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Density-Matrix Derivation of the Spin-Diffusion Equation t
I. J. LOWE AND S. GADE$
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(Received 15 December 1966)

A diffusion equation is derived for the spatial motion of spin magnetization that has an inhomogeneous
distribution. The particles of the system are assumed to be fixed in space and have a spin of —,. Only those
terms in the interaction Hamiltonian are used that commute with the Zeeman Hamiltonian. A density-
matrix calculational technique is used, and an assumption is made that the interaction Hamiltonian is
small enough that the density matrix is diagonal to first order. The first-order results are similar to Sloem-
bergen s, but have a different multiplying coefIicient. An average diffusion constant is evaluated explicitly
for a simple cubic lattice for cases of the applied magnetic iield along the [100j,[110j,and [111]directions.

I. INTRODUCTION
' "N 1949 Bloernbergen' suggested that the magnetiza-
~ - tion of spins in a rigid lattice could be spatially
transported by means of the mutual flipping of
neighboring spins due to dipole-dipole interaction
terms of type I;+I; . Using first-order perturbation
theory, he showed that the transport equation for mag-
netization was a diffusion equation, and he made an
estimate of the diffusion constant D.

In 1959 Redfield' gave a prescription for testing
whether the transport equation for magnetization could
be approximated by a diffusion equation, and a prescrip-
tion for deriving a diffusion constant D was given. His
method depends upon the calculation of the higher-
order moments of a resonance curve. This is a very
laborious process, and the testing procedures and the
evaluation of the diffusion constant D were not
attempted.

In 1965 Buishvili and Zubarev' derived a diffusion
equation for spatial transport of magnetization by means
of the statistical theory of irreversible processes. Their
expression for D was similar to Bloembergen's.

In this paper we derive a diffusion equation for the
spatial transport of magnetization, and find a formula
for D by investigating the equation of motion of the
density matrix p(t) for the spin system. The funda-
mental ussuntpfi art is made that the rate of transport of
magnetization is slow enough that the diagonal part of
the density matrix for the spin system can be closely
approximated by a quasistatic equilibrium density
matrix in which the spt'rt temperature is spatially-de-
pendent and time-dependent.

An inhomogeneous spatial distribution of magnetiza-
tion can be produced in many ways. One way is to
apply an inhomogeneous radiofrequency field to the spin
system so that, after a given time, some nuclei have been
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nutated further than others, and thus have a different
value for the component of magnetization along the
applied static magnetic field. Another possible way is
the superposition of an inhomogeneous, static magnetic
field upon a large homogeneous magnetic field for a
period of time, and then turning it off. A third possible
way could be that of the spins in different parts of the
system having different spin lattice relaxation times
(due to different motional spectra, or impurity spins,
etc.), and thus having different components of mag-
netization along an applied static magnetic field follow-
ing some saturation process. Whatever the reason for
the inhomogeneous spatial distribution of magnetiza-
tion, we shall assume that it has been turned o6 for
the period of time treated by the calculation, and the
source of the inhomogeneous spatial distribution of
magnetization will not concern us.

N

BC,= —phBp Q I... (2)

Kt ——l't P B„I,,I;, ,
iwj

(3)

4 Charles P. Slichter, Principles of 3fagnetic Resonance (Harper
and Row, Inc. , New York, 1963}.

II. DERIVATION OF THE DIFFUSION EQUATION

The system for which the calculation will be carried
out is a set of E identical particles fixed in space. Each
particle has spin I and magnetogyric ratio p. There are
both dipolar interaction and exchange interaction be-
tween the particles. The system is in an applied magnetic
field 809 that will be assumed to be very large in com-
parison to the internally produced magnetic fields
denoted by 8&„,&. For this case, the nonsecular terms
of the interaction Hamiltonian (that is, those terms that
do not commute with the Zeeman term of the Hamil-
tonian) can be dropped, because the probability of
mutual flips of neighboring spins due to these terms will
be smaller by approximately (Bt„,t/Bs)s than the
probability due to the I;+I; terms. The truncated
Hamiltonian can be written as follows4:

BC—kg+ Xt+Ks )
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For pure dipolar interaction between the particles,

B,;= —2A;; =22p2hr, ; '(1 —3cos28").

r,; is the distance between particles i and j. 0,; is the
angle between the vector r;; connecting particles i and

j and the applied magnetic held Bok
The equation of motion of the spin density matrix

p(t) is

Integrating Eq. (11) from 0 to t yields

stXo i
P(t)=PPP — P(0)+— [P(P'),PC (P)]dP)

0

(13)

8 z—p (t) =—[t)(t),x]. Xexp . &4

The expectation value for the 2,'component of spin
angular momentum for particle k is

(I *(t))=T { (t)I *}.
Therefore,

Using Eq. (14) in Eq. (9), and using Tr{AB}=Tr{BA},
yields

8 (itxp ltXp

(7)
—(I2,(t))=—Tr p(0)expl [X2,I2,]exp
Bt h

8—(I2.(t))=Tr
Bt

ap(t)
Iks

ri y2 ' ri (t t')x, —
+ I I

Tr [)2(t'),X2] expl [X2,I2.]kaj, '
t

z
=-Tr{[t(t),x]I„}.

h

i(t—t')x,
Xexp

l

— dt'. (15)
a

Letting t t'=r, and—using the identity Tr{[A,B]C}
Since Tr{AB}=Tr{BA},Eq. (8) may be rewritten as =Tr{A[B,C]},as well as the fact that Xo commutes

with Iz„yields
Z—(I2,(t))=—

Tr{ p(t) [X,I2,]}

=—Tr{p(t)[X2,I2*]}

2 A' T {t(t)(I I-—I~+)}.

Equation (9) shows that X2 contributes directly to
the spin-diffusion process, while X~ does not. The spin-

diffusion process would vanish if 3'.2 were zero.
In determining the evolution of the spin-density

matrix p(t), the terms Xo=x,+Xq of the Hamiltonian
can be handled exactly. This will now be taken ad-

vantage of by going into the interaction representati, on

that removes Xo from the Hamiltonian. The spin™

density matrix p(t) in this interaction representation is
related to p(t) by

P(&)=P P(" ')P(OP P(
—" ').

The equation of motion for p(t) is

8—&I .(t))=- T {p(0)[x (t) I .]}
Bt PL

2 t

+l — Tr{t)(t—r)[x2,X,(r),I2,]]}dr. (16)
ka

The formulation of the problem of determining

(8/Bt)(I)„(t)) is exact for large Bo. We do not know the
exact form of the spin-density matrix, so we shall have
to make what we hope is an intelligent guess about it.
Without any loss of generality we may assume that at
time zero

ykBp Ii,
p(t)] =o= p(0) =exp

T, (0)

yM30 Ii,
Tr exp — P;, (17)

k T,(0)

where T,(0) is the spin temperature for particle i at
time zero. It will be asslmed that as t~ , the spin

system eventually attains an equilibrium state where

the spin temperature for all the particles is the same and

is equal to T. Then the infinite time-density matrix,
denoted by p(~), is given by

where

8—t (t) =-[t (t),X2(t)],
Bt A

~11~ ( yt2Bp I;,
t (")=expl—

2'

2txp) ( itxo
x,(t) = exp Ix, expl-

32i k a
(12)

y&~o
Tr exp —;— . 18

k T
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Assuming X2=0 for the moment, so that X=Xp, the
spin-density matrix p(t) would be time-independent since
for this case

ZtBCp ztBCp

p(t) =exp p(0) exp — =p(0) . (19)
k

We may then argue that, by making 3C2 small enough,
the spin-density matrix can be made to evolve as
slowly as we wish. It would be reasonable to assume that
for x2 small enough in comparison to xi the spin-
density matrix develops as a quasistatie dertsity matrix
(that is, the spin system is very close to local equi-
librium, and the local properties of the spin system are
describable by a local spin temperature). The spin
density matrix, denoted by pD(t), for these assumptions
is given by

ykBp Ii,
po p) =exp(—

T;

yhBp Ii,
Tr exp —;—,20

k T;

where T; is the spin temperature for particle i and is
time-dependent. pn(t) contains only diagonal terms,
which seems to be a reasonable approximation for
small enough Xp. Since prt(t) commutes with Xp,
pD(t) = pD(t). Let us write p(t), the spin-density matrix
in the interaction representation, as pD(t)+Pp(t), where

pp(t) generates only off-diagonal elements. Since p(t)
satisfies Eq. (11), and since [p&(t),X2(t)] has only off-

diagonal elements, then to first order in Xp(t), the value
of pp(t) is given by

Z)3 t t

,=o , =o
Tr{pD(t—r —r')C p(r', r)dr'dr,

(2&)

(28)Cg(t) = [Xp(t),Ip.],
Cp(r) = [Xp,[X,(r),Ip,]5

= [X&,cg(r)], (29)

fir Xp
C, (r,r') = Xp, expl [Xp,[Xp(r),Ip,]]

ir'Xp
Xexpl—

li Xp f ir Xp)
XQ exp Cp(r) expl ——

l
(3o)

a )

Ct(t)= P A,phI~I& L (t)
i(i&k) k, i

—Hermitian conjugate, (31)

The terms C~(t), Cp(r) and parts of Cp(r, r') have been
evaluated by us only for I=-,' because the commuta-
tors are greatly simplified for this case. The calcula-
tions for I& 2 should not yield a final result that divers
greatly in form from the case of I=—,'. As an example of
the technique used to evaluate the C's, the evaluation
of C, (t) is carried out in Appendix A. We have also
carried out the evaluation of C&(r) completely and list
the results below. Only those terms in Cp(r', r) have
been evaluated that make a nonzero contribution to tp.
These are denoted by cert(r, r') and are also listed below.

app(t) i
=—[pD(t),X,(t)],

Bt Ps i(iQk) k, i

c,(t) =c,'(t)+c,"(t)+c,"'(t),

c,'(t)= P A, ,'tP(I„—I,,) L (t)

(32)

pp(t) = pp(0)+
IE,

Lp (t'),X (t')]«' (22) +Hermitian conjugate, (33)

p(t)—=p (t)+- [pn(t ),X (t —t)5« .
p

(23)

Inserting the above form for p(t) into Eq. (16), letting
7'= t—7 —t', and rearranging terms yields

(8/at)(I„, (t) )= f.,+(,+g„ (24)

pp(0) may be set equal to zero without any loss of
generality. Transforming back into the laboratory
representation, the density matrix p(t) reduces to

Cp" (t) = Q A, k'{ttQ ( A,gp I~[2I;,—
i(iQk) y(@&i,k)

Xcos(Bp~ B;„)t+isin(B—p„—B,„)t]
+A pQ,+I~[2Ip, cos(Bp„B;~)t-
+i sin(B» —B;„)t]) L, (t))

k i(7'&s)

+Hermitian conjugate, (34)

Cp"'(t) =i Q A,ph'I~Ip
i (ice-'k)

where x{ A „p(Ip+Itt= Ir-Ip+)

S.=(i/h)»{p (o)c (t)),
1 2

Tr{pg)(t r)cp(r))dr, —
p

(25)

(26)

u, e(u&~»&k)

X [sin(Bp, +B;p—B;p—B»)t] L (t) )
k, i(i&a, a)

+Hermitian conjugate, (35)
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Cgn(r, r')=i Q L Q O'A;iA), „A„;
i(iYk) It (qadi, k)

In the above expressions

(t) = II exp/i(B, —B,;)I;,tj

&&(U .',.(, ) (I.*—I**)+V,'. (, )(I"—I .)j.
(36)

wll el e

k, i k, i

(L.„(.))=T (n";(t-.)L(.))
k,i

(I'.(t)) = I'r{p '(t)I-)

(G~, '(r)) = l((L (r))+(L (r))*),

(45)

(46)

i(jap go ~ ~ ) 7'~(k, i, s.~, " )

tg(k, i, y, g)
(cos (Bk„B;;—)t+2iI;.

= 1I(o(B —B')
yak, i

&&sin(B),;—B;,)t). (37)

k and i appear as subscripts for the 8's, and j is a
running subscript that covers all the particles except
k andi and any others listed as subscripts to L. Also

+2i(I;, (t r) ) —sin (B)„—B;;)r), (47)

«..„,(, »=T (rr.-;«-.—.)U..;.,(...)), (4g)

(V/g ' (r)r ))= Tl (g pi)t(t r r ) Vk, j, , y(r)r )) . (49)

U~. '.n(r, r')=( L (r)L (r')+ L (—r)L(—r'))
k, iUgy) k, i(gy) y, i

Xsin((Bi~ —B,~)r), (38)

V) „,,(r, r') = ( L (r) L (r')+ L (—r) L (—r'))
k, i(j'Qy) k, p k, i(tlap) k, y

)&sin((B„„—B;„)r) . (39)

The evaluation of the traces listed in Eqs. (25), (26),
and (27) is perfectly straightforward. The pD(t) listed
in Eq. (20) may be written as

pD(t) =II pn'(t),
i=i

(40)

yhBOI;, —ykj30I;,
pD, (t) = exp — Tr, exp, (41)

kX"; kT;

where Tri means that the trace is only to be taken over
spin-wave functions for particle i. Using Eq. (40) and
wave functions for the system of particles that are
products of spin-wave functions for each of the par-
ticles, the various traces can be written as the products
of traces, each trace being over only the wave functions
for a single particle. The only terms that end up having
traces different from zero are those of terms Cq'(t)
and CD (r,r'). We thus find

pi=0, (42)

A;iA )„„A„,
i(igk) y (pAi, k)

P((I *(t—r —r'))

(p=2 Q A ).2 ((I (t—r))
i(igk)

—(I),.(t—r)))(Gi;(r))(tr, (43)

Let us examine the behavior of (L)...(r)) in Eq. (47)
for the temperature T; high enough for all j that
(I;.(t—r))«—,. Each term in the product in Eq. (47)
has a maximum value of 1 and a minimum absolute
value of 2(I,,(t—r))«1. For r=0, (L)„(r)) equals one.
Because the 8's have an infinite range of values for an
infinite size crystal, very few of the terms in the product
in Eq. (47) are 1 for r)0 and (L)„(r))(1for r)0. In
particular, for r on the order of several T2's (where T2
is a crude measure of the transverse relaxation time of
the absorption line), many of the terms of the product
are quite close to zero and (L&.,(r)) is very small. Thus,
(Li;(r)) —+0 as r —& ~, becoming negligible for r on
the order of several T~'s. Thus, from Eq. (46), we see
that (Gi, ;(r) ) is a function that has a value of 1 for 7 =0
and falls to zero rapidly for 7. on the order of several
T2's. The same arguments hold for (U), ...„(r,r')) and
(V),,;,„(r,r')) except that, because of the sine term,
they have a value of 0 for ~=0 and fall to zero rapidly
for either v. or 7.' on the order of several T2's.

The assumption will now be made that (I,,(t—r))—(Ii,(t—r)) varies slowly in comparison to (Gi„(r))
in the region where (Gi;(r)) is large (the region near
r=0). This assumption is equivalent to assuming that
the s component of magnetization for spins i and k

does not change appreciably in time T2. For such an
assumption,

t

h—:2 2 A*k'L(I*.(t))—(I)t.(t))] (G'*(r))dr (5o)
i(iWk)

for t)&72. The value of the integral is almost independent
of t because (G;),(r)) has fallen to such a small fraction
of its original value by the time t»T&. Then the upper
limit may be replaced by infinity without changing the
value of the integral very much, and

h:—2 2 A;a'Fa;L(I*. (t))—(I~.(t))3, (5 )—(I;.(t—r —r')))X(U~„,, (r,r'))+((I„(t—r —r'))
where

—(&.(&
——')))(r '.(, '))I~ & '), (~4)

i(iWk)

(G)„(r))dr. (52)



156 0 ENSI TY —MATR I X D E Rl VAT ION

The same arguments may be used to evaluate $k.

The terms (Uk, ;,~(r,r')& and (Vk„,,(r,r')) are not as
sharply peaked as (Gk, ,(r)) and have a sine function in
them that ensures their being zero for r=0. However,
these two functions do peak within the region of
0~&r,r'&T2, so that for the case where (I„(t—r—r'))
varies only by a small amount over the time interval
T2, and for Q&T2

A, A „A„;L((I„,.(t)&—(I;,(t)&)V„,;,„

dropping third- and higher-order derivatives yields

A* A.A„I Vk„,,l 2 (I,(t)&l.
i((Hk) p(pW~, k) k (a=1 i)Xa

X(xk„—xk; )

3 82

+ l r. (&.(0) I ~(* .* .'—* ' ~ "))
, P-& Bx Bxt'

i(igk) p (ppi, k)

where
+((I.*(t))—(I .(t)&)Z.„.j, (53)

3 ()
+~k.', p (I*(t))I kxkn

a 1 ()x~

Ya, i y=
=0 v' 0

(Vk, ,(r,r') )d rd r', (54)
3

+l 2 (I.(t)&l x"* '
l l

(58)
~, c=~ 8x Bx& ~)

~0 r'=0
(Vk,;,„(r,r') &drdr'. (55)

Let us define (I,(t)) as a continuous function of
spatial variables such that when evaluated at lattice
site j, it is equal to (I;,(t)). Carrying out a Taylor
series expansion of (I,(t)) about the kth lattice site and
then evaluating the results at position j yields

For a lattice that has inversion symmetry, there exists
a j and an / for every i and p such that A;kAkiAi;
=A;I,A ~„A„;, Y~; ~

= YA, ,„, and Z~; ~= Z~;„, @awhile x~;
= —xI,i and xl, ~

———xI,„.For such a lattice, the sum-
mation over i and p of the first term on the right-hand
side of Eq. (58) vanishes. Substituting Eqs. (42),
(57), and (58) into Eq. (24) and taking

3

(I (')&=(Ik ('))+ & (I (t)) I
»»'

a 1 Qx~

Bx Bxt'

outside the summations over i and p yields

(I.(t) & I,x.,-x„Py, (56)
~ &=~ Bx"Bx~

where xkta is the n coordinate (n=1, 2, 3) in an arbi-
trary Cartesian coordinate system for r», and

82—(I*(t)&I.=Z D' (I.(t)&l. ,
Bt " t' Ox~Ox&

where

DaP —D aP+D aP

(59)

(60)

(I (t)) Iax-
'

is the partial derivative of (I.(t)) with respect to xa,
evaluated at lattice site k. Substituting Eq. (56) into
Eq. (51), and dropping third- and higher-order deriva-
tives, yields

3

)2=2 p A;k'~k;(2 (I,(t)&lkxk;
i(i~&) ~)'-& BX"

D2 Q A jk Pkjxkg xkj
i(igk)

(61)

Equation (59) is the desired equation for spatial dif-
fusion of spin magnetization. D2 I' is the contribution
to the diffusion constant from the $k term, and Dk P

is the contribution to the diffusion constant from the
f(( term.

Dk P= ', Q Q A,-kAk+„;
i(iWk) p(qadi, k)

X )Vk,„(xk„xk„p xk, xk, p)+A;g—xk~"xk~ pj. (62)

(I,(t))lkxk; *k ). (57)
~ P=~ Bx Bxt'

It will now be assumed that the particles are located in
a lattice that has inversion symmetry. Then, for every i
there exists a j such that A;k ——A;&, F;&——F;I„and
xI,; = —xI,; . For such a lattice, the summation over i
of the first term on the right-hand side of Eq. (57)
vanishes. Substituting Eq. (56) into Eq. (53) and

III. EVALUATION OF THE
DIFFUSION CONSTANT

To evaluate D2 &, we Grst need to evaluate PI,i listed
in Eq. (52). As mentioned in the previous section, for
(I;,(r))«-'„ the function (Gk, ;(r)& is a very rapidly de-
creasing function of time, falling to a small fraction of
its initial value for v on the order of T2. The main con-
tribution to the integral comes in the region of small v

vrhere the sine terms do not change the value of
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(G,L(r)) very much for (I;,(r))«-,'. Thus we may
approximate F&, by

i(i&i, A')

cos[(8»—8;;)r]dr . (63)

~~, '=2 & (8»—8'/) ~

j(i&i,&)

(64)

Both the Gaussian and (G/„(r)) have a value of 1 for
7-=0. Both are quadratic in v. , and have the same coeffi-

cient for ~2, and thus the same behavior for small v..
The contribution to the integral of the Gaussian func-

tion for large v is very small. The value of Ii &; using the
Gaussian approximation is

For a lattice with inversion symmetry, there exists an
l for every j such that BJ,&=B;;and B;&=Bj7:.Thus, the
product of cosines is always positive. One would expect
that any function that approximated (G/„(r)) for small

r and went to zero rapidly enough that the contribu-
tion to its time integral was small in the region of large
r would give a fairly accurate value of FI,;.One possible
and convenient function is the Gaussian exp( —Aq, r'),
where

Approximating the cosine part of Eq. (70) by a,

Gaussian function,

(U/, ...„(r,r') ) 2sin—[(8~„—8,„)r]
XexpL —(er2+f'rr'+/f/r")], (71)

where

~= 2 2 (8»—8')',
j.~(J, ', 2 )

(8'—8') (8' —B.),
jg(a, ', j )

(72)

(73)

j&(k,;,y)
(8.,-8,;)'+ ', (8,.—8-,')'. (74)

The Gaussian function has decayed to a very small

fraction of its initial value by the time the argument of
the sine function is near m/2. Thus, in evaluating

V/, ; „listed in Eq. (54), we may replace the sine func-

tion by its linear approximation, and

The evaluation of D3 /' is similar in technique to that
just carried out for D2 /', but the details are much more
messy. Again using (I;,(t—r —r'))«a, and dropping all
sine terms that add to cosine terms,

(U', ',.(, '))=2 ' ((8"—8'.) ) o ((8"—8') ')

II cos((8 —8') + (B.—8') r') (70)
j(jzi, /, &)

2
—I/2

(B~—8'/)'
m j(iHi &)

(8»—8,;)'= Q (8»+8' )—2 2 8»8„

F.„,.=2(8~. 8;,)—
Xexp( —(er'+t rr'+yr"))drdr', (75)

j(i» &) i(i~i, /c) i(j~i, &) I /2

j(jgi, k)

I'I,
, ;,~=

8/g +. g B,g . (66) $//&(4(gy)//2+ 2f')
i(i«Jc)

(76)

For a lattice where all the sites for the particles are

equivalent, the sums in Eq. (66) are independent of i
and k and

If one now assumes that g,„//, , ; „/ 8»8;;=0, and that
all lattice sites for particles are eqiuvalent, V&, ;,„may
be reduced to the approximate form

—1/2

F/, = -( Z Ba')
x' i(i&i.&)

(67)
I'k =~'"(Bk —8 )( p Bk') '"

i(i» &)

I//, ; as given in Eq. (63) has been evaluated exactly for

a simple cubic lattice, using a computer to evaluate the

integrand and then integrate it. The computer results

differed by only a few percent from the value of I'I,;
obtained from Eq. (67). From Eqs. (61) and (69), we

find
&I/2

D /'= — Q A /'x/ 'x/ /'( Q 8»2)-'/2. (68)
i(ill~, )

Summing over k a,nd dividing by N (the number of

particles in the system) yields the symmetric form

X(—8;.'+3 Z B.,')-'. (77)
j(jgi, k)

The same evaluation procedure, when applied to ZJ, ,; „,
shows it to be equal to I'I,„,„.

Inserting the results of Eq. (77) into Eq. (62) yields

A,Q /„A;„(8/,„8;„)—
'(;g/) j (~», r )

X(2x/, „x/, ~ x/. 'x/, a)( p —8/, ') '"
j(j.gi, r )

X ( 8, '+28//+3 —Q 8»x) '. (78)
j(j&i,k)

I /2

D ~// — ~ A. & .~z //( x 8 n —.//2 (69) For the case where all the particles are equivalent, one

2N /w& /'(/'wi, /') may sum Eq. (78) over all particles by summing over
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all k and then dividing by E to get a more symmetric
form of D3 /'. Dropping 8,„' from the last product in
Eq. (78) and averaging this result with D3 ~ for i and
k interchanged yields

together, there are very few particles betmeee particles
i and k that are near i and not near k, or near k and
not near i. Thus, assuming that all the particles are
equivalent, one has

&X/2

D3 s ——p Q A;AiQ;, (B» B'p—)
2g igk y(hagi, k)

X(x» x»s x,„—x,„s)( Q Bgg) '"
j(jHi, k)

pgi, k
(p near i and
not near k)

A'P'n+ 2 A ~P»
pgi, k

(p near k and

A;Q;„, (81)
p(p»)
(p near i)

X (2Bi'2+3 Q Bi,2) ' (79)
j(jgi, k)

and independent of i. Recognizing the first term in
Eq. (80) as D2 &, we find

Xky Xlcy Xi@ Xi@ Xki Xki ~

For particle p much closer to k than it is to i,

3;„=Aik,

&ky —&;,=&k„
xk~ xk„/' —x;„xi„/'= —xik xikI'.

Using the above approximations, and replacing
BIP+3 g—;o~i& Bij by 3+,o&i,& Bi, reduces the

formula for Da s listed in Eq. (79) to

2 k'Xk Xk l'

2& ', ~i'~i) .( B„P+ P B&,')'—~'

j(jWk)

~ in~i~+
p», k;
p near i,

and not near k

A~,B»
p&i, k;
p near k

and not near i
. (80)

The main contribution to the summation over i and
k will come for particles i and k close together, because
of the factor A;k'xk;"xk;&. For particles i and k close

IV. COMPARISON OF D / WITH D

To compare D3 /' with D~ /', some crude approxi-
mations to simplify D3 /' will be made. Both A;& and
8;& decrease very rapidly for increasing r, &. For dipolar
interactions, for instance, they are both proportional to
r;i ' Theref. ore, in Eq. (79), the main contribution to
the summation over i, k, and p should come from those
sets of particles, taken three at a time, that are close
together. Further, in summing over p for a given pair
i and k, the particle p must be much closer to k than to
i, or vise versa, in order to have that term of the sum
make an appreciable contribution, because of the multi-
plying factor (B» B,,)(x» x»—& x;~ x,„s) —in Eq.
(79). For particle p much closer to i than it is to k,

~kg ~ki )

&k~—&'~- —&'p,

j(j&k but
near k)

Bi,2
j.(j&k)

(82)

D3 & is much less than D~ /' for two cases. The first
is where A&„ is larger than or equal to B» for p near k,
but, because Ak„has a much shorter range than Bk„,
the fraction in Eq. (82) is still much less than 1. The
second case occurs for ! A»/B»! =q«1. Then
!D3 s/D2 i'! &q«1. For dipolar interaction, A,,=—gB;j') and

j(j&k but
near k)(D nP 1

&Dg s dipoiar 6 Q Bag 6
j.(j&k)

(83)

Thus, for dipolar interaction, the Da /' term contributes
something like 15% of the D2 ~ term to the diffusion
constant D. Considering the crude approximations
made in evaluating D3 & in this section, this estimate
might be off by a factor of 2 in either direction.

V. EVALUATION OF D FOR A SIMPLE
CUBIC LATTICE

Considering the status of experiments where spin
diffusion is involved, a knowledge of the diffusion con-
stant to 50% is more than adequate. Thus, only D2 s

will be evaluated here since we have shown that for
dipolar interaction, D3 /'&D2"/'. The evaluation of
Da & is also straightforward, but somewhat tedious.

Equation (69) shows D2 & to be a symmetric second-
rank tensor and to thus have six different terms. It is
obvious that D2 ~, for n&P, will be much smaller than
D2 ~ for n=p regardless of the orientation of the xi,
x&, x3 Cartesian coordinate system relative to the crystal
axes. For a simple cubic lattice, the case for which the
calculation will be carried out here, if the x~, x2, x3
coordinate system is chosen to be the cubic axes system,
D2 ~=0 for n/P when the applied magnetic field Bo
is parallel to a cubic axis. The case of nNP will not be
considered any further. Also, we shall define an average
diffusion constant D2 as ', (D2"+D2-"+DP). Thus, -
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TABI.K l. Average diffusion constant Dj for a simple cubic
lattice for three different directions of the applied magnetic 6eld.
u is the distance between nearest neighbors.

Direction of 8,

L100/
[110$
L1113

0 y6&aAu
—I

0.j.ky'Au '
0.14+hu '

from Eq. (68)

I

D~= -- Z &;i,'rsP( g Bi, ') '"
i('Wk)

Using the above formula, D2 was evaluated for a simple
cubic lattice for three different directions of appbed
magnetic field, and the results are listed in Table I.
Using the numbers in the table, we find for instance
that for calcium Auoride, where for the Auorine nuclei,
a=2.725 A and y=2.51X10' rad/Oe sec, the com-
puted value of D2 for Bo in the L111] direction is
3.4X10 " cm'/sec.

Vf. DISCUSSION

The expression for D2, listed in Eq. (84), is similar
in form to Bloembergen's' diffusion constant, but has a
slightly different value. The difference arises because
Sloembergen, in carrying out a erst-order perturbation
calculation of D, used the full second moment of the
xesonance line shape to compute his transition prob-
abilities. Since he used the X2 listed in Eq. (4) as his
perturbing Hamiltonian, he should have used the X~
in Eq. (3) as his zeroth-order Hamiltonian. By using
the second moment of the resonance line shape, how-

ever, he actually used a zeroth-order Hamiltonian of

fol spin-g paitlcles, [I,gIgg, I,+Ip +I(My+]= 0 alld tile
I;,Ik, term of the interaction Hamiltonian does not
aBect the g g to g t transitions for particles i and k,
produced by the I;+Ii, +I;Mi+ term of the interaction
Hamiltonian. Comparing our results with erst-order
perturbation theory, one can add the additional insight
that the source of the difference of 8,, and 8;; in
Eq. (65) in computing a line shape is that it is not the
value of the local field at sites k or i that affects the
transition probability, but the dg"ererlce in values at
sites h andi, averaged over all deaf'ereeces, that should. be
taken into account. Only when the cross term in Eq. (65)
is zero, can one really ignore this fact.

At the present time, experiments carried out on sub-
stances where spin diffusion exists have so many sources
of inaccuracy that their results cannot be thought to
check the value of D to better than a factor of 2 to
3. Within this limitation, the results for D2 com-

puted in the previous section is consistent with experi-
mental results.

Ci(1)= LXg(/), Ii,]
itXp —itXp

= exp — [X2,Ii„]exp; (A1)

A;j.h
L~2)I~.]=2 — C~'+Ii +I' I~+ I~.]--

iwj 2

=h Q A;I, (Ip I;+ I(,~I; ). —
i(i4k)

(A2)

Since all terms in X~ commute,

APPENDIX A: EVALUATION OF Ci(1)

Ci(1) is defined as Eq. (28). Using the facts that
LX„X,]=PC„X2]=PC, ,II„]=0,we find that

hg (B@—A;i)I;,Ii, . it3Ci)
exp i=+ exp(itB&iI&&It~) .

h)
(A3)

For dipolar interaction, this zeroth-order Harniltonian
is 1.5 times larger than the one he should have used to
carry out a consistent first-order perturbation calcula-
tion. An additional correction factor appears in Kq.
(84) because the term B;&' does not appear in the term

Q;0&, J,~ Bi,P. Th. is just corresponds to the fact that,

Inserting Eq. (A2) and Eq. (A3) into Eq. (A1) and

using the fact that all the exponential factors that do
not contain particle indices i and k may be passed
through (Il, I;+ II,+I; ) and com—bined with their
inverse~ we find

Ci(1)=h Z ~'~exp'»&(I, . Z B;;I,.+I~. 2 B;d;.+B;~I;.I~.)](I~~;+ I.+I,)—
i(iWk) j{jgi, k) j{jg', k)

XexpL —2it(I;, P B;;I;,+Ii,. g B,iI,.+BgI;,Ii,.)]. (A4)
j (j&i,k) j{j~',k)

Using the identities

exp(i'. )I+ exp( iyI, )=I+ exp(iy), —exp(i', )I exp( —i', )=I exp( iy), —



DENSITY —MA I'RIX DERIVATION

Eq. (A4) may be reduced to

Ct(t) = h Q A;sI;+ exPL2i)B;s(Is, —I;,)7II, II exP(2ii'I;, (B;,—Bs,))—Hermitian conjugate. (A6)
s(igk) j(jW', k)

For I= „th-e only case considered from now on, one may use the identity in Eq. (A7) to simplify Eq. (A6).

exp (i', ,) = cos (y/2)+2iI;, sin {y/2) .
The final result is that

{A7)

Ct(t) = ls g A;sI;+Iq II exPfi(Bs; B—;,)I;,t7 H—ermitian conjugate.
'('gk) j(jets, k)
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Optical Properties of Zinc Telluride*

R. E. NAHORv AND H. Y. I AN
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The optical absorption of ZnTe single crystals grown by the II'ridgeman method has been studied from
visible wavelengths to 50 p, at temperatures from 1.4 to 300'K. Lattice combination bands are observed from
which assignments of zone-boundary phonon energies are made: LQ =TO =22, LA=16, TA= 7&10 ' eV.
The temperature dependence of the absorption is discussed. Absorption due to inter-valence-band transi-
tions has been observed, which indicates the presence of two bands degenerate at k =0 and a split-off band
lying 1 eV below. Infrared absorption is observed for As impurity in the range 0.05 to 0.1 eV and for a
residual impurity in undoped material, probably a zinc vacancy, in the range 0.1 to 0.9 eV. For each impurity,
absorption due to transitions to the split-oG valence band is also observed near 1 eV. Sharp excitation lines
are seen in the spectrum of the residual impurity. The lines are repeated with emission of optical phonons of
energy 0.026 eV, from which the electron-phonon coupling coefI5cient is estimated. Some structure is ob-
served also in the spectrum of As impurity. The intrinsic absorption edge has been measured at 1.1', 80, and
300'K. The energy gap is determined to be 2.385, 2.3'7, and 2.25 eV, respectively. A tail is observed at the
absorption edge which shows the ef'feet of various impurity levels in the undoped material and in the samples
doped with As, In, or I"e. In two samples grown from the vapor phase, some sharp absorption lines are
present in the range 2.2 to 2.35 eV. These lines are apparently due to exciton-impurity complexes.

I. INTRODUCTION

~ ~

~

INC telluride is a II-VI compound semiconductor
~ with zinc-blende structure. Undoped ZnTe turns

out to be P type. n-type material with very low carrier
concentration has been obtained in highly compensated
form, in particular with In doping. It has been suggested
that zinc vacancies acting as double acceptors give rise
to self-compensation. ' '

The energy gap of ZnTe has been estimated to be
2.1—2.3 eV from room-temperature optical measure-

ments. ' ' From low-temperature studies of oscillating
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photoconductivity and optical behavior near the ab-
sorption edge, wc have obtained values of the carrier
effective masses and the energy gap at 4.2'K: m.
=0.09m, my, y, =0.6m, E,=2.385 CV.~ The structure of
the valence band is expected to be similar to that of
the III-V compounds. Piezoresistance data' are con-
sistent with such a model. Absorption bands have been
observed near j. eV in crystals doped with various im-
purities, ' '0 and these bands were attributed to transi-
tions bctwecn thc llTlpurlty lcvcl and thc split"off
valence band.

We report, in this paper, studies of optical absorption
over a range from the visible region to 50 p. The mea-
surements were made at. temperatures between 1.4'K
and room temperature. Absorption bands of lattice
combination modes were observed in the region between
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