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Ultrasonic Attenuation in Obliflue Magnetic Fields*t
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The propagation of acoustic waves at oblique angles to a dc magnetic field in a material with an arbitrary
closed Fermi surface is studied. In addition to the conventional geometric resonances, absorption edges due
to Doppler-shifted cyclotron resonance, and geometric resonances associated with nonextremal orbits
on the Fermi surface can occur. A formal theory is developed and applied to two simple models of the ground
state of potassium: the free-electron model and the spin-density-wave model. Experimental results on the
attenuation of 60-Mc/sec longitudinal acoustic waves in potassium are presented and compared with the
predictions of both models. The experimental results appear to favor the free-electron model, but they are
not definitive in view of the low value of gl, the product of acoustic wave number and electron mean free
path, attained in the experiments. The general features of the attenuation as a function of magnetic field
for a fixed oblique angle, which agree well with the detailed theory, are discussed in terms of a simple intuitive
picture.

I. INTRODUCTION

'OST experimental and theoretical studies of the
~ - magnetic field dependence of ultrasonic attenua-

tion in metals have been restricted to propagation either
perpendicular or parallel to the magnetic field. Notable
exceptions are the theoretical work of S. Eckstein' and
Kaner, ' and Y. Eckstein's' experimental studies of
acoustic attenuation at oblique angles to the magnetic
field in antimony and arsenic. For oblique propagation,
absorption edges due to Doppler-shifted cyclotron reso-
nance, as well as geometric resonances in the acoustic
attenuation, can occur. Doppler-shifted cyclotron reso-
nance is possible when the condition

tire, ([tl vsr( +co

is satisfied for a=i, 2, Here co and ~, are the
acoustic and electron cyclotron frequencies, respect-
ively; q is the wave vector of the sound wave, and v~
the maximum electron velocity parallel to the dc mag-
netic field. Absorption edges in the attenuation as a
function of dc magnetic field strength occur because,
for any given value of the integer e, there is a maximum
field 8„, above which the inequality (1) is no longer
satisfied. Thus, as the magnetic field is decreased through
a value of 8„, the acoustic attenuation should increase.
Both the increase in attenuation due to an absorption
edge and the amplitude of the magnetoacoustic oscil-
lations depend upon the angle between q and 8, being
zero for parallel propagation and increasing with in-
creasing angle. The values of the magnetic Geld at the
absorption edges and at the maxima and minima of
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the magnetoacoustic oscillations also depend on the
angle between q and S.

In Fig. j. we give a plot, as a function of 8, of the
expected values of ro,/pe~ associated with the first fev
absorption edges, and with the first few maxima and
minima of the magnetoacoustic oscillations. These
curves are based on the free-electron model where vp

is the Fermi velocity, The heavy lines are the m=1 and
m=2 Doppler-shifted cyclotron resonance absorption
edges. The light lines depict the positions of the maxima
and minima associated with the conventional geometric
resonances, which are usually studied at perpendicular
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FIG. 1. A plot of the values of the parameter co,/qual associated
with various "resonances" as a function of 0, the angle between
g and S. The curves are based on the intuitive picture described
in Sec. V of the text. The heavy lines are the n=—1 and n=2
Doppler-shifted cyclotron resonance absorption edges; for both,
co,/yves varies as cos0. The light lines are the extrema associated
with the conventional (n= 0) geometric resonances; these curves
vary as sino. The heavy and light dashed lines are the geometric
resonances associated with the n=1 and n=2 Doppler-shifted
cyclotron absorption. The triangles and circles indicate the posi-
tions of the experimentally observed maxima and minima,
respectively.
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propagation. The heavy and light dashed lines indicate
the locations of magneto-acoustic extrema associated
with the n=1 and n=2 Doppler-shifted cyclotron
resonances. A detailed discussion of this figure is deferred
until the discussion of the experimental results. At this
point it is sufhcient to remark that at reasonably large
angles (0)50'), where the increase in attenuation as-
sociated with the absorption edge is large, the edge
itself lies within or near the region of the magneto-
'acoustic resonances. Because of this, and because of the
broadening of the edge resulting from the finite electron
collision time, it becomes impossible, even for the free-
electron model, to locate the position of the edge without
a detailed calculation. Such a calculation and its com-
parison with experiment and with the intuitive picture
of Fig. 1 is one of the objectives of the present work.

In order to explain some rather perplexing data' on
the optical reflectivity of potassium, Overhauser' has
suggested that the alkali metals might be ex@,mples of
the spin-density-wave (SDW) state. To obtain agree-
ment with the de Haas —van Alphen studies of Shoenberg
and Stiles, ' Overhauser has predicted that the axis of
the SDW will line up parallel to a sufficiently strong
magnetic field. This leaves the extremal cross-sectional
area of the Fermi surface, which is measured by the
de Haas —van Alphen effect, essentially unchanged, but
it dramatically affects the Fermi surface near the spin-
density-wave energy gap. In Fig. 2 we plot v„ the elec-
tron velocity parallel to the dc magnetic field, as a
function of k, for both the free-electron model and SDW
model. It can easily be seen that the maximum velocity,
v~, is smaller in the SDW model than in the free-electron
model. The diQ'erence amounts to about 18% in potas-
sium. From the inequality (1), it is apparent tha. t the
position of an absorption edge gives a measure of v,~,
the maximum electron velocity in the direction of 8.

It should be noted that the spin-density-wave model
of potassium is by no means universally accepted; in
fact, recent theoretical work by Hamann and Over-
hauser, Penn and Cohen, ' and I'edders and Martin, '
have raised questions concerning the existence of such
a state in simple metals. Therefore an experimental
test of the spin-density-wave hypothesis is desirable.
For this reason, we have carried out detailed numerical
calculations of the attenuation for both a free-electron
model and a SDW model appropriate to potassium.
Comparison of these with experimental data should
serve to test the validity of Overhauser's spin-density-
wave hypothesis for potassium. In addition, it provides
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FIG. 2. A graph of
e„the velocity paral-
lel to the magnetic
field, versus wave
number k, .The ordi-
nate is measured in
units of the free-
electron Fermi veloc-
ity, the abscissa in
units of -', Q, where Q
is the SDW wave
vector. The solid line
is the prediction of
the SDW model, the
dashed line that of the
free-electron model.
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an opportunity to study quantitatively the effect of a
nonspherical Fermi surface on the attenuation.

The comparison of our experimental results with an
SDW model of potassium requires some generalization
of standard treatments of acoustic attenuation for a
free-electron gas." In the second section of this paper,
we outline the general semiclassical theory of acoustic
attenuation for an arbitrary closed Fermi surface in the
presence of an oblique magnetic fie1d. In the third sec-
tion, the general theory is applied to both a SDW model
and a free-electron model appropriate to potassium.
Numerical results, for both models, of the attenuation
as a function of magnetic field for various angles of
propagation are presented. The fourth section describes

briefly the experimental technique and experimental
conditions. The fifth section is a comparison of the
experimental data with the results of both the free
electron and SDW models. A discussion is presented of
how the important parameter q/, the product of acoustic
wave vector and electron mean free path, is determined
for each model. An interpretation of the experimental
results in terms of the simple picture of Fig. 1 is given.
The final section is a summary of our results and discus-
sion of the conclusions that can be drawn from them.

II. ATTENUATION COEFFICIENT FOR AN
ARBITRARY FERMI SURFACE

In order to compute the acoustic attenuation coef-
6cient for potassium in a SDW state, it is necessary to
develop a formalism capable of treating ultrasonic
propagation at arbitrary angles to a dc magnetic field
8 for materials with a nonspherical Fermi surface. In

' M. H. Cohen, M. J.Harrison, and W. A. Harrison, Phys. Rev.
117, 936 (1960).
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this section we develop the general theory and apply it
to the speci6c cases of SDK and free-electron models.

Blount" has shown that the average power removed
from the ultrasonic wave is equal, in the steady state,
to Q, the net power delivered to the lattice by electrons
per cycle of the sound wave. As is well known, the at-
tenuation coeScient is given by

where E is the density of ions of mass M, v, is the sound
velocity, and u is the velocity of the ions. In general Q
can be written in the form

Q=-'R (j *.&—* (11(Bf/@)- ). ) (3)

In this equation the erst term is the Joule heat produced
by the electronic current j, in the presence of the self-
consistent held 8.The second term is the power returned
to the electrons by the moving lattice; the quantity
(y(Bf/R)„11),~ is the average over one cycle of the sound
wave of the product of the electronic momentum and
the rate of change of the electron distribution function,

f, due to collisions. We express Maxwell's equations in
the form"

J= —I' ~ 8

and J, the total curren. t in the system, is given by

J=j,+ill'eu.

Using Eqs. (5) and (6) we can write the power Q as

In order to proceed further, it is necessary to deter-
mine the electronic distribution function f To do th.is
for an arbitrary Fermi surface, we integrate the Boltz-
mann equation following a prescription given by Eck-
stein. "The Boltzmann equation is written

Bf e 1 Bf
+v Vf —&+-vX&——v~f= — (g)

83 c coll

It will be assumed that the principal scattering mechan-
ism is the elastic collisions of the electrons with irn-

purities 6xed in the moving lattice. These collisions
tend to relax the distribution function to a local
equilibrium value f0= fo(E', i'), where fo is the Fermi
function, l'(r, t) is the local chemical potential and E
is the energy measured in the center-of-mass system of
the impurities. This coordinate system is displaced in
k space relative to the laboratory system by an amount

"E.I. Blount, Phys. Rev. 114, 41,8 (1959).
"%e assume a time and space dependence of the form

exp($g x' —uI).
'3 S. G. Kckstein, Bull. Am. Phys. Soc. 9, 550 (1964).

A 'tea. Under these conditions, the collision term in
Eq. (8) can be approximated by

(Bf/B~)-» = (f—f—o)/r

where r= r(E',k') serves as a relaxation time. We now
define f2 as the deviation of the local equilibrium dis-
tribution function from the value fo(E,i'0), the thermal
equilibrium value in the absence of the sound wave,

f2= fo fo(—E,h)

In this equation, E and t 0 are the electronic energy and
chemical potential in the absence of the sound wave.

By expanding all quantities to 6rst order in the ampli-
tude of the sound wave, we obtain

where v=(1/A)(BE/Bk) is the electron velocity, and

i 1=i i 0 As we. sllall scc, thc first tc1111111 tllc brackets
of Eq. (11) contributes to the conventional coihsion

drag eGect, and the second term to the diffusion current.
If we now write f= f,(Eg,)+f,, and &irther assume
that all quantities of first order in the amplitude of the
sound wave vary in space and time as exp(iq r kvt),—
the Boltzmann equation becomes

Bfo e
2Nf1 —'1q' vf1 ev ' 8—— —(vX8) ' V gf1

8II Ac

+ =o (»)

Following Kckstein, " it is convenient to introduce a
parameter s, with the dimensions of time, which de-

scribes the position of an electron on its orbit perpen-
dicular to 8. It can be shown that

Bf1 e
= ——vX'Wzf1&

cIS Ac

1nv u S1 Bfo
(14)

8E

Bf1 i
+~ —

q v—f (e6 v—=
8$

f1(E,k.,s) =
1nv(s') u &, Bfo-

ds' ea v(s')—
T T 8E

Xexp +ice (s' ——s)+iq (R—R'), (15)

This equation may now be solved by using the integrat-
ing factor

8

+i~ iq v(l) —dt—
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ove we obtain11) and proceed as abov,If we now use Eq. 1 an

(20)

(25)J,= (ir+g) 8—(qr+6') mn/cr,

~(gb,,)c, where m» tIn these equation '
1 been assumed thmass Itcyclotron e8ective ma . e
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00

(21)
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where
A,

er =a.
p
—(m kv)1,
m

61—— o—p —(nZ*ka) p(aV) 1/(aa) 0,

we see that the power absorption may be obtained, to a
good approximation, in both models from the expression

Q=(Erpz/2r) Reu* [X '—I] u. (36)

In order to calculate X= (a+5)/op from Eqs. (26)
and (31), we require the coefficients v„and a„. It is

(30) readily shown that

1r1' ——o 0
—(81*kv)0,
m

J„'(q„o,/01, )
v.= (—i)" (ma, /qp) j„(q„o1/01,)

J„(q„o,/01, ) .
(37)

61' ———o.
p
—(m*ka), (aV),/(aa), .
m

and
a„= (—i) "J„(q„o,/00, ). (38)

We now define

x = (a+6)/op,
x'= (a+6')/o. p,

X1 (&1+~1)/Op

Xl (&1 +~1 )/Op

(31)

8= —(F/op+X) '(1—X') mu/er,

we obtain the final result for the power absorption

(33)

Q= (Xm/2r) Reu* [(1—X1)(r/op+X) —'

X (1—x') —x,'] u. (34)

It should be noted that in the case of a spherical Fernii
surface, X'= X&= X and X&'= X—1, and it is easily
seen that the results reduce to those of Cohen, Harrison,
and Harrison. 1o

In this paper we use the general result of Eq. (34) to
calculate the coefficient of ultrasonic attenuation in

potassium for both SDK and free-electron models. The
property of the SDW state of immediate interest is its
nonspherical Fermi surface. For the linear SDW postu-
lated for potassium, the Fermi surface resembles a lemon
drawn out to a point in both directions along the dc
magnetic field 8.

In both models cited above, the Fermi surface is

axially symmetric about S. For this symmetry, it may
be seen that X and X' are identical; further, for the
frequencies used in our experiments, 107—10' Hz, I'/op
is much smaller than unity and can therefore be
neglected. Equation (34) therefore reduces to

iVm
Q= Reu*. [X-'—1+(X,—X,' —X,X-')] u. (35)

27.

and use Eqs. (25), (26), (27), (31),and. (7) to show that

Q= ——', Re Neu [(1—X1) ~ 8—X1' mu/er]. (32)

Then using Eqs. (6) and (25) to determine the self-

consistent field

III. ATTENUATION COEFFICIENT POR SDW
AND FREE-ELECTRON MODELS

As described by Overhauser, ' the electronic wave
function in the presence of a linear spin-density wave is
a solution of the Schrodinger equation

(&0+~)4 =&4. (39)

Ho is the kinetic energy plus the diagonal part of the
exchange energy, and A is the off-diagonal part. For a
linear SDW of wave vector Q oriented in the s direction,
A can be represented by the matrix,

0 e iQ' 0

g eiQz 0 e
—iQz (4o)

. 0 eiQ' 0 .
connecting sta, te

~
k), spin up,

and with ~k—Q), spin down.
perturbation theory gives the

e1, Q
—E —ge iQ'

—ge Q tie—E
0 geiQz

with
~
k+Q), spin down,

Treating A in first-order
secular equation

0
ge

—iQz 0
e1,+.Q

—E
(41)

where eA, is an eigenvalue of IIO. With the following
definitions:

(0&+q+ 0&+ 0&—q) ~

We have assumed, without any loss of generality, that
the wave vector of the sound wave lies in the Y-s plane.
In Eqs. (37) and (38) 0&, is the cyclotron frequency, o,
and. v, are the electron velocities parallel and perpen-
dicular to I, and J and J ' are the Bessel function of
order e and its derivative, respectively. It can be seen
from Eqs. (37), (38), (21), and (22) that, in order to
compute the power absorption in both SDW and free-
electron systems, it is only necessary to determine the
parallel and perpendicular components of the electron
velocity at the Fermi surface in each case. In the free-
electron case this is straightforward; we give the calcu-
lation for a linear SDW in the next section.

From the discussion following Eq. (34), it is obvious
that the term (X1—X' —X1X ') vanishes for a spherical
Fermi surface. Because the Fermi surface of the SDW
state is nearly spherical, this term is small and can be
neglected in any further discussion of this state, Finally,

c= py qpg+ gyq pg+ peg qpgyq —2g

qpg+qek+g (pgyq+pp q) &

p=-', b' —c,
r =2b'/27 pbc+d, —

(42)
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the three roots of Eq. (41) can be expressed as

E=—-'b+-', p'" cos py+-,'~ii),

where e may take the values 0, 1, or 2, and

(43)
30

y= tan '[+ (4p'/27r' —1)'"j. (44)

Care must be taken to choose the value of m and the
correct sign in Eq. (44) to ensure that Eq. (43) de-
scribes the lowest branch of the dispersion relation.
The velocities ~, and ~& may be found by taking the
appropriate derivatives with respect to Ic of Eq. (43).

The model has three parameters which remain to be
determined, Q, g, and Ez(SDW), the Fermi energy in
the SDW model. The parameter g can be seen to equal
—,'6, where G is the gap between the upper and lower
branches of the SDW spectrum at k, = —',Q. This param-
eter can be determined by supposing with Overhauser'
that the peak in the optical absorption data of potas-
sium found by Mayer and El Naby4 may be attributed
to an SDW state. In order to explain the shape of the
peak, and also to account for the de Haas —van Alphen
data on potassium, it is also necessary to assume that
the Fermi surface touches the SDW "zone boundary"
at only one point, namely —,'Q. This assumption leads
to the condition w, =0 at k, =+-,'Q. Noting also that the
volume enclosed by the Fermi surface must be equal to
that of a free-electron sphere for the same density, we
obtain the parameters Q and Ep(SDW). We find

g=0.31 eV,

Q= 1.063)& (2k p),
Ei (SDW) =0.902Ei,

where kg and E~ refer to the free-electron model. This
completely specifies the SDW spectrum and velocities. '4

By using the perpendicular and parallel components
of the electron velocities determined above, we can now
compute the attenuation for propagation at arbitrary
angles to the magnetic field. for both models. Because
the attenuation coeKcient involves an infinite sum con-
taining Bessel functions, as can be seen from Eqs. (21)
and (37), a procedure was employed in the numerical
calculations to retain a sufhcient number of terms in the
sum to insure accuracy. This procedure was simply to
keep all terms involving Bessel functions of order e up
to at least (qv, /cu, )+2.

In Fig. 3, we plot the attenuation as a function of
magnetic field at an angle of propagation of 50 deg and
pl=50, and in Fig. 4, we give the derivative of this
curve in the neighborhood of the edge. These curves
exhibit several interesting features. As the magnetic
field is reduced, the SDW curve exhibits a pronounced

25
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0
0.3 0.4 0.5 0.6 0.7 0.8 0.9

CCJ g /q V F

FIG. 3. A graph of the theoretically predicted attenuation, in
arbitrary units, as a function of magnetic Geld, in the neighborhood
of the absorption edge. The abscissa is given in units of co,/qvg.
Both free-electron and SDW curves are appropriate to an angle of
propagation of 50 deg, and a ql value of 50.

maximum in the attenuation immediately following a
sharp increase. By contrast, the free-electron curve
behaves like a conventional Doppler-shifted cyclotron
resonance edge. It should be noted that the theoretical
edge, predicted by the inequality (1), falls close to the
inflection point in the free-electron curve, whereas in
the SDW model it coincides with the maximum. The
maximum results from the existence of an integrable
singularity in the number of states on the Fermi surface
of velocity v, satisfying the resonance condition. For

6
COI-

4

3

2

'U

I 0

~SDW

'4With these values of the SDW parameters the extremal
cross section of the Fermi surface perpendicular to the magnetic
Geld is 0.87'Pp smaller than the free-electron value. This value is
in essential agreement with that cited by Overhauser, Bull. Am.
Phys. Soc. 10, 39 (1965).We also remark, as shown in Fig. 2, that
e~=0.82eg.

1

0.40 0.50 0.60 0.70
GJ& /q VF

I

0.80

FIG. 4. A graph of the negative of the derivative of the
attenuation given in Fig. 3 versus magnetic Geld.
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smaller values of ql, the peak will be smeared out and
the two cases become dificult to distinguish. The dif-
ferences are more striking, however, when we look at
the derivative of the attenuation. (We actually plot
—&u/BP in Fig. 4.) Here the peaks corresponding to the
inQection points in Fig. 3 are seen to be separated by
about 19/o, as expected from the simple picture. It
may also be noted that the shapes of the two curves
Ric quite different, thc SD% culvc d1splaylilg R sha1'p

minimum just below the edge. Again, we expect the
differences between the two curves to be less pronounced
a,t lower values of qt. In particular, the minimum in the
SDW curve will disappear when 1/ql becomes large
compared to the width of the peak in the density of
states.

Single-crystal potassium, in the form of cylindrical
sl1ccs 0.5 ln. thick alld 1 in. 1Il diameter was obtRincd
from Professor P. Meijer. The major axis of these slices

was along the t 110j direction. Cyhnders 8 ln. ln diam-
eter (axis still along t 110j), were spark cut from these
slices and mounted, using conductive epoxy, in brass
rings whose i.d. was the same as that of the spark
cutting tool. The brass-ring technique was employed
because it allowed the very soft potassium to be easily
handled. It also offered the advantage that the brass

spark cuts much more slowly than the potassium. This
was important because Qat and parallel acoustic surfaces
were obtained by spark-planing the ends of the brass-

ring —potassium assembly. If potassium alone mere

being spark-cut, it would cut quickly and Qow, produc-

ing poor acoustic surfaces. However, with the cutting
rate sct by the much slower cutting brass ring, quite
acceptable potassium surfaces were obtained. The one
obvious danger of the above technique is the possibility
of straining the potassium at low temperatures due to
differential contraction of the brass-ring assembly. It
was hoped that this CGcct would be minimal because
the potassium shrinks more than the brass, and any
straining must be due to the thin epoxy layer.

Bonds were made using Bow Corning 510 Quid of
60000 centistoke viscosity. "The Quid was applied to
potassium surfaces precooled to liquid nitrogen tem-

perature to harden the potassium prior to the actual
bonding opcl ation. Ultl Rsonlc echo pRttcI'ils were

checked at 77'K, and then the spring-loaded sample
holder was rapidly immersed in the liquid-helium bath,
Slow immersion was found to give consistently poor
bonds at 4.2'K. Coaxially plated, 20 Mc/sec, X-cut
quartz transducers mere used to generate longitudinal
waves in the samples.

A standard pulse-echo experimental arrangement was

used to measure ultrasonic attenuation and velocity.
Attenuation data, directly in decibel units, was pre-
sented on an x-y recorder whose y axis was fed by the
output of a, Matec Model 1235 Automatic Attenuation
Recorder. The x axis was fed by the output of a Rawson-
Lush Type 720 rotating-coil gaussmeter calibrated by
NMR. Magnetic field values determined with this
probe are estimated to be accurate to one percent.
Acoustic frequencies are estimated to be known to the
same degree of accuracy. The longitudinal sound
velocity for the sample studied, at 4.2'K, was measured
to be 2.71X10' cm/sec with an accuracy of +1.5/~.
This agrees quite well with the published value of
MRl'quRrdt aild Tnvisonno. MRgnetic fields were pro-
vided by a 12-in. Harvey-Wells electromagnet capable
of a maximum field. near i5 ko.

Data were obtained for three potassium samples at
acoustic frequencies up to 140 Mc/sec. The most ex-

tensive set of data was obtained for the third sample,
and this set was analyzed for comparison with theory.
Curves were obtained for variation of attenuation with

magnetic held at fixed a,ngles 8 between 0 and 90 deg,
as well as for attenuation as a function of angle Rt

several fixed values of field. Measurements were per-
formed a,t both 4.2 and 1.1'K, Rnd a temperature
dependence of the attenuation was observed. This was

consistent with measurements of the third sample's
resistivity ratio by the eddy-current-decay method, "
This ratio was measured to be 6050 at 4.2'K, and in-

creased by approximately 25% when the temperature
was further reduced to 1.1'K. Similar behavior was

observed for the other two samples.
Orientation of I at known angles to q was»lade

possible by accurate determination of the magnet
position for 8=90 dcg. Other angles were then obtained

by appropriate rotation of the magnet yoke. The 8=90
deg configuration, for a free-electron Fermi surface,
corresponds to a symmetry point in a plot of attenuation
versus angle in the presence of a sufFicicntly high mag-
netic held. This fact was utilized as follows: The sample
holder was inserted into the liquid hei. ium cryostat so

that the condition 0=90 deg was roughly satisfied.
Attenuation was then recorded as a function of angle
to locRtc morc RccurRtcly thc symmetry poiIlt. This
point was taken to be 0=90 deg, and is believed to be
accurate to within I. degree.

V. COMPAMSON OF EXPERIMEITTT AND
THEORY

For quantitative coInparison of theory with experi-
ment, one must determine accurately the value of the
parameter ql. The usual procedure for determining it
utilizes the fact that at sufIiciently high magnetic

"H. J. Poster, Ph.D. thesis, Catholic University of America,
1964 (unpublished); National Bureau of Standards Report 8550,
1964 (unpublislMd) ' see also H. J. Postel P. M el)er, and V.
Mielczarek, Phys. Rev. 134, A1849 (1965).

"W. R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids
26, 273 (1965)."C. P. Bean, R. %.De Blois, and I.. B.Nesbitt, J.Appl. Phys.
30, 1976 (1959).
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FIG. 5. A theoreti-
cal plot of

an=gn(B= ao)—n(B=O)],
in arbitrary units, as
a function of ql. This
curve is appropriate
to longitudinal waves
propagating perpen-
dicular to the dc mag-
netic field.
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fields the attenuation saturates. For longitudinal waves
at 90 deg, the saturation value is a function of q/. A
theoretical plotofkrr:ta(B=n~) rr(B=O)]p pp'versus

q/ for a spherical Fermi surface is shown in Fig. 5. This
curve crosses An=0 at q/=6. 81. By experimentally
measuring hn for a given sample at several ultrasonic
frequencies, and therefore at several different q/ values,
we may determine q/ for any frequency by comparing
with Fig. 5.

Curves of the form of Fig. 5 were found for both free-
electron and SDW models by generalizing the procedure
described above, viz. , by defining

hn=n(xi) —n(as), (46)

where g=rp, /qss, and using the numerical calculations
to determine the right-hand side. To avoid inaccuracies
associated with the fact that the measured n versus B
plots may not be fully saturated at the highest fields
attained in the experiments, x~ was chosen to be 2.10
rather than infinity. The corresponding value of 8 for
60 Mc/sec is 14.3 kG. The choice of xs presented more
of a problem. When x becomes very small, the argu-
ments of the Bessel functions become large, and many
terms must be kept, in the sums indicated in Eqs. (31)
and (37) to insure sufficient accuracy of the final results.
For the free-electron model it is possible to choose x2 ——0
by the virtue of the fact that a(0) at 90 deg equals
rr(x) at 0 deg for arbitrary a. For the SDW aligned
parallel to the field, x2 ——0.0596 was used for two reasons:
it corresponded to a magnetic 6eld below the value where
geometric resonance oscillations were observed, and
the required number of Bessel functions was not pro-
hibitive. From the experimental results at 4.2'K and
acoustic frequencies of 20 and 60 Mc/sec, we obtained,

~ 40-
—35-I-+ zo-
w 25
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Fxo. 6. A graph of relative attenuation, in decibel units, versus
angle for a fixed magnetic field of 14.3 ko (corresponding to
~,/yes=2. 04). The solid curve is the experimental result at a
temperature of 4.2'K. The circles and triangles are the theoretical
predictions of the SDW and free-electron models, respectively, 6t
at 8=90 deg. The ql values used in the numerical calculations were
determined with the aid of Fig. 5 to be 12.9 and 14.3 for the SDW
and free-electron models, respectively.

for the higher frequency, q/ values of 14.3 and 12.9 for
the free-electron and SDW models, respectively.

In Fig. 6, we exhibit the experimental results for the
attenuation as a function of angle at x=2.04. In addi-
tion, we show theoretical points for the free-electron
and SDW models, with the q/ values given above, 6t to
the experimental curve at 90 deg. The free-electron
results should Qt exactly at 0 and 90 deg; the observed
small discrepancy represents an inconsistency between
the completely isotropic free-electron model used here,
and the experimental results. "The SDW is not expected
to fit exactly at 0 deg since, for this case, zero field and
zero angle are not equivalent. The inconsistency men-
tioned above, together with the relatively poor 6t at
intermediate angles, suggests that a more meaningful
procedure would be to determine q/ independently
for each angle when comparing theoretical and experi-
mental values of the attenuation as a function of field
for fixed angle.

At a given angle, the right hand side of Eq. (46) may
be calculated using the same values of x~ and x2 given
above. When plotted against q/ in the range 3&q/&16,
the curve appears remarkably close to a straight line
for angles of 40, 50, and 60 deg. The q/ values obtained
by comparing experimental An values with these curves
are presented in Table I. The errors associated with
reading An values from the experimental curves, and
with the uncertainty in the acoustic frequencies, intro-

"A review of the experimental procedure revealed that, for
very large attenuation (i.e., very small echo height), the detector
section of the rf receiver has a square law instead of a linear
response to incoming pulses. Consequently, the signal fed to the
automatic attenuation recorder, for rectification and comparison
with a fixed dc level, is smaller than would be the case with a
linear response, and the recorded attenuation is too large. The
potassium sample exhibits the highest attenuation at an angle of
90 deg for magnetic fields in the saturation region. In fact, in our
measurements this attenuation was so large that the ultrasonic
echoes dissappeared into the noise level of the receiver. This sug-
gests that the measured saturation value of the attenuation at 90
deg may be erroneously high, and this small discrepancy may be
entirely experimental.
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TABLE I. Experimentally determined values of ql.

0 (deg)

90
60
50
40

14.3
12.4
12.4
98

SDW

12.9
9.8
9.2
7.8

cluce an inaccuracy of about 1'p& at 90 deg, while the
determinations of qt at the other angles should be good
to only about 10/q. In both cases, the major source of
error is the uncertainty in the frequencies, and the

magnitude of the possible error is strongly dependent
upon the functional relationship between An and ql.

In Fig. 7 we display —cin/88 vs 8 at angles of 40,
50, and 60 deg. It is clear from Fig. j. that at these angles,
the edge is separated in field from other structure.
Although these curves do not unambiguously distinguish
between the two models, they do appear to favor the
free-electron model. " It should be noted that the

'9 Recent measurements by Thomas and Bohm t R. L. Thomas
and H. V. Hohm, Phys. Rev. Letters 16, 587 (1966)J of the Kjeldaas
absorption edge t T. Kjeldaas, Jr., Phys. Rev. 113, 1473 (1959}g
for shear waves propagating parallel to the dc magnetic field ap-
pear to favor the free-electron model.
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40-deg curve, which does not appear to favor either
model, corresponds to an unusually low value of q/. "

In addition to the absorption edge, there is other
structure in the attenuation at lower fields. We now
investigate this structure and compare it with the
simple picture based on the free-electron model. " It is
convenient to review first the familiar case of propaga-
tion at 90 deg. As we enter the regime a&,/qvr & 1, the
conventional geometric resonances appear. These ap-
parently arise when a matching condition between the
orbital diameter of the belly (k, =0) electrons and the
sound wavelength 2m./q is satisfied. However, it is
dificult to predict a prior~ what exactly the matching
condition is in terms of the simple pictures of Fig. 8.
With a naive interpretation, the situations depicted
in Fig. 8(a) and 8(b) cannot be distinguished. If we
assume that there are no collisions, we 6nd in both cases
that the component of the electric field in phase with
the current must be zero (or, seen from another point
of view, fields acting on an orbiting electron must induce
currents of the same wavelength which are exactly out
of phase). The other possibility convenient to our
intuition is the local limit (ql((1). Then we find that in
both cases (a) and (b), the field and current are in
phase but the attenuations are equal. The actual situa-
tion lies somewhere between these two extremes and
cannot easily be predicted without detailed knowledge
of x(a,a)).

We note from the calculation that as we reduce the
held from high values, the 6rst structure to appear in
the attenuation is a minimum, and we may assume that
this corresponds to the first matching condition to arise
as orbit size is increased, that of Fig. 8(b). [The cor-
responding value of qvr/or, from the calculation is 0.89m,
instead of ~/2, which might be more appropriate to
Fig. 8(a).] As we lower the field, other maxima and
minima appear, separated respectively by approxi-
mately A(qer/co, ) =n., which tends to confirm the orbit
matching hypothesis. The location of these extrema
are given by the intercepts of the light lines in Fig. 1
with 8=90 deg. These intercepts were taken directly
from the numerical calculations appropriate to q/= 14.3.
The locations differ slightly from those given by Cohen,
Harrison, and Harrison who assume q/& 50. The q/

dependence of the positions of the extrema at 90 deg has
recently been studied by Flax and Trivisonno. "

If we allow that situation (b) yields a minimum and

"The experimental points shown in Fig. '1 were obtained at a
temperature of 1.1'K. Due to insufhcient low-frequency data at
that temperature, ql values used in the theoretical calculations
were obtained by scaling the values of Table I, and are 13.8, 14,8,
and 11.3 for the free-electron model, and 10.9, 11.0, and 9.0 for the
SDW model at 60, 50, and 40 deg, respectively. We would expect
that if ql values were determined independently at a suKciently
low temperature, where phonon scattering is negligible, the
variation with angle would disappear.

"For the additional structure considered in this section, the
predictions ', of both the free-electron and SDW models are essen-
tially indistinguishable for the values of ql considered here.

2' L. Flax and J. Trivisonno, Phys. Letters 22, 569 (1966).

=a

. (1/2)»

(b)

Fzo. 8. A schematic representation of an acoustic wave pro-
pagating perpendicular to the dc magnetic 6eld. The vertical
arrows, separated by a half-wavelength of the sound wave, rep-
resent wave fronts at which the electric 6eld is a maximum or
minimum. The circles represent the orbits of an electron'moving
in the magnetic 6eld. In case (a), the orbital diameter matches
the acoustic wavelength; in case (b), it matches a half-wavelength.

(a) a maximum, then we may understand the increase
and subsequent saturation of the attenuation at high
fields, cu,/qvr &2. At large values of this parameter, the
field is essentially constant over the entire orbit, a
quintessential example of situation (a). Thus we may
look at the high-field attenuation as corresponding to a
broad maximum geometric resonance, which saturates
when the orbit diameter is much smaller than the
wavelength.

At oblique angles other types of geometric resonances,
as well as the Doppler-shifted cyclotron resonance edges,
appear. As an example, let us consider propagation at
an angle 8 to the dc magnetic 6eld and, referring to
Fig. 1, discuss the features observed in the attenuation
as the field is lowered from high values. As we approach
the value co./qvr=cos8, the attenuation increases due
to the first Doppler-shifted cyclotron resonance edge,
where the relation ~,= q,v, is satisfied. Once we pass the
point co,=q.vp, this relation can always be satisfied for
orbits at some value of v, (vp and resonance absorption
occurs. Thus, below the 6rst cyclotron edge, we always
have resonant contribution to the attenuation from the
one particular orbit on the Fermi surface where
v, =",/q, . This orbit is capable of satisfying a matching
condition, when its projection in the direction of propa-
gation matches the acoustic wavelength. This will give
rise to geometric resonances in the Doppler-shifted
cyclotron resonance absorption. It should be noted that
these geometric resonances will, in general, be associated
with nonextremal orbits. Once again, we have no way
of knowing the precise nature of the matching condition,
nor whether we will first see a maximum or minimum;
both calculation and experiment show that in this case
the first extremum is a maximum.

We can attempt to determine the positions of the
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model used in these analyses, Q has been assumed to
remain aligned parallel to the field even as the field is
lowered to zero. This assumption is certainly open to
question. %e suggest that a more de6nitive test of the
SDW hypothesis might be possible if this experiment
were repeated with a q/ value of the order of 50 and a
derivative technique used.

Some of the general features of the attenuation at
oblique angles are worth emphasizing. As has been
pointed out by Kckstein, at high ql, the position of the
Doppler-shifted. cyclotron resonance edge gives a mea-
slllc of (% c,)~g„, where Bs ls thc cpclotlon effective
mass. An additional point emphasized by Eckstein, '
applicab1e to materials in which s,/cg is an order ot
magnitude larger than in simple metals like potassium,

or in which q/ is very large, is experimentally useful.
This is the appearance of double edges. The observa-
tion of double edges facilitates the identi6cation of the
edge position, and allows both m* and (v,),„ to be
determined independently. Finally, we note that al-
though the geometric resonances associated with non-
extremal orbits can, in principle, be used to map out
the Fermi surface, in practice, it appears that this will

be very di@.cult.
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Coherent-Potential Model of Substitutional Disordered Alloys
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We introduce a model of a substitutional alloy based on the concept of an effective or coherent potential
which, when placed on every site of the alloy lattice, will simulate the electronic properties of the actual
alloy. The coherent potential is necessarily a complex, energy-dependent quantity. We evaluate the model
for the simple case of a one-dimensional alloy of 0-function potentials. In order to provide a basis for com-
parison, as well as to see if a simpler scheme will su%ce, we also calculate the spectrum of the same alloy
using the average 5-matrix approximation introduced by Beeby. On the basis of these results, we conclude
that the average t-matrix approximation is not adequate for the description of an actual transition-metal
alloy, while the coherent-potential picture will provide a more reasonable facsimile of the density of states in
such an alloy.

I. INTRODUCTION
' 'HE work reported here was stimulated by an

attempt to find a reasonably simple and numeri-
cally tractable formalism for calculating the electronic
structure of a metallic alloy. YVe desired a scheme
whereby the density of states and the position of the
energy bands could be determined.

At present very little is known concerning the elec-
tronic spectra of real alloys. There is, however, a great
deal of inforniation on the spectra of hypothetical one-
dimensional alloys, ' ' most of which is quite discourag-
ing to someone attempting to 6nd tractable formulas
for the density of states. In the simple case of a one-
dimensional alloy of 8-function potentials the density
of states is extremely irregular, ' possessing 6ne structure
over energy intervals of the order of a few percent of

' J.M. Luttinger, Phillips Res. Rept. 6, 303 (1951).' A. M. James and A. S. Ginzbarg, J. Phys. Chem. 57, 840
(195').

'R. Landauer and J. C. Helland, J. Chem. Phys. 22, 1955
(1954).' R. L. Agacy and R. E.Bor1and, Proc. Phys. Soc. (London) 84,
1017 (1964).

typical bandwidths. This is to be compared with the
structureless density of states function for an ordered
lattice of 6 functions. It is not likely that simple formulas
can be devised to yield the alloy spectrum in detail.
Our aim, therefore, was to 6nd expressions which, when
applied to the one-dimensional case, would electively
average the exact density of states over energy intervals
suKciently small so that gross distortions were not
introduced into the spectrum. From this point of view,
the better the formula, the smaller the energy interval
over which it yields an average of the exact density of
states. In accordance with this view, we will compare
the approximate calculations of the cumulative, rather
than the differential, density of states with the results
of exact calculations.

The exact results to which we refer are necessarily
for a one-dimensional crystal. The problem of calcu-
lating the spectrum of such an alloy has been extensively
treated in the literature' ~ and we will not dwell on it
further except to say that the explicit numerical results
for the cumulative density of states used for com-

~ H. Schmidt, Phys. Rev. 105, 425 (1957}.


