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model used in these analyses, Q has been assumed to
remain aligned parallel to the field even as the field is
lowered to zero. This assumption is certainly open to
question. %e suggest that a more de6nitive test of the
SDW hypothesis might be possible if this experiment
were repeated with a q/ value of the order of 50 and a
derivative technique used.

Some of the general features of the attenuation at
oblique angles are worth emphasizing. As has been
pointed out by Kckstein, at high ql, the position of the
Doppler-shifted. cyclotron resonance edge gives a mea-
slllc of (% c,)~g„, where Bs ls thc cpclotlon effective
mass. An additional point emphasized by Eckstein, '
applicab1e to materials in which s,/cg is an order ot
magnitude larger than in simple metals like potassium,

or in which q/ is very large, is experimentally useful.
This is the appearance of double edges. The observa-
tion of double edges facilitates the identi6cation of the
edge position, and allows both m* and (v,),„ to be
determined independently. Finally, we note that al-
though the geometric resonances associated with non-
extremal orbits can, in principle, be used to map out
the Fermi surface, in practice, it appears that this will

be very di@.cult.
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We introduce a model of a substitutional alloy based on the concept of an effective or coherent potential
which, when placed on every site of the alloy lattice, will simulate the electronic properties of the actual
alloy. The coherent potential is necessarily a complex, energy-dependent quantity. We evaluate the model
for the simple case of a one-dimensional alloy of 0-function potentials. In order to provide a basis for com-
parison, as well as to see if a simpler scheme will su%ce, we also calculate the spectrum of the same alloy
using the average 5-matrix approximation introduced by Beeby. On the basis of these results, we conclude
that the average t-matrix approximation is not adequate for the description of an actual transition-metal
alloy, while the coherent-potential picture will provide a more reasonable facsimile of the density of states in
such an alloy.

I. INTRODUCTION
' 'HE work reported here was stimulated by an

attempt to find a reasonably simple and numeri-
cally tractable formalism for calculating the electronic
structure of a metallic alloy. YVe desired a scheme
whereby the density of states and the position of the
energy bands could be determined.

At present very little is known concerning the elec-
tronic spectra of real alloys. There is, however, a great
deal of inforniation on the spectra of hypothetical one-
dimensional alloys, ' ' most of which is quite discourag-
ing to someone attempting to 6nd tractable formulas
for the density of states. In the simple case of a one-
dimensional alloy of 8-function potentials the density
of states is extremely irregular, ' possessing 6ne structure
over energy intervals of the order of a few percent of

' J.M. Luttinger, Phillips Res. Rept. 6, 303 (1951).' A. M. James and A. S. Ginzbarg, J. Phys. Chem. 57, 840
(195').

'R. Landauer and J. C. Helland, J. Chem. Phys. 22, 1955
(1954).' R. L. Agacy and R. E.Bor1and, Proc. Phys. Soc. (London) 84,
1017 (1964).

typical bandwidths. This is to be compared with the
structureless density of states function for an ordered
lattice of 6 functions. It is not likely that simple formulas
can be devised to yield the alloy spectrum in detail.
Our aim, therefore, was to 6nd expressions which, when
applied to the one-dimensional case, would electively
average the exact density of states over energy intervals
suKciently small so that gross distortions were not
introduced into the spectrum. From this point of view,
the better the formula, the smaller the energy interval
over which it yields an average of the exact density of
states. In accordance with this view, we will compare
the approximate calculations of the cumulative, rather
than the differential, density of states with the results
of exact calculations.

The exact results to which we refer are necessarily
for a one-dimensional crystal. The problem of calcu-
lating the spectrum of such an alloy has been extensively
treated in the literature' ~ and we will not dwell on it
further except to say that the explicit numerical results
for the cumulative density of states used for com-

~ H. Schmidt, Phys. Rev. 105, 425 (1957}.
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II. CHARACTER OF THE SPECTRUM OF A

ONE-DIMENSIONAL SUBSTITUTIONAL
ALLOY

The spectrum of a one-dimensional substitutional
8-function alloy has been discussed at great length in

many places. ' ' Since we apply various approximate
formulas to the one-dimensional case, it is useful to
briefly summarize several results. Consider an alloy

composed of two different types of atoms, denoted by
A and B, and assume that pure crystals of A and B have
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FIG. 1. A schematic representation of the lowest band of a
one-dimensional alloy of 5-function potentials. The different types
of atoms are denoted by "A" and "B."

5' J. Korringer, J. Phys. Chem. Solids 7, 252 (1958).
' J. L. Beeby, Phys. Rev. 135) A130 {1964).
7 F. Yonezawa, Progr. Theoret. Phys. (Kyoto) 31, 357 (1964};

F. Yonezawa and T. Matsubara, ibid. 35, 357 (1966); 35, 759
(1966).

parisons in this paper have been calculated, using the
distribution-function method of Schmidt, ' and are
accurate to about 1%.

Aside from being able to yield a good average to the
density of states of a one-dimensional alloy, we require
that the formulas be tractable in three dimensions as
well. The averaged t-matrix approximation introduced

by Korringer" and Beeby' has this property; and since
it is an approximation of the same general character as
the one introduced here, we will consider it in some
detail below. A different approach to the problem has
been taken by Yonezawa and Matsubara. ~ They sum a
selected class of terms in a perturbation series for the
alloy Green's function. Their series of papers is not yet
complete, and we will not consider their approach be-

yond saying that their work is a more systematic, as

opposed to intuitive, attack on the alloy problem than
the coherent-potential approximation to be presented
below.

The paper is divided into several short parts. In
Sec. II we beieQy sketch the general properties of the

spectrum of a one-dimensional alloy of 8-function poten-
tials, in preparation for the following sections. The
averaged t-matrix approximation is reviewed and

evaluated for the one-dimensional case in Sec. III. In
Sec. IV we introduce and in Sec. V we evaluate, again
for the one-dimensional case, what we call the coherent-

potential model of an alloy. Our conclusions are pre-

sented in Sec. VI.

bands which would overlap if superposed. This is
illustrated schematically in Fig. 1. It has been shown

by Luttinger' that an alloy of A and B can have no
states in a region of energy simultaneously forbidden to
pure crystals of either type. Furthermore, the fact that
there is always a finite probability of finding a suK-
ciently jong string of atoms of either type indicates that
the alloy has states in any region of energy allowed to
either or both crystals of the pure type. Thus, the alloy
spectrum is as illustrated in Fig. 1.

The above arguments merely tell us where the density
of states is nonzero; they say nothing about how large
the state density is in any particular region of energy.
Landauer and Helland' have noted on the basis of
numerical results that there are regions of energy where
the state density, although strictly speaking nonzero,
is nonetheless negligibly small. They characterize these
as "almost forbidden" energy regions. It is clear that
for finite concentration of both constituents there will

always by an almost forbidden region suKciently near
the lower band edge of the lower-lying pure material
band (the left-hand side of the pure-A band ot I'ig. 1)
and also one near the upper band edge of the higher-

lying band. In general, such regions can also exist within
the middle of the band, producing nearly perfect band
gaps where none would be expected on the basis of the
simplest Quctuation argument. The existence of these
almost forbidden regions of energy leads us to define
an effective band edge, " which denotes the boundary
between a region where the density of states is large and
one in which it is sensibly, though not exactly, zero. It
is clear that any formula useful for describing the
spectrum of a real metallic alloy is only required to
predict the effective band edges when it is applied to
the one-dimensional case.

III. AVERAGED t-MATRIX APPROXIMATION

In this section we test the validity of the averaged
t-matrix approximation. ' ' It has already been shown

by Beeby' that the general formulas resulting from this
approximation may be formally evaluated in three
dimensions, while Soven' has shown that with some
further approximation numerical results may be ob-
tained. All that we propose to do here is to determine
the accuracy with which the model predicts the spec-
trum of a one-dimensional alloy.

A complete discussion of the approximation has been
given by Beeby, and we will merely outline it here. We
first define the notation used here and in Sec. IV. We
denote the outgoing-wave free-election Green's function
and the exact alloy Green's function by Go and G,
respectively. The individual atomic potentials are
denoted by ~ and the t-matrices corresponding to them

by t. If either ~ or t is subscripted with a Latin letter or
a numeral, a particular type of atom is denoted, while

~ J.L. Seeby, Proc. Roy. Soc. (London) A279, 82 (1964).' P. Soven, Phys. Rev. 151, 539 (1966).
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a Greek subscript denotes both a site index and the
type of atom at the particular site. Thus, the atomic t-
matrices are dehned by the usual expression

t;= p;+ p;Gpt;,

and the Green's function G is given by

G=Gp+Q Gpt Gp+Q g Gpt GptpGp+ . (2)
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The density of states for the system is denoted by p(E);
it may be calculated by the general formula

p(E) = —(1/m) Im Tr(G), (3)
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where Tr denotes trace over any complete set, and the
angular brackets indicate that an ensemble average is
to be taken.

The approximation that is made is the replacement
of the average of products of t-matrices by the products
of the average t-matrix. One writes

(G)=Gp+Z Gp(t-)Gp+r. 2 Go(t &Gp(tp)Gp+ (4)
a a Pga

and then resums the series in the manner described by
Beeby.

We have applied this approximation to the calcula-
tion of the spectra of a number of one-dimensional
8-function alloys. Here the potentials are given by p,8(x).
The results for one of these alloys is shown in Fig. 2.
For the reason emphasized in the Introduction, we have
plotted the cumulative rather than the differential
density of states. The most glaring discrepancy between
the predictions of the model and the exact numerical
results is the existence of a spurious band gap. This gap,
the presence of which was noted by Beeby, is due to
the fact that by averaging the atomic t-matrices one
is generating an effective "atom" having two closely
spaced orbitals. When "atoms" of this nature are
combined into a crystal, the band formed by either
orbital cannot overlap the band formed by the other.
We note also that the model does not predict either the
position or the shape of the effective band edges. In the
region below the spurious band gap, model does provide
a good 6t to the numerical results, i.e., a re]atively
6ne-grained average of the density of states. We will

see in Sec. IU that this region of energy may be charac-
terized as one of relatively long electron mean free
paths. It is reasonable that the model will be accurate
in its description of relatively spread-out eigenfunctions.
The region of energy somewhat above the spurious gap
will be shown below to be characterized by relative]y
short mean free paths, of the order of one interatomic
spacing. The model was not intended to describe such
states, which are better pictured in terms of a Slater-
Koster" isolated impurity model, and it is no reAection
on the theory that it fails in this region.

' G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954);
G. F. Koster, ibid. 95, 1436 (1954); G. F. Koster and J. C. Slater,
ibid. 96, 1208 (1954).

0 I I I I ~
I t I I . I I I-6 -5 -4 -3 -2 -I 0 I 2 3 4 5

ENERGY (DIMENSIONLESS UNITS)

FIG. 2. The cumulative density of states for a particular one-
dimensional alloy as calculated in the average II-matrix approxi-
mation (solid line) and numerically (circles). The energy is
measured in units of the square of the inverse of the lattice con-
stant and the amplitudes of the 5 function in units of the inverse
lattice constant. The reason for presenting the cumulative density
of states is given in the text. The bands of pure crystals of the
two potentials (at the same lattice spacing) are indicated by the
bars, while the eigenvalues of the isolated potentials are given by
the vertical arrows.

While it is extremely hazardous to discuss the
validity of the model in the three-dimensional case on
the basis of the one-dimensional alloy results, it is clear
that the situation prevailing in the 8-function alloy
considered here is quite analogous to that prevailing in
a real transition-metal alloy. In both cases we have
localized states (real in the one-dimensional case and
virtual" in the three-dimensional one) spreading into
bands of essential]y tight binding character. We would
conclude, therefore, that the model is not capable of
describing real materials, even when the mean free path
is relatively long, because of the introduction of a
spurious band gap. "

IV. COHERENT-POTENTIAL MODEL

A method found useful in the calculation of the
density of states in the impurity-band problem is the
so-called modi6ed propagator technique introduced by
I.ax." In this technique one approximately evaluates
sums of the form of (2) using a modified free-electron

» J. Friedel, Advan. Phys. 3, 446 (1954).
"As the strength of the stronger potential is increased, or its

concentration diminished, a band gap (actually an almost for-
bidden region) does appear in the spectrum. Our point here is
simply that the model inserts such gaps in the spectrum even
when they are not actually present. It should be explained that
for positive energies the model does not predict a true band gap.
But, as argued by Beeby, the band gap present for negative
energies will be changed into a region of extremely low state
density for positive energies. It is one of the shortcomings of the
5-function model that such things as virtual bound states do not
occur, and hence one cannot make a strict comparison with the
situation prevailing in transition-metal alloys.

'3 M. Lax, Rev. Mod. Phys. 23, 287 (1951).



PAUL SOVEN

Green's function or propagator in place of the actual
Green's function. Formally the replacement is

(E—k') ' —+ [E,—k' —p, (k,A)] ',

where m, (k,E), the coherent potential, is a complex
uantlty dcscllblDg thc RvclRgc effects of thc medium.

One then introduces some criterion to determine v, . The
motivation for this procedure is that it is futile to
at tcInpt to descllbc thc Inot1on of RD clcctroD in R

random system of potentials using free-electron Green's
functions unless one is able to solve the problem
exactly. If one takes into account only a subset of terms
occurring in some expansion, then it is necessary to
acknowledge at the start of the calculation that the
electron is actually traveling through a medium, the
pI'esence of which modifies the dynamical properties
of the particle.

This procedure is a useful one when treating a liquid;
it is less useful in the substitutional alloy case, essen-

tially because the off-diagonal components of the self-

cncrgy) of which 'vc Is RppioxlIDRtcly thc diRgonRl part)
are of the same order of magnitude as the diagonal
terms. Physically, one may say that in a liquid one has,
on the average, a uniform system, and hence as an

approximate representation of the system a Green's

function diagonal in momentum is a useful entity. How-

ever, in the alloy case on the average one has a periodic
system, and it is more appropriate to modify the Green's

function ln such a manner that the new quantity has
matrix elements between momentum vectors differing

by the reciprocal lattice vectors of the average periodic
system. We note that our calculation is similar to that
of Vonczawa and Matsubara~ to the extent that they
also maintain the O6-diagonal terms of the self-energy.

Formally the scheme we introduce is quite simple; it
proceeds as follows. At every site in the lattice we place
an as yet unknown potential, which we denote by
vo(x —1) when it is at site 1. The true potentials at the
site 1 are either vi(x —1) or po(x —1). Let Go be the formal
Green's function for the lattice of potentials vp.

Go ——Go+Go( Q po(x —1))Go.

Gp determines the propagation through the as yet un-

determined medium. Relative to the medium, th.e actual

system consists of perturbing potentials v~ —vp and

v2—~p. The t matrix describing the scattering of an
electron which is propagating according to 6p when it
encounters the perturbing potential v;—vp is dehned by

t,= (p;—pp)+ (ri;—vp)Gpt;.

These quantities may be combined into a formula of
the form of Eq. (2) to yield an expression for the actual
Green's function.

G=Co+P Got.Go+2 2 Got.GotpGo+

Ke note that the first correction to Gp is of the fourth
oI'dcr 1n thc t In.atrices.

An equation for pp is easily derived by inserting (7)
into (9). This yields

ci[1 (vi po)Goj ('vi 'Uo)

+co[1—(po —pp)Gp]
—'(po —po) =0. (11)

Making use of the operator identity

[1—AB] 'A=[(1—AB) '—1]B—',

Eq. (11) may be reduced to

pp (&1 &o)GO(~2 po) y (13)

where I is the average potential c»i+copo.
The above is still an exact procedure. Noting again

that the corrections to Go in Eq. (10) for (G) are of fourth
order in the t matrices and that the concept of an
effective medium should be valid for sufficiently long
mean free paths, we make the approximation

(G)—Gp.

The validity of this approximation will be tested
below. Before doing so, we note the following properties
of the theory. It is symmetrical with respect to the two
potentials. As noted by Yonezawa and Matsubara this
is RD csscntiRl 1cquli-cIncnt of Rny theory of nondl/utc
alloys. We note further that the imaginary part of Gp is
nonzero only when vp is complex. This implies that the
states described by the model are always damped,
contrary to the predictions of the averaged t-matrix
approximation. Equation (13) for pp is quite compli-
cated and, in general, its solution will not have the
functional form of pi and po. Equation (13) is, however,
soluble for the simple case of one-dimensional alloys of
8-function potentials, and, as we shall show in a, succeed-
ing publication, for simple but realistic three-
dimensional alloys as well.

V. COHERENT-POTENTIAL CALCULATIONS
FOR A ONE-DIMENSIONAL ALLOY

In Fig. 3 we show the cumulative density of states
as calculated in the coherent-potential model together
with the numerical results for the same alloy used to

Equation (8) is exact. Equations (6), (7), and (8)
together constitute a formal rearrangement of Eq. (2),
with vp being an arbitrary parameter. One way of de-
fining ~p is by the requirement that on the average there
be no further scattering from the perturbing potentials,
i.e., we require that

citi+coto= 0)

where c; is the concentration of the ith constituent.
With this definition, the average of Eq. (8) is given by

&G) =Go++ Q g P (Got.6'otIiGot, Got pGo)+ . (10)
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illustrate the averaged t-matrix approximation. In the
same figure we show the coherence length, defined as
the inverse of the imaginary part of the poles of the
Green's function 6'o in the complex momentum plane. "
The coherence length is of the same order of magnitude
as the mean free path.

We note the following points. The over-all fit is
superior to that provided by the averaged t-matrix
approximation. Most obvious is the fact that the
spurious gap in the middle of the band produced in
that approximation is not present here. The position of
the effective band edges of the alloy are correctly pre-
dicted by the model. Furthermore, the shape of the
effective band edges (the slope of the curve) is well

approximated. Except in the region around zero energy
the scale of averaging, as defined in the Introduction,
is relatively fine. It is obvious, however, that in the
energy region around zero in Fig. 3, the model provides
far too coarse an approximation for it to be useful. This
is certainly due to the fact that the coherence length is
extremely small, approaching one interatomic spacing.
Clearly the concept of an effective medium breaks down
in such a limit. But whenever the coherence length is
greater than two or three lattice spacings, as it certainly
is in the bulk of the band of a real material, the approxi-
mation provides a relatively fine-grained average to
the actual density of states.

To see if the approximation might be improved, we
examined the contribution to the density of states of
the simplest class of terms omitted in the approxima-
tion. We note that, in the three-dimensional case, the
inclusion of even this class of terms would be extra-
ordinarily dificult, although it is feasible in the one-
dimensional case. The additional terms are of the form

(got gotpgpt Gptp Gpt Gptp),

corresponding to an electron being scattered repeatedly
by two atoms. Recall that the lowest-order terms con-
tain four t matrices. We included terms of this character
to all orders and for all pair separations. The results
were as expected. In these regions of energy where the
coherence length was greater than or approximately
equal to three lattice spacings, the contribution of these
terms to p(E) was usually much less than 10'P~ of the
contribution of 6'0 itself. In the regions where the
coherence length was significantly less than three
lattice spacings, the contribution to p(E) was of the

' At any energy within the band the Green's function 6'0 has an
infinite number of poles. These have real parts differing by a
reciprocal lattice vector but identical imaginary parts.
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FIG. 3. The cumulative density of states for a particular one-
dimensional alloy as calculated in the coherent potential model
(solid line) and numerically (circles). The energy is measured in
units of the square of the inverse of the lattice constant and the
amplitudes of the 5 function in units of the inverse of the lattice
constant. The other curve shown is the coherence length in units
of the lattice spacing. The reason for presenting the cumulative
density of states is given in the text. The bands of pure crystals of
the two potentials (at the same lattice spacing) are indicated by
the bars, while the eigenvalues of the isolated potentials are given
by the vertical arrows.

same order as that of 60, confirming our conclusion that
the approximation is invalid in regions of energy where
highly damped states make the most significant contri-
bution to the total density of states.
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VI. SUMMARY

On the basis of the calculations presented here, we
conclude that the procedure of simply averaging atomic
t-matrices and then using the average quantities to
describe a substitutional alloy will not yield reasonable
results when applied to the case of a real transition-
metal alloy. It appears that the coherent-potential
model which modifies the electron Green's function and
then determines the modified quantity in a self-
consistent way is a more appropriate method to apply
to the problem. In a later publication we will show that
the procedure is practical for simple but realistic three-
dimensional alloys.


