),
(38), and (42) we get

In a single valley, not interacting with other valleys,
Eq. (37) expresses conservation of particles. When deal-

ing with a many-valley model, we must add some en-

ergy-independent terms to y(x) in. order to account for
the repopulation effects. This is discussed in Sec. VI.

F '2K+1
S= C( F)1V„1 B ——

Pg 3E
(45)

Here we have used a simple relation describing sum-
mation over a complete set of (111)or (100) valleys:

VL CALCULATION OF ga AND yo Q e Q("'e=cV„(21t+1)/3E, (46)

In Sec. V and Appendix I we have derived the distri-
bution function for a single valley, neglecting the inter-
valley scattering contributions. In a many-valley semi-
conductor we cannot, however, neglect the repopulation
phenomena occurring even at extremely low intervalley
scattering rates. For valley number v we can express the
distribution function by

F ' 2E+1'
C(F) =Co 1+B

Pg 3Q
(47)

where E, is the number of valleys and e is an arbitrary
unit vector. It follows from (45) that C(F) must have
the form

Finally we obtain the expression for the distributionin
the vth valley:

f,("'(x)=C("'e ~[1+(F Q(") F)y(x)/F&'], (38)

where y(x) is the distribution function defined in Sec. V. 2E+1
The repopulation is taken into account by ascribing f,(.)(x) C,e—* 1+ F2B
different values of C&") to different valleys. Suppose that 3E
the major part of the intervalley transitions is caused
by phonons of energy Ace~. Now the principle of detailed
balance requires the quantity

+(F &'"'~)8(*)—&)) &~' (4&)

x') '[(x+xg) '('eg

(2E+1)D
0

3EIi g'
(49)to be independent of ) . (e~ is the phonon occupation

number and x~ ——ku~/hT. ) Inserting (38) into (39) one
obtains after straightforward calculations the following
proportionality:

2 (It —1)'(B—D)
+0

3E(2E+1)F&'

Now the warm-electron parameters Po and yo can be
determined. The calculations are given in Appendix II.
The result is

+(x—x,)'('(e,+1)]f0(")(x)dx (39)

I~C" [1+(F a ) F)B/F„),
vrhere the repopulation parameter 8 is defined by

x'('(x+x2)'~'e *[y(x+x2)+y(x)]dx D—
xe *h(x) [y(x) —dy/dx)dx

(40)
The scattering parameter D is defined by

(50)

2 x')'(x+x2) ')'e *dx

(41)
xe *h(x)dx

At sufficiently low fields we have

(F .~ (v) .F)/F& 2((] (42)

and it follows from (40) that C'"' can be written in the
form

C(")=C(F)[1—(F a(") P)B/Fg'] (43)

Equation (49) is valid for a many-valley semiconductor
with (111)minima, if the intervalley scattering is suffi-
ciently weak.

A similar argument can of course be applied to a
many-valley structure with (100)minima. For complete-
ness we shall quote the result (in spite of the fact that
the assumption of weak intervalley scattering ig in
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general not true for Si):

2m+1 2(Z —1)'
&+ (&—

&))3E 3E(2%+1)

signal. This eGect wiB introduce an error which can be
computed. with reasonable accuracy. The numerical
value of P will be increased by the amount

1 j. o.o 0
2 n&0

+2'' !p! 2pCZ' 2pC2'r, ,

VII. EXPERIMENTAL METHOD

The coeKcient P of Eq. (3) was determined from a
measurement of the nonlinear distortion in the crystals

by the method of Guldbrandsen et a/. ' A simplified

diagram of the measuring circuit is shown in Fig. 2(a).
An audio-frequency sine wave is applied to the sample,
and the 6rst harmonic as well as the higher harmonics
from the generator and the transformer are balanced out

by a simple bridge circuit, so that only the higher har-
monics generated in the sample remain at the input ter-
minals of the selective voltmeter. Denoting the rms
values of the sample voltage and the third harmonic
output voltage by V~ and U3 respectively, we have

!p! =4L,2v,/v, 3, (53)

where L is the length of the crystal. As the bridge cir-
cuit can be operated with an extreme degree of ac-
curacy" we are left with two major sources of error:
(a) Joule heating of the crystal and (b) non-Ohmic be-

havior of the sample contacts.
The Joule heating of the crystal lattice will generate

temperature oscillations with the frequency 2'. The
corresponding modulation of conductivity will give rise

to an additional third harmonic signal which is about
90 out of phase with respect to the warm-electron

V)

l

sample

(a)

Select ive

Y 7
volt meter

FIG. 2. (a) Sche-
matic diagram of
measuring circuit. (b)
Sample geometry.

L

! ! Falloyed
@ tN contact

Of special interest are the fi.eld directioris where the
valleys are equally oriented with respect to the field
vector ((100) for Ge and (111) for Si). In this case all
valleys have the same distribution function f, (x), and
we are essentially dealing with a one-valley problem
where intervalley scattering can be treated exactly like
optical intervalley scattering. The value of the p func-
tion in these directions of high symmetry is

P,~ = (2K+1)D/3EF~'. (52)

where T is the lattice temperature, C the specihc heat,
and p the density of the crystal. t, is a time constant
describing the rate of heat exchange between the crystal
and its surroundings. The dimensionless factor a shall
account for the temperature dependence of the conduc-
tivity: frp ~x: r

It turns out that 8P will be negligible for high Ohmic
crystals, when the operating frequency co exceeds a few
irc/sec.

Injection of minority carriers from the electric con-
tacts is avoided by using a special sample geometry with
low-Ohmic zones at the ends of the crystal, as suggested
by Schmidt-Tiedemann4' (Fig. 2b). The Ohmic con-
tacts are made by alloying Au with 0.4%%uo Sb to the
highly doped ends of the sample. This technique applies
well to e-Si as well as m-Ge. The performance of the con-
tacts is satisfying between 77 and 250 K for Si. In the
case of Ge, however, some of the contacts showed a non-
linear distortion signal comparable to the P signal, when
the temperature exceeded 150'K. The quality of the
contacts can be estimated from a measurement of the
second harmonic generated by the sample (assuming
that the two contacts are not exactly identical).

VIII. NUMEMCAL RESULTS

In this section experimental data are presented to-
gether with the results from theoretical calculations.

n-Type Si

The theory developed in the preceding sections is in
general not valid for silicon because of the strong
(f-type) intervalley scattering between perpendicular
valleys. We can, however, use the theory without restric-
tions in two special cases. The most obvious of these is
the case of (111)-oriented samples, where (because of
syinmetry) the intervalley scattering can be treated
like optical intravalley scattering. Figure 3 illustrates
the comparison between theory and experiment for two
(111)samples cut from a 40-0 cm crystal. Also, Fig. 3
shows data obtained from a microwave experiment by
Hamaguchi er at."(crystal orientation not specified) .

The curves were calculated from Eq. (52) using
Long's relative intervalley coupling constants. 4 In the
calculation of coupling constants for acoustic-phonon
scattering a fixed value of the ratio ( ~/ „)= —0.05 was
used. (This is consistent with Long's analysis of scatter-
ing anisotropy. "The results are not very sensitive to the
choice of this constant. ) We assume E=lt„=4.69.

"K.J. Schmidt-Tiedemann, Physik. Verhandl, 9, 150 (1960).



WARM —ELECTRON E FF ECTS I N n —TYPE Si AND Ge

cm~/k y~

20

N-Si, 40 A.crn

o and v This work, &111$

crepancy might be due to a stress-dependent effective

mass, "which has not been taken into account in our
calculations.

n-Type Ge

2
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FIG. 3. Warm-electron coefBcient p as a function of lattice tem-
perature T for 40-0 cm n-Si. The points are experimental. The
solid curve was calculated for El ——1.85X10'4 cm '. The broken
curve corresponds to El ——1.25' j.0'4 cm '.

The assumption of weak intervalley scattering should
be well fulfilled for pure germanium in the temperature
range 77—250 K. It follows that our theory will enable
us to calculate Po as well as yo (or to calculate P for an
arbitrary sample orientation) .

P has been measured as a function of temperature for
10-0 cm rt-Ge. The results are shown in Fig. 4 for two
different sample orientations: o, = 0 and e= 72 . Experi-
mental data of Hamaguchi et at."are shown in Fig. 4
for comparison. (Crystal orientation is not specified. )
The theoretical curves in Fig. 4 were fitted to the experi-
mental points by varying the ratio ( e/ ) and the
relative coupling constant ho which indicates the
strength of optical-phonon scattering. For the remaining
parameters the following fixed values were used:
Er 2&&10'4 cm——' (estimated from the resistivity);

004 (fro—m—WeinreichetaL"");K=K~=20;8 =18
eV (deduced from different piezoresistance measure-
ments" (77 K). The best fit is obtained for ( q/ )
= —0.34 and bo

——0.17. Both values are in reasonable
agreement with the generally accepted data on e-Ge. 39

It should be noted that a possible temperature de-

By varying the input values of. „and El the best fit
to the experimental points was obtained for "„=8.4 eV
and X~——1.85&&10' cm '. This fitting procedure is very
sensitive to the choice of „and the value 8.4 eV is in

good agreement with independent experiments. 4'

The carrier concentration calculated from room-
temperature resistivity is about 1.25&(10'4 cm '. An
ionized impurity concentration E~——1.85)&10" cm '
could be explained by assuming a slight degree of
compensation.

When experimental uncertainties are taken into ac-
count, we must conclude that the agreement between
theory and experiment is satisfying.

There is another special case in which our theory
should apply to m-Si over quite a large temperature
range. Consider a crystal to which a very high uniaxial
pressure is applied along the (100) direction. At suffi-

ciently high pressure the carriers will concentrate com-

pletely in the two valleys which are parallel to the
pressure axis. Under these conditions we are dealing
with a one-valley problem, and the warm-electron co-
efficient for the stressed crystal will not be influenced by
f scattering.

The results of such an experiment and a comparison
with theory has been published elsewhere. "Also here
the theoretical curves can be fitted to the experimental
data. One must, however, use a rather low value of the
deformation potential constant: " =7.5 eV. This dis-

"I.Balslev, Phys. Rev. 143, 636 (1966).

c rri~/ky
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FIG. 4. The experimental points show P versus T for 10-0 cm
n-Ge samples with different orientations. The solid curves were
calculated for b0=0.17 with m=0' and n= 72', respectively. The
broken curve corresponds to b0=0.30 and ~=0'.

4' J. C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev.
138, A225 {1965).
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pendence of "„"has not been considered in these calcu-
].ations. Such an eRect would influence the bo value ob-
tained by the fitting procedure. A detailed discussion of
this problem is considered to be outside the scope of this
treatment. .

rX. ComCLUSrOm

We have seen that the warm-electron distribution
function can be calculated numerically for any com-
bination of scattering mechanisms, when only one iso-
lated valley is considered. It was shove that a ca,lcula-
tion of P can be based on the one-valley solution, even
in the case of strong intervalley scattering, provided that
the 6eM vector is parallel to a suitable symmetry axis.
A general solution of the warm-electron Boltzmann
equation (calculation of Po and. yo) was carried out for
e-Ge under the assumption of su%ciently vreak inter-
valley scattering, so that the interaction between elec-
tron distributions in. diferent valleys couM be accounted
for by a simple valley repopulation argument.

Experimental results frere obtained from the analysis
of nonlinear distortion in the crystals at low-power
levels.

The theory was tested by comparison with the meas-
urements for pure e-Si and e-Ge. Using Long's data on
intervalley scattering in Si ere found that the value for
"„to be used in the acoustic scattering terms was 8.4 eV.

Assuming the value ~~ = 18 eV to be valid for Ge, one
found by fitting the theoretical curves to the experi-
mental data ("e/" „)= —0.34 and ho 0.1/. ——

one obtains

(&(x) —s(x))] =ape pe '-x'i'
GS

(x+x )'~'
(~+*o) s(r)dr

—e"(x—xo) '~
s(r)dr-

(57)

[Here and in the following the expression (x—xp) hs, s to
be replaced by 0 for x&xo.]Equation (57) is now inte-
grated («om 0 to x) and finally multiplied by e'/x,
and we obtain the Anal Boltzmann equation:

h(x) —s(x) =J-os(x), (58)

where the optical scattering operator L,o has been de-
f«ned by

QOS08

Lps(x) = ds e
—'(s+xp) iJ's'i'

(~* & s(r)dr
(59a)

If several high-energy phonons contribute to the scat-
tering, Eq. (58) is immediately generalized by adding on
the right side new terms of the form
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APPENDIX I: CALCULATION OF y(x)

As an illustration of the method of solution, consider
the case of n Ge wher-e (By/Bt)„can be expressed essen-

tially as a sum of the scattering terms for acoustic and
optical phonons. Combining (21), (29), (30b), and (34)
gives

4p™
(By/R)„=re„p e*x 'i' e*x'——

dxL ds

+comp[(x+ go) '"(y(x+go) —y(x))

(e+*0 s(r)dr
(59b)

An ailalytlc sollltloil of (58) does llot seem possjbie One
can be guided to a simple numerical itera, tion method by
the following argument.

Let $(x,t) be a time-dependent distribution function
obeying the equation

B$—=h(x) —P(x,~)
—L,t(x, t) .

Bf

When an initial distribution t(x,0) is chosen, p(x, () is
uniquely determined by (60) for 3)0. If (60) leads to a
stationary distribution f(x, op), which is independent of
tile initial conditions as specjf led by $(x,0), then the
function s(x) = f(x, oo) will be the solution to the warm-
electron Boltzmann equation (58).

It is not diflicult to find the stationary solution to (60)
by iteration. One may choose an arbitrary function so(x)
and calculate

+e*'(x—xp)"'(y(x —xo) —y(x))] (55)

Inserting (55) into (36) and substituting a new function:

s(x) =x(dy/dx) (56)

sl(x) =so(x)+ &1[k(x)—so(x) —I.osp(x)],

"(.)=. (x)+A~[h(.)—.,(.)-L,;,(.)],
4

s.(x)=s. l(x)+A~p(x) —s„,(x)—L,,s„,(x)].

(61)
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y(x)
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normalized according to Eq. (37), and the integrals in
(41) and (50) are evaluated numerically.

Figure 5 shows the distribution function y(x) as cal-
culated for 40-0 cm e-Si at two different lattice tempera-
tures: (a) 77'K and (b) 250'K. There is an obvious
correlation between the detailed shape of the curves and
the energy of the dominating (f-type) phonon.
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77 K APPENDIX II: CALCULATION OF IIo AND y

From Eq. (14) we derive the following proportionality
for the longitudinal current component:

ao df (vi

Jr, ~F P (e Q&"'e) xh(x)e * dx, (62)
V 0 dx

-0.01

(b)
4 6 8 10 12 14

X

where the unit vector e is defined by e = F/F. Combining

(48) and (62) we get

-0.02—

Pro. 5. Warm-electron distribution function y as a function of
s= c/kT. Computed for 40-0 cm n-Si at two different lattice tem-
peratures: (a) 77'K and (b) 250'K. The normalized phonon energy
xf Acof/kT is indicated.

(This operation may also be interpreted as an integra-
tion with respect to the time variable t.)

The convergence is rapid, when ao is not too large. In
the case of it-Ge (ap=40) about 15 steps are required to
give an over-all accuracy of 0.5%.The convergence and
the stability strongly depend, however, on the choice
of the step length At. A very small, constant value of
ht will, of course, ensure perfect stability, but the num-
ber of steps required will under these conditions become
prohibitively large. Consequently a procedure was de-
veloped which allows the computer to determine the
optimal value of At before each step is taken. This opera-
tion involves a detailed analysis of the results obtained
during the preceding steps.

After a short inspection of Eqs. (59a) and (59b) one
might anticipate that the numerical evaluation of the
double integral in the optical term would demand too
much computer time, but it turns out that the optical
scattering term can be tabulated quite rapidly by proper
arrangement of the arithmetical operations.

When the stationary solution s(x) has been tabulated,
y(x) is found by numerical integration of (56) and

p 2

Jr, ~? P (e Q&"& e) 1+
P

21t+ 1
8 — +(e 0&"' e)(D 8), (6—3)

3E

where the scattering parameter D is defined in Eq. (50).
In the case of n;Ge the summation in (63) has to be
performed over a set of (111) valleys. Using Eq. (46)
together with the following geometrical relation:

(e Qo' e)'
(111)

E—1 E—1
= tY„1—2 + (3—2 Q e,'), (64)

3E 3E

one obtains

Jl ~ F 1+ — D

A simple comparison between (65) and the symmetry
relation (4) will give us the expressions for Pp aiid pp
shown in Eq. (49).


