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The de Haas-van Alphen (dHvA) effect in pure Bi and lightly doped Bi-Pb alloys was studied using a
sensitive mutual-induction technique. In pure Bi, we obtained for the electron and hole Fermi surfaces,
respectively: Fermi energies E,=25.0 meV and E,=11.0 meV; the number densities per ellipsoid #=0.96
X10'/cc and p=23.00X10'"/cc, and the Dingle temperatures k,=0.68°K and «,=0.2°K. Additionally, we
find that for the conduction band the energy dispersion in the heavy-mass direction is essentially the same
as in the lighter-mass direction; i.e., the constant-energy surfaces are very closely ellipsoidal. The data on
Bi-Pb alloys show that the relative motion of the conduction and the overlapping valence band is negligible
and only the Fermi level shifts with alloying. From the dHvA and the galvanomagnetic data in Bi-Pb
alloys in moderate fields, we deduced that the electron and hole mobilities decrease inversely as (Np—Ny)
as expected, where the V’s are the total carrier densities and we assume that all the Pb atoms scatter inde-

pendently as ionized impurities.

I. INTRODUCTION

HE de Haas—van Alphen (dHvA) effect, first

observed in Bi,! provides a powerful tool for
mapping the Fermi surface topology. A simple relation,
due to Onsager?

P(1/H)= (2we/#c)1/S 1)

gives P, the period of the dHVA oscillations in units of
reciprocal gauss, in terms of S, the extremal cross-
sectional area in cm™2 of the Fermi surface normal to the
field direction.

The dHvA effect is usually observed by either a
torque® or a pulsed-field* method. In the torque method,
advantage is taken of the tensor character of the sus-
ceptibility. The magnetization of a sample, usually at
an angle to the applied field, is measured by observing
the resulting torque with a torsion balance. This method
is frequently used for multivalent metals and semi-
metals. The main drawback of this method is that the
torque contribution of a particular part of the Fermi
surface vanishes when the magnetic field is normal to
an ‘“‘eigenarea,” i.e., a high-symmetry cross section of the
surface. These eigenareas, often the main information
desired, must then be obtained by extrapolation, fre-
quently with erroneous results. Additionally, the torque
vanishes for certain orientations determined by the
crystal symmetry. The pulsed-field method is used for
good metals where a typical period is ~10=° G1
because of the large Fermi surface dimensions, necessi-
tating high fields. The effect is observed by the induc-
tion in a pickup coil produced by the time-varying
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magnetization. While the pulsed-field method can be
used to observe bigger areas, it is limited by low reso-
lution, eddy currents, and thermal instability to periods
above 10~7 G4

To resolve uncertainties in the Bi-Fermi surface, we
require accurate measurements of the eigenareas corre-
sponding to periods ranging from 107¢ to 10~* G, for
which neither method is well suited. In view of the
above, we used a sensitive mutual® induction method
which can measure periods over this range, in all
directions. The method, particularly suitable to low
conductivity materials, has been successfully applied
to map the entire Fermi surface of Bi accurately and to
study the changes in the Fermi surface when Bi is
doped with small quantities of Pb. Similar techniques
have been used recently by other authors®=8 for other
specific applications.

Early results showed®?1° that the Fermi surface for
electrons in Bi could be approximated by a set of
equivalent ellipsoids in momentum space, with one
principal axis of each ellipsoid parallel to a crystal axis
of twofold rotational symmetry (binary) and the other
two tilted about 6° from the trigonal and bisectrix axes.
Experimental'’15 and theoretical'l'*6:17 work in recent
years has shown that the energy-momentum dispersion
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Fi1c. 1. Block diagram of dHvA measuring apparatus.

relation for the electrons is not quadratic and that the
electron Fermi surface should differ somewhat from an
ellipsoidal shape. By mapping out the Fermi surface
using dHvVA effect we conclude that any such deviation
in pure Bi is in fact very small. That the Fermi surface
for holes in Bi possesses the symmetry of an ellipsoid
of revolution about the trigonal axis,® 518 known to be
for sometime, is established with greater certainty than
in any other previous work.

The conduction and valence bands in Bi overlap; im-
mediately below the conduction band, there lies another
valence band of similar symmetry separated by energy
gap E,~15 meV. The band structure of Bi below and
above the Fermi level has been previously investigated
by doping it with Sn, Pb, As, Sb, and Te. The early
work of Thompson,'® and Shoenberg and Uddin? had
been of an exploratory nature. Since then a reasonable
amount of work has been done on various Bi-alloys.
Weiner in Bi-Te and Brandt et al. in Bi-Pb* and
Bi-Sb #:% alloys used dHvA effect to study the conduc-
tion band. The present study of Bi-Pb alloys was under-
taken in order to (i) make possible judgments about the
energy-momentum dispersion relation of the electrons
by noting the change of the extremal momenta in all
directions as the Fermi energy decreases with increasing
concentration of Pb, (ii) observe the change of the Fermi
level and obtain the relative shift in the position of the
conduction and the valence bands, if any, (iii) to obtain
the change in electron and hole concentration produced
per atom of Pb added.

The value of the carrier concentration change A=N,
—N,, N, and N, being the hole and electron concen-
trations, respectively, in various alloys can be obtained
without the dHvA effect, by a study of the resistivity
and Hall coefficient as a function of magnetic field H,
chosen such that uH>>1, but still sufficiently low that
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quantum effects remain small. It was originally hoped
that the galvanomagnetic measurements would serve
as an independent check on A. However, the dHvA
values turned out to be more accurate. Combining then
the dHvA and galvanomagnetic data, the electron and
hole mobilities as a function of doping were obtained.

II. EXPERIMENTAL PROCEDURE
A. Apparatus

Tigure 1 shows the block diagram of the apparatus
used for observing the dHvA effect. The differential
susceptibility of a sample is measured with the help
of a pair of balanced mutual inductors. Two identical
secondary coils, each about 8000 turns of No. 44
copper wire wound in an approximate area of 1 cm?
on a Teflon frame, are connected in series opposition.
They are driven at 500 cps by two separate identical
primary coils connected series aiding, each with 108
turns of No. 34 copper wire. If the two mutual induc-
tors and their environments are identical there
should be no secondary voltage output. Under such
circumstances, if a sample is placed in one of the second-
ary coils, an unbalanced voltage is developed in the
secondary

E=[4raAN(dH s/ dt) X 10-5](dI/dH) volts, (2)

where 4 and N are, respectively, the cross-sectional area
and an effective number of turns for one of the secondary
coils; a is a filling factor, Hog, the field produced by the
primary and dI/dH the differential susceptibility of the
sample. The quantity inside the square brackets in
Eq. (2) is the voltage picked up by one of the secondary
coils and can be measured separately. Thus in principle,
we can also measure the absolute value of dI/dH. The
oscillations in dI/dH can be recorded by amplifying
and synchronously phase-detecting the secondary out-
put E at the driving frequency as the magnetic field
is swept.

The magnetic field is swept in such a way that 1/H is
linear in time.!® The sweep circuitry, which will be dis-
cussed in detail by Brown elsewhere,?* involves (i)
generating a sweep voltage the reciprocal of which
varies linearly in time and (ii) comparing this voltage
with the output of a linearized Hall probe voltage and
feeding the difference to the null detector of the magnet
supply current regulator. Sweeping the field such that
1/H is linear in time produces dHvA oscillations sinu-
soidal in time, enabling one to differentiate or to filter
the real time signal when useful. This provides an easier
method to analyze the data as compared to plotting
ordinal numbers of maxima and minima versus the
calculated values of 1/H. More than that, it prevents
falsely assigning meaning to peaks which are really the
accidental result of beating periods.

% R. D. Brown, IBM J. Res. Develop. 10, 462 (1966).
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The secondary output first goes to a low-noise
Keithley 103R preamplifier, then to a variable band-
pass filter (to prevent noise from overloading the
following stages) and finally to a narrow-band lock-in-
amplifier similar to an Electronics, Missiles and
Communications, Ltd., Model RJB, where it is syn-
chronously phase-detected. The output of the phase
detector feeds to the vy axis of a Varian F-80 x-y recorder.
The x axis of the recorder is driven by the voltage which
is the source of the 1/H sweep signal.

A 12-in. Varian electromagnet with 3-%-in. gap pro-
ducing fields up to 13.5 kG was used. The field was cali-
brated at 10 and 5 kG using nuclear magnetic resonance.

In practice, the primary and secondary coils as well
as the coupling between the secondaries is not identical.
A resistance-capacitance shunt across one of the primary
coils enables one to compensate for this residual coil
unbalance to one part in 10%. The noise is typically of the
order of ten times the unbalance signal, or ~10-uV peak-
to-peak for a bandwidth between 100 to 1000 cps at
magnetic fields ~10kG. However, most of this noise is
integrated out in the lock-in-amplifier. This noise is
mainly from mechanical vibrations which alter the
balance conditions. This noise which was minimized by
having rigid supports and choosing the primary drive
frequency so as not to coincide with a structural reso-
nance, remained the factor limiting the sensitivity of the
apparatus. Residual fluctuations of the well regulated
field (1 in 10°) Hy, picked up by the coils, become signi-
ficant at the higher fields. This noise as compared to the
signal could be reduced, if necessary, by having ad-
ditional regulation in the field and by driving the pri-
maries at higher currents. The limit of course is that
H,.. should be less than the interval AH between two
consecutive dHVA oscillations. The other noise sources,
considerably smaller, are Johnson noise, of approxi-
mately 5X10~* uV for the system, and the input noise
equivalent of the preamplifier, approximately 0.1 pV
for a bandwidth of 10 cycles, compared to vibration
noise ~1 uV for this bandwidth. From Eq. (2) and an
estimate of dI/dH from Eq. (3) below, we expect values
of the signal E of ~500 and 54V for the small and large
areas of the Bi-Fermi surface at 1.3°K in good agree-
ment with the observed dHvVA oscillation amplitudes.

The balance conditions for zero output on the second-
ary side change appreciably as the magnetic field is
swept, for two reasons: (i) since one of the primary
coils is shunted, a change in resistance of these coils
will change the balance conditions. The changing
magnetoresistance of the coils causes significant un-
balance as the field is swept. (ii) The permeability of the
iron core decreases at high fields, altering both the pri-
mary-secondary coupling and the inductance, somewhat
differently for each set of coils, thereby causing an offset
in the balance conditions. These two factors have greater
effect as the angle 6 between the coil axis and magnetic
field is increased. Such off-balance produces a dc shift
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at the output of the phase detector, causing the trace on
the x-y recorder to move off scale. This was minimized
when necessary by differentiating the phase detector
output. It is difficult to assess the improvement in
sensitivity of the above technique over the usual
method. For Bi, however, we report here for the first
time the electron periods along the trigonal directions,
and have observed hole periods at lower fields and higher
temperatures than reported previously.

B. Sample Preparation

Bismuth of 99.99999, purity was purchased from
Consolidated Mining and Smelting Company of
Canada, Ltd. It was zone refined several times under
vacuum in a carbon-coated quartz boat approximately
30 cmX2.5 cmX1 c¢cm and allowed to grow from one
end. Typically, single crystals were obtained for the full
length of the boat. A piece was cut from the central
portion of the ingots by a Servomet spark cutter and
etched in 339, nitric acid. The trigonal surfaces were
obtained by cleaving under liquid nitrogen. A %-in.
cubical sample was cut by aligning the square cutter
with the binary slip lines under a microscope.

For Bi-Pb alloys, a master alloy was first prepared by
zone leveling known amounts of Bi and Pb. Successive
dilution was used to obtain the desired concentrations.
After zone leveling four to five times, the charge is left
to grow from one end, as for pure Bi. The samples were
near to this end. The amount of Pb in various alloys,
determined by quantitative emission spectroscopy,?®
within #4109, is listed in column 2 of Table VI.

The samples for galvanomagnetic effects were cut
from the cubic single crystals used for dHvA measure-
ments. Typical samples sizes were 6.5 mmX2.0 mm
X 2.0 mm. The current was along the binary (length),
the transverse magnetic field A in the direction of the
trigonal axis and the Hall contacts in the bisectrix
direction.

C. Sample Alignment

The effective magnetic susceptibility X of a sample
can be written as X=X;-1iX,, where X; is the real mag-
netic susceptibility and X, the absorptive part, in our
case related to eddy-current losses in the sample. If the
primaries of the pickup coil are driven at 8 Kc/sec, the
contribution of X, is greater than X; at 4.2°K and low
magnetic fields. The eddy-current losses depend on the
magnetoresistance of the sample which Mase ef al.26
have shown to have maxima and minima as one goes
from the bisectrix to the binary axes in the trigonal
plane. Distinct minima are observed in the pickup-coil
signal every 60° which coincide with the binary axis
and enable one to align the sample to within 1°.

However, the final, most accurate alignment of the
sample is by the dHVA effect, because the periods from

2% N. W. H. Addink et al., Appl. Spectry. 10, 128 (1956).

%6 S, Mase, S. von Molnar, and A. W. Lawson, Phys. Rev. 127,
1030 (1962).
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TasLE I. Comparison of the oscillatory periods reported in Bi.

Axis Electron periods in 1075 G™1 Hole periods in 1073 G™!
Investigator Binary Bisectrix ~ Trigonal Binary Bisectrix Trigonal
Shoenberg®* 74 4.3 1.18
0.25 8.5
Brandt et al.c 4.3 1.2b 0.46 1.56
0.48 8.2
Steele and Babiskind 7.1 4.1 1.57
0.30 8.2
Lernere 6.8 4.0 1.2v 1.54
0.50 7.8
Brownf 7.05 4.1 0.48 1.38
0.52 8.2
Eckstein and Ketterson#® 7.6 4.5 0.50 0.50 1.6
8.9
Present 7.20 4.17 1.17 0.45 1.575
0.53 8.30
a See Ref. 3. e See Ref. 30.
b Ellipsoidal model-extrapolated value. f See Ref. 18.
¢ See Ref. 29. ¢ Y. Eckstein and J, B. Ketterson, Phys. Rev. 137, A1777 (1965).

d M. C. Steele and J. Babiskin, Phys. Rev. 98, 359 (1955).

different ellipsoids combine to form a simple pattern
only for H along the binary, bisectrix, or trigonal axes.
If the coil is aligned such that 6=0 for HJ| binary or bi-
sectrix, the trigonal axis can be located by looking at the
intersection of the two branches of the electron periods
(see Fig. 7). This way the uncertainty in the alignment
is kept less than 0.5°.

D. Theoretical Considerations

The detailed computations?” show that the differen-
tial susceptibility dI/dH can be written as
1 925

27 0K g®

EI_HS/ZPZ

al  4kT (27!'6)3/2

1 9P }
he

—1/2
{cos@—— —sind
P a6

*

« 2rp w Tpm
X 2 pi? cos(——?—— 27r;b7>cos
HP 4

p=1 Mo

—4m3pm*ckr  [4xpm*ckT
s P L
ehH ehH

I is the oscillatory magnetization per unit volume at
angle 0 to the applied field, m* is the cyclotron mass
defined as m*= (%2/21)(8S/0E), where S is the extremal
area and the derivative is evaluated at the Fermi sur-
face, « is an effective temperature? which takes account
of the broadening of the Landau levels. If the level
broadening is only due to collisions

k=%/mkr, )

where 7 is the mean collision time. The factor
cos(2mpm™*/mo) which comes from spin splitting of the
energy levels? is an approximation which holds very

211, M. Lifshitz and A. M. Kosevich, Zh. Eksperim. i Teor.
Fiz. 29, 730 (1955) [English transl: Soviet Phys.—JETP 2, 636
(1956) 7.

28 R, B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952);
A211, 517 (1952).

well for the magnetic field values used in the experiment.
The factor
cosf— (1/P)(dP/df) sind (5)

takes into account the components of magnetization
parallel and perpendicular to the magnetic field H.
These two terms are used very effectively to separate
the periods coming from various pieces of the Fermi
surface. If 0~90°, the cosf contribution is negligible;
then, only those pieces of the Fermi surface contribute
which have nonzero dP/df. We shall discuss the various
regions in Bi-Fermi surface where this factor is utilized
to advantage to measure dHvA periods, some of which
have never been previously observed.
For the majority of our measurements

Ardm*ckT/ehH>1

applies; it is then reasonable to retain only the first
term of the summation in Eq. (3) and replace sinh by
an exponential. If in the range of magnetic fields used,
we can neglect the contribution from the higher har-
monics, then the field and temperature dependence of
the amplitude dI/dH appears only through the factor

TH52 exp{—4n*m*ck(T+x)/ehH} . ©)

One may then determine the effective mass m™* from the
temperature dependence of the amplitude and then the
Dingle temperature from the field variation of the
amplitude.

III. EXPERIMENTAL RESULTS
A. Bismuth

The dHvVA oscillations were recorded as a function of
the direction of the magnetic field as it was rotated in
the three crystallographic planes. The bulk of the data
was taken at 1.3°K.

The periods corresponding to the electron and hole
Fermi surface of Bi have been reported by many
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TaBLE II. Summary of results of dHvA effect in Bi.
Electrons Holes Electrons
Area in Measured value (S/27m*)
1012 cm™2 of m*/my in in the
Periods in 1075 G! ellipsoidal Periodsin  Area in ellipsoidal ellipsoidal
Axes Crystal axis Ellipsoidal axis axis 108Gt 102cm™2 axis® axis

1 0.53+0.03 0.53 £0.03 18.0 0.45 £0.02 21.2 0.14 +0.02 15.60+2.8
7.2040.05

2 8.30£0.05 8.35 £0.05 1.1 0.45 +0.02 21.2 0.009-0.0009 15.4041.6
4.1740.05

3 1.1740.03 0.695+0.03 13.7 1.57540.005 6.1 0.11 +0.01 15.20£2.3

Average 154

a As measured by Kao, Ref. 15.

workers (cf. Table I). In no previous measurements
have the electron periods been observed in the shaded
area of Fig. 3. This is, as explained later, because of the
large Dingle temperature. Periods previously reported
in this region were obtained by extrapolating the data
taken in other directions assuming an ellipsoidal Fermi
surface; such an extrapolation cannot, of course, make
any comment on the nonellipsoidicity!® expected in the
electron Fermi surface. A major purpose of this study
is to determine the periods in the shaded area in Fig. 3,
as well as the periods in all other directions more pre-
cisely than previously reported, in order to observe
deviations from an ellipsoidal surface, if any. Measure-
ments on the hole periods we report, (taken at 1.3°K)
show far less scatter and extend over a wider range of
H than that of Brandt et al.?° taken at 0.1°K and below
using a torque method, indicating the relative sensitivity
of the two experiments, the only two that report dHvA
data for holes.

The data in each plane will be considered for elec-
trons and holes separately. The angular variation of
electron periods in the various planes is plotted as-
suming a tilted ellipsoidal model having a tilt of 6.5°
and our measured values of eigen periods along the
crystal axes® tabulated in column 2 of Table II. The
plots so obtained are shown by continuous lines in Figs.
2,3, and 7, and can be used for guidance in following the
data presentation. Similarly the plot for the angular
dependence of the periods of the hole ellipsoid in the
binary plane is shown in Fig. 8 by continuous lines. We
designate binary, bisectrix, and trigonal crystal axes
as X, ¥, and Z, respectively.

1. Electrons

(@) H in the Trigonal Plane. For H|| X, 6=0. Figure
2 shows the data in this plane. We observe two periods
0f 0.53X107% and 7.2X107% G~ in the binary direction.
The short periods are obtained from high-field differenti-
ated data.

2 N. B. Brandt, T. F. Dolgolenko, and N. N. Stupochenko,
Zh. Eksperim. i Teor. Fiz. 45,1319 (1963) [ English transl: Soviet
Iﬁzys.—_]'ETP 18, 908 (1964)] and the references mentioned
therein.

(1;062§:)f. L. S. Lerner, Phys. Rev. 127, 1480 (1962); 130, 605

(8) H in the Binary Plane. For H||Y 6=0. Figure 3
shows the data in this plane. Electron periods were
never observed previously in the shaded region around
the trigonal axis because the hole contribution is much
greater than the electron contribution. However, if the
coils are aligned along the bisectrix, the electron periods
in the entire plane can be measured without inter-
ference from the presence of holes as shown in Fig. 4.
This is due to the presence of the cross term (1/P)
(dP/db) sinf in Eq. (5). In the region around the tri-
gonal axis 6~90°, dP/df~0 for the holes and nonzero
for the electrons.

For H||Z, 0=0. In the trigonal direction only holes
are observed as shown in Fig. 5. Moving away from the
trigonal direction we get beats between the hole periods
and the electron periods. Though the hole periods domi-
nate in this region, we accentuate the beating pattern

i0
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Fi16. 2. The angular dependence of electron dHvA periods P in
the trigonal plane for pure Bi. The solid line is a fit assuming an
ellipsoidal Fermi surface and using the measured values of periods
in the crystal axis and a tilt angle of 6.5°.
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Fic. 3. The angular dependence of electron dHvA periods in
the binary plane. The tilt angle measured is 6.50+40.25°. The
shaded area shows the region where electron periods were never
reported. The solid line is a fit using an ellipsoidal Fermi surface
as in Fig. 2.

by tuning the filter to the electron period as shown in
Fig. 6. We can get electron periods more accurately by
rejecting the hole periods in this region and differenti-
ating the output of the filter.

(¢) H in the Bisectrixz Plane. For H|| X, 6=0. Figure 7
shows the data in this plane. While rotating towards the
trigonal axis the upper branch always dominates, so
much so that within 4-15° of the trigonal, we observe
only the upper branch as shown in Fig. 7. Just at the

ELECTRONS IN BINARY PLANE
ANGLE FROM THE
BISECTRIX AXIS 8=87°

AMPLITUDE (Arbitrary Units)

1 |
1xI0 4Gauss' 2 3 4 5

F1c. 4. The differentiated data showing electron periods in
the binary plane. 6=0 corresponds to the coil axis aligned along
the bisectrix direction.

trigonal direction the fundamental period disappears
and only the second harmonic is observed. This happens
because (1/P)(dP/df) of the two branches are now
equal and opposite in sign, but the second harmonics of
the two branches are still in phase. The symmetry of
the data makes it possible to determine the trigonal axis
accurately.

For H||Z, 6=0. The hole oscillations dominate as in
the case H||Z in the binary plane.
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2. Holes

The data for holes are shown in Fig. 8.

For H||Z, 6=0. For both the binary and bisectrix
plane we obtain the same results. The measured period
in the trigonal direction is 1.57540.005X 105 G~ de-
termined by averaging over a large number of periods.
The holes could be followed as far as £=75° from the
trigonal axis in the differentiated data at high fields.

n BINARY -PLANE
HOLES IN THE
TRIGONAL DIRECTION
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Fic. 5. The differentiated data showing hole periods in the
trigonal direction when 6=0. The period is 1.5754:0.005X107%
G™1. No electrons are seen.

For H||V, 6=0. In the trigonal plane we observe a
hole period of 0.4520.02X10~® G~!, independent of
orientation which agrees well with the measurements of
Brown!® (cf. Table I).

B. Bismuth-Lead Alloys

Since Pb in Bi acts as an acceptor we expect to de-
crease the electron and increase the hole concentration
as a function of Pb doping. This is what is found for a
series of five samples with Pb concentrations ranging

BINARY PLANE
HOLES AND ELECTRONS
8=+6° FROM THE TRIG. AXIS

AMPLITUDE (Arbitrary Units)

TUNED TO 0.25 cps

| i {
1x10"%Gauss™ 2 3 4 5

Fic. 6. The beat obtained from hole and electron periods in
the binary plane for §=-6° from the trigonal. The hole and
electron periods are 1.57X1075 G and 1.65X107% G™, respec-
tively. The beating pattern is accentuated by tuning the differenti-
ator output to the electron frequency =20.25 cps.
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ELECTRONS
BINARY TRIGONAL PLANE

PERIOD IN 10°3GAUSS™!
N o D wn N
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[
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F1c. 7. The electron data in the bisectrix plane. The solid lines
are the fit using the ellipsoidal Fermi surface as in Fig. 2. The
encircled point along the trigonal direction, of P=0.6X10"5 G,
is the second-harmonic period observed when the cancellation of
the fundamental period occurs (see Sec. III).

from ~1.5 to 66 ppm. The dHvA oscillations were
studied in the trigonal and bisectrix plane.

Figure 9 shows the data obtained in the trigonal plane
where electron periods for all the five samples were
observed. The amplitude of the oscillations decreases
very rapidly with increased doping, presumably because
of the rise in the Dingle temperature, since the mean
collision time 7 decreases by a factor ~ 50, as shown later

1.0
Ith
[72]
2
<
lolD
‘o
z
~ 0.5
8 HOLE PERIODS IN
z TRIGONAL-BISECTRIX PLANE
w
Q.

020 40 60
BIS. 6(DEGREES)

F16. 8. The data on holes in the binary planes. The solid line
is an ellipsoidal fit to the data using the eigenperiods obtained
with H along the three crystal axes.

1 1 1 1 1 _J
80 IGIOO 120 140 160 IBK%

in Sec. V. Measurements for hole periods in the binary
plane were taken for all the samples except alloy 3,
as shown in Fig. 10. The hole and electron amplitudes
in the trigonal direction in alloy 5 are too small to be
observed. The electron periods along the trigonal axis
are measured by looking at the intersection of the two
branches as shown in case of Bi in Fig. 7. The electron
period for alloy 5 in the trigonal direction is however
too small to be measured.

The periods P,, and the percentage change
(AP/P),,, for H in the crystallographic axes for the
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various alloys are listed in Table VI. For all the alloys,
we observe that the area of the electron ellipsoid de-
creases by the same percentage ratio in all the direc-
tions (Fig. 9). This was also observed by Brandt and
Ruzumeenko.?! For alloy 1 the change AP for electron

ELECTRON PERIODS N ALLOYS
BINARY-BISECTRIX PLANE

F1c. 9. The angu-

T
lar dependence of the ~ 86
electron periods of g
various Bi-Pb alloys %s
in the trigonal plane. z
S4 -
@
w
o

PURE BISMUTH
X ALLOY |
©--0 ALLOY 2
*—& ALLOY 3
*—u ALLOY 4
*—e ALLOYS

B(‘I‘N ) 33%
: 9 (DEGREES) :

period in the trigonal direction is less than the experi-
mental uncertainty.
IV. RESULTS AND DISCUSSIONS
A. Bismuth
1. Carrier Density

The data in Figs. 2, 3, and 7 on the electron Fermi
surface show that it is well fit by the ellipsoidal model.

HOLE PERIODS IN ALLOYS
BISECTRIX-TRIGONAL DIRECTION

T
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] x—X ALLOY |
& g 0—0 ALLOY 2
: a—4 ALLOY 3
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Fic. 10. The angular dependence of hole periods of various
Bi-Pb alloys in the binary plane.
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The number density for an ellipsoidal Fermi surface is
given by

n=(8m/3)(e/mhc)*2(P1PyP3)~1/2, )

where Py, Ps, and Ps are the eigenperiods for the ellip-
soids listed in column 3 of Table II. We have obtained
the period P; along the “3” axis of the ellipsoid (i.e.,
along the tilt) by extrapolating the ellipsoidal fit. Such
an extrapolation leads to a maximum uncertainty of
approximately 59, in the determination of Pj, as esti-
mated from the maximum experimental error existing
in the data at #5° from the tilt angle in Fig. 3. The
value of 7 obtained is

7n=0.9620.05X10""/cc.
For the hole ellipsoid we have obtained
$=3.0040.10X10"/cc.

We do observe a slight deviation from the ellipsoidal
fit (~39%) in the small period branch in the vicinity of
the binary direction in Fig. 2. Such a deviation would
correspond to an addition of a small volume at the tip
of the long cigar-shaped electron ellipsoid (anisotropy
ky/k3~12.6) and would not increase # by more than 1%.
Hence the stated error in the determination of # is that
due to the uncertainty in fitting the experimental periods
to an ellipsoidal model, rather than in deviations from
it. The ratio of p/n=3 within the experimental error.
Williams?! from his measurements on Alfven wave
propagation in Bi, obtained N,=N,=3.102-0.10; N’s
denote the total density of carriers. Combining this
with our results shows there to be three electron ellip-
soids and one hole ellipsoid, in agreement with the earlier
conclusion of Jain and Koenig.

2. Effective M ass and Dingle Temperature

The electron effective mass in the binary direction
was determined from the temperature dependence of
the amplitude as expressed by Eq. (6). Our value
m*=0.011 coincided with that obtained by cyclotron
resonance.’® Consequently, we felt confident in using
the effective masses as determined by cyclotron reso-
nance!® to determine the Dingle temperatures for other
orientations from the field dependence of the ampli-
tudes measured at fixed temperature. The Dingle
temperature for holes for H in the trigonal direction
is k,=0.2°K for m*=0.067 m,.

For electrons, k,=0.70°K in the binary direction and
#,=0.65°K at 9.5° from the tilt angle in the binary
plane, slightly lower than reported previously.® The
average values of the collision broadening obtained
with the aid of Eq. (4) from the low field galvanomag-
netic measurement of Zitter’s®? and holes are, respec-
tively, x.9=0.013°K and ,°=0.005°K. Our samples
have a residual resistance somewhat less than Zitter’s.

3 G. A, Williams, Phys. Rev. 139, A771 (1965).
32 R. N. Zitter, Phys. Rev. 127, 1471 (1962).
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We observe then, that the collision broadening in the
dHvA effect for electron and holes, respectively, is
greater than 46 and 40 times the transport result.
Shoenberg and Stiles® in their dHvA data on potassium
observed that the dHvA collision-broadening is 20
times what one expects from resistivity measurements.
They attributed this discrepancy to the field-dependent
reduction of the dHvA amplitude due to causes other
than collision broadening, for instance slight field
inhomogeneity over the specimen. However, we ex-
pect such variations to be quite small since the interval
AH between the two consecutive dHvA oscillations
in Bi is much greater than the field inhomogeneity we
have in the electromagnet. We cannot account for the
large difference between Dingle temperature, which
measured the lifetime in a Landau level and the collision
broadening as determined from transport. It would
appear that many transitions occur between Landau
levels that do not contribute to the resistivity.

We can ascertain the ratio of the amplitudes of
holes to electron periods in any direction expected
from the difference in Dingle temperatures. For ex-
ample, in the trigonal direction, the effective mass
of the holes is essentially the same as that of the elec-
trons from Eq. (3) then

(dl/dH)n
l (dI/dH),

[41r3m*kc (kp— Kn):]
eh
H~33kG.

trig

=1/20 for

The analysis shows why it is difficult to observe any
electron periods in the trigonal direction. We were
only able to observe the electron periods from H in the
trigonal direction by eliminating the contribution from
the holes, as discussed earlier.

3. Band Structure

(a) Elecirons. It is quite clear from the foregoing
discussion that the electron Fermi surface in bismuth
can be very well described by three equivalent highly
eccentric ellipsoids in momentum space, that one
principal axis of each ellipsoid is parallel to a crystal
axis of the twofold rotational symmetry (the binary
axis) and that the other two principal axes are tilted
about 6.5° from the trigonal and bisectrix axis. However,
the form of the energy momentum dispersion E(p) has
been the subject of some recent controversy. In 1939
Shoenberg® proposed a simple parabolic model for the
tilted ellipsoid for which, in the principal axis system
of the ellipsoid, the dispersion relation is given by

21%1

E. ®)

Z’WLZ 21%3

Shoenberg,? from the periods and the temperature vari-
ation of the amplitude of the dHvA oscillations, ob-
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tained the values of energy independent components of
the mass tensor: m,=0.0049 m,, mo=1.20 m,, m3=0.012
mo, and E=17.7 meV.

The existence of such a small mass means that there
is an interaction with another band (or other bands)
from the sum rule for the effective mass. Lax and col-
laborators!! from magneto reflection experiment on Bi
deduced that in fact the energy gap between the con-
duction and valence bands is small (~15 meV) and
that the Fermi level lies in the nonparabolic region of the
conduction band. The deviation from parabolic behavior
for an isotropic surface in the vicinity of a small band
gap was derived by Kane?? for In Sb. Lax,!! modifying
Kane’s results for Bi, proposed a nonparabolic dispersion

2 2 2
LA IR E(1+E/E,), ©)

2my 2ms  2ms

where 1, 2, and 3 refer to the principal axis of the ellip-
soids and the m’s are the effective masses at the bottom
of the conduction band. The surfaces of constant energy
for this model are clearly ellipsoidal; we shall, therefore,
refer to this model as ellipsoidal nonparabolic (ENP).
The criterion for the validity of Eq. (9) is that all three
principal components of 7 be small, because of a single
small gap.

Cohen'® pointed out that since the effective mass
component ms~m, the dispersion relation should be
parabolic in the 2 direction. Cohen’s calculations for
minima at the L points in the Brillouin zone give

2 9 2 1 2\ 2
ﬁ_+ﬁ+fi=E(1+E/Eg)~—<—P2—) (10)

2m1  2me 2'}'}13 9 2ms

which differs from Eq. (9) only by the right-hand term.
This expression has a nonparabolic dispersion in the 1
and 3 directions and is parabolic along 2. The resulting
constant energy surfaces are nonellipsoidal; the model
will be referred to as NENP. Weiner!* in dHvA studies
in Bi and Bi-Te alloys and Kao'® in cyclotron resonance
of Bi used the NENP model to interpret their data.
In the work of Kao,!® where E=22 meV and E/E,=0.5
were used, and in the subsequent recomputation of this
data by Kao et al.?® using E=25 meV and E/E,=5/3,
he derived a value for # which is 309, too large, using
the NENP model. The only experimental data involved
are the cyclotron masses. The discrepancy is such as to
suggest that the NENP model yields an integrated
volume in % space that is too large. Weiner’s work is
insensitive to the difference between the two models.
Since the cyclotron mass m* measures the rate of
change of area S with energy, the ratio S/m* give the
curvature of the energy-momentum surface. Combining
the present measurements of S with the measured
values of m* ' and comparing (S/2rm*) so obtained
with the values computed on the basis of the known

3 E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
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TastE IIL. Variation of 9 [Eq. (14)] and
S/2xm* [Eq. (11)] with E/E,.

(S/27em*)ENP (S /27m*)ENP

LE/E, 7 (S/27xm*)ENP forE=25 meV for E=27 meV
1 1.18 0.667E 16.7 18.0
5/3 1.19 0.615E 154 16.6
9/5 1.22 0.609E 15.2 16.4
2 1.23 0.600E 15.0 16.2

models of electron Fermi surface, we are able to (i)
decide about the probable nature of the dispersion re-
lation and (ii) obtain the values of Fermi energy E and
the energy gap E,.

The ENP model gives the same result for all direc-
tions of the magnetic field:

( S )ENP E(1+E/E,) 1)
2rm* 1,2,3_ (142E/E,) ’
Cohen’s model gives
S \NENP  E(14-E/E,)
( ) =__.__Q~ (12)
2em*/ (14-2E/E,)
and
S \NENP  E(1+E/E,)
(=) = W
27rm* 3,1 (1+2E/Eg)
where (in Kao’s'® notation)
4012 s 1
-,
G+ H\K
1—Fk2? 1—2k2 .
I':I: k2 K(k)— k2 c\k)], (14)

B= (pt2—3) 201,
b={E/E,(1+E/E)+1),

and K (k) and (k) are the elliptic integrals of the first
and second kinds. Combining Eqs. (12) and (13)

S NENP S NENP
= 1, .
(217‘1%*)1,3 (271‘7%*)2

Thus n#1 will indicate different dispersion in dif-
ferent directions.

From the results tabulated in Table III, we note that
the deviation of (S/2xm*); NENP from (S/2mrm*),;NENP
is of the order of 209,. From the last column of Table
II, we note that the measured value of (S/2xm™*)s,1
does not differ from (S/27xm*), by more than 29, with
maximum uncertainties in the determination of .S and
m*, however, of 5%, and 109, respectively. Thus the
factor .S/2mm* is constant for all direction within the ex-
perimental uncertainties, and » is unity. This is a strong
argument for disregarding the NENP model, for which

(15)
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Tasre IV. Comparison of various values of the Fermi and gap energies in meV.

Energy Brown Hebel and  Brandt Grenier Smith  Esaki and
meV et al.® Engeler® Weiner® Wolffd et al.° et al.t et al.e Stilesh Present
E, 25 22 22 27 23 cee 27.6 15 25.0
E, 15 24 46 15 oo cee 15.3 20 15.0
E, .. 11.8 .. 11.2 11.9 10.9 15 11.0
a See Ref. 12. e See Ref. 29.
b See Ref. 13. £ G. G. Grenier, J. M. Reynolds, and J. R. Sybert, Phys. Rev. 132, 58 (1963).
¢ See Ref. 14. € G. E. Smith, G. A. Baraff, and I. M. Rowell, Phys. Rev. 135, A1118 (1964).
d See Ref. 34. b L. Esaki and P. J. Stiles, Phys. Rev. Letters 14, 902 (1965).

n=1.20. The other alternative is the ENP model, for
which =1 from Eq. (11). From Table II, the experi-
mental value of S/2rm* is 15.4. To obtain this value
from the ENP model requires E/E,=5/3, as shown in
Table III. Then E=25.0 meV and E,=15.0 meV.
These values of the Fermi and gap energies are in good
agreement with previously reported values (Table IV).
(With respect to the results of Hebel and Wolff3* in
Table IV, however, though they find that E=27 meV
fits their data significantly better than E=25 meV, we
would require E,=8.8 meV were E=27 meV.) The
ENP model, considered as an empirical model, de-
scribes the conduction band very well. As shown later
it is also compatible with our data on Bi-Pb alloys, in
which we observe that the areas of the ellipsoids shrink
at the same rate in all directions. Thus we conclude
that the same dispersion curve holds for electrons in all
directions.

There occurs some small deviation from the ellip-
soidal model in the region within 59 of the binary axis
for the small period branch in Fig. 2. This deviation
could either be attributed to some small nonellipsoidal
present or to the fluctuation of the Fermi energy as a
function of the magnetic field. The latter effect, due toa
fractional change in the Fermi energy Er whenever
Landau bands go through the Fermi surfaces, contri-
butes only when Ep/%w, approaches unity w. being the
cyclotron frequency. In the range of measurements of
1 to 10 kG, Epfiw,>1 for this particular electron ellip-
soid and this effect could be neglected. We attribute
this small deviation then to the presence of non-
ellipsoidality. Such a small deviation from an ellipsoidal
model was recently reported by Edelman and Khaikin3?
in their measurements of the cyclotron resonance in Bi.
In order to reconcile the two facts that the dispersion
should be the same in all directions and a certain amount
of nonellipsoidality should be present, one should some-
what modify NENP model and possibly include some
additional term. This has been also pointed out by
Dimmock?® who showed that Cohen neglected some
terms in deriving Eq. (10), which are comparable to

( 3 L. C. Hebel and P. A. Wolff, Phys. Rev. Letters 11, 517
1963).

3V, S. Edelman and M. S. Khaikin, Zh. Eksperim. i Teor. Fiz.
49, 107 (1965) [English transl: Soviet Phys.—JETP 22, 77
(1966).

3 J, O. Dimmock, Lincoln Laboratory Reports (MIT) No. 1,
1964, p. 41 (unpublished).

some of the terms already present in Eq. (10); and that
a more general dispersion relation should be used. In
the main, however, the small deviations from an ellip-
soidal Fermi surface contributes only ~19, to the
density of states. What is significant is that the energy
dispersion in the heavy mass direction in % space is as
great as in the light mass direction.

(b) Holes. The hole Fermi surface is Bi is traditionally
described by the parabolic dispersion relation

Bip2+Bepy >+ Bsp.t=2moE,,

where §’s are the components of the hole inverse mass
tensor and the measured values due to Kao!® are
B1=B:=14.8 and B3;=1.32. Since B’s are small, the
deviation from parabolic behavior should be small on
the basis of the k-p approximation. In what follows
we shall consider the parabolic dispersion relation for
the hole band.

The dHvA data as shown in Fig. 8 agree well with
the ellipsoidal surface. The speculation of Brandt ef al.3”
that the hole Fermi surface may deviate from ellipsoidal
shape is inconsistent with our data. The Fermi energy
E, for holes is E,= (efi/m*c)1/P. For H||3; P=1.575
X 1075 G7! and m*=0.067 which gives a Fermi energy
E,=11.0 meV. As shown in Table IV, this is in good
agreement with the earlier measurements.

B. Bismuth-Lead Alloys

Since the ENP model seems appropriate for the con-
duction band of pure Bi, we shall use it to compute the
relevant parameters in Bi-Pb alloys. The area .S; of the
ellipsoid normal to a direction 7 is

S;=C:E(1+E/E,), (16)

where C; involves the masses at the bottom of the band.
Expanding about the Fermi energy, assuming E, con-
stant, gives (exactly):

(§> B (14+2E/E,) (AE>

E/E, (AE
S/)n (I+E/E)\E

(= 7
1+E/E, E>,. (172

with
(AS/8)a={1—(+|AP/P|.)7"}. (17b)
8 N. B. Brandt, A. E. Dubrovskaya, and G. A. Kytin, Zh.

Eksperim. i Teor. Fiz. 37, 572 (1959) [English transl: Soviet
Phys.—JETP 10, 405 (1960)].
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TasLE V. dHvA data on Pb-doped Bi alloys.

Periods in 10~® G™' and |AP/P| in 9%

&xis Electrons Holes (AS/S)n  (AS/S)p AE, AE, AE=AE,—AE,
Alloys Bisectrix Binary  Trigonal Average Trigonal % % meV meV meV
Pure Bi 8.30 7.20 1.17 1.575
Alloy 1 8.45 7.33 ~1.19 1.52
1.81 1.80 ~1.7 1.8 3.5 2.0 3.6 0.32 0.40 0.08
Alloy 2 8.70 7.55 1.22 1.43
4.82 4.86 4.27 4.65 9.2 4.6 10.1 0.73 1.01 0.28
Alloy 3 9.00 7.80 1.25 1.34
8.40 8.30 6.80 7.83 14.9 74 17.5 1.18 1.93 0.75
Alloy 4 9.94 8.6 14 1.0
19.9 194 19.6 19.6 36.5 16.0 57.4 2.58 6.31 3.83
Alloy 5 11.2 10.0
34.9 38.9 36.9 27.0 445

The change in hole Fermi energy is given by
(AE/E),=(AS/S),={1—|AP/P|,)™"}, (18)

where AP/P=(Panoy— Pgi)/Pri, and similarly for
AS/S. From Fig. 11, we note that the areas of the elec-
tron ellipsoids decrease with doping by the same
percentage ratio in all directions, showing that the ENP
model should remain an appropriate model for the con-
duction band of the alloys. Taking the average | AP/P|
and |AP/P|, as listed in Table V, we compute the
Fermi energy shift AE, and AE, by using Egs. (17a),
(17b), and (18); the value of the Fermi energies used are
E,=25.0 meV and E,=11.0 meV. The changes in the
overlap AE= (AE,—AE,) are listed in the last column
of Table V. From the values of AE for the various alloys
we conclude that the overlap of the conduction and
valence bands does not change appreciably. The move-
ment noticed in alloy 4 may be attributed to the un-
certainty in the determination of the low-amplitude
dHvA period for holes. Thus the conduction band and
the overlapping valence neither change their shape nor
their relative position, under light doping.

If An and Ap denote the change in the electron and
hole concentrations per ellipsoid, respectively, then the
total change in number of carriers A is given by

A=3An+Ap (19)

as there are three electron ellipsoids and one hole

TasLE VI. Results

ellipsoid. Using Eq. (7), we have

An/n=1—1+|AP/P|.)%2,
Ap/p=Q1—|AP/P|,)*/*~1.

Using our values n, p, and |AP/P|’s we obtain the
value of A as listed in Table VI. If Ny, is the number of
Pb atoms contributing a unit difference in the electron
and hole concentration, then Np,=n¢C/A, where
70=3.2X1022/cc is the number of Bi atoms/cc and C is
the concentration of Pb in Bi as determined by quanti-
tative emission spectroscopy.?® The average value of
Ny, is found to be 1.86 in contrast to 55 atoms of Pb
contributing one electron obtained by Brandt et al.?!
On the basis of rigid bands, one would expect Np,=2,
in agreement withour measured value.

V. GALVANOMAGNETIC RESULTS ON
Bi-Pb ALLOYS

The value of the carrier concentration A can be ob-
tained, without dHvA effect, by a study of the resistivity
and Hall coefficient as a function of magnetic field. It
was originally hoped that the galvanomagnetic measure-
ments would serve as an independent check on A. How-
ever, the dHvVA values turned out to be more accurate.
Combining then our dHvA and galvanomagnetic data,
the electron and hole mobility can be obtained. A simple
analysis for moderate magnetic fields and low tempera-

on Pb-Bi alloys.

Conc. of Pb in ppm

3An Ap A=3An+Ap N, N,
Alloys Ce Cb 10 /cc 10%5/cc 108 /cc 1017 /cc 10Y/cc  Npp=mno C/A
1 12 ~1.5 9.0 16.5 25.5 291 3.16 1.88
2 90 3.5 20.0 46.8 66.8 2.80 3.47 1.68
3 230 7.7 32.0 82.2 114.2 2.68 3.82 2.14
4 520 22 70.8 292.8 363.6 2.29 5.93 1.93
5 800 66 112.5 1170.0 1282.5 1.87 15.83 1.64

Average Np,=1.86

& The concentration of Pb assuming unity segregation coefficient.

b The amount of Pb estimated by quantitative emission spectroscopy.



796 R. N. BHARGAVA 156
TaBrE VII. Results of the galvanomagnetic data on Pb-Bi alloys.
Measured mobilities
o I Corrected mobilities Effective A

Axan pp?=12X10" p,0=4.2X107 Up fin Electrons Holes
Alloy 105 /cc a b cm?/Vsec cm?/Vsec cm?2/Vsec cm?/Vsec 1015 /cc 10% /cc
Alloy 1 25 1.8X108 1.2X10t2 1.0X108 1.2X107 1.1 X108 1.7 X107 26 64
Alloy 2 70 1.9X108 2.7X10'2 3.7X108 5.4X108 3.8 X105 6.2 X108 69 150
Alloy 3 123 5.5X108 3.7X1012 2.4X108 3.8X108 2.44X 108 4.2 X108 121 240
Alloy 4 328 1.0X108 19.3X1012 5.9X104 1.2X108 5.9 X104 1.23X108 415 624
Alloy 5 1176 3.7X10° 99 X102 2.0X104 3.2X108 2.0 X10¢ 3.2 X108 1655 1552

tures is possible if the trigonal axis is parallel to H. If
H is chosen such that uH<1, but not so large that the
quantum effects become important the binary resistivity
pzz and Hall coefficient R can be combined to give®

»—2Aa\ 1
P:cz_lz 6(——“""‘>“’“+
b H? b

A%

, (20)

R af 1 A
S ——(—)+—, (21)
Pzz b\H* b
where
a= _‘Nn/,uflli2*+Np/:U’p2’ (22)
b= N/ pipe* 4N p/tip. (23)

Here N, and N, are the total concentration free
electrons and holes; i= (u1+u2*)/2 is the average of the
mobilities of the electrons in the trigonal plane; p, is
the mobility of holes in that plane; u1, pe, and us are the
mobilities in the principal direction of each ellipsoid;
wo®=pus c0s%0,+pus sin®f,, where 6, is the tilt angle.
Plotting p.z ! versus H—2 and R/p,, versus H~2 should
yield straight lines. The extrapolation of the linear
region of Egs. (20) and (21) between 2 and 5 kG gives
intercepts A2/b and A/b, respectively. The ratio of the
two intercepts yields A directly. These values of A,
listed in Table VII, though less accurate, agree well with
the ones obtained from dHvA effect. With the know-
ledge of A, slope, and intercept of Eq. (20), we compute
the value of @ and 4. In order to calculate the mobilities
w1 and p, from ¢ and b ;we must know N, NV, and the
ratio ui/ue*. Zitter? has shown from his low-field gal-
vanomagnetic measurements that the relaxation time
tensor 7 is nearly isotropic. We shall assume that 7 is
isotropic in the alloys as well; i.e., that the mobility
anisotropy is given by the mass anisotropy which, from
the data, does not change on alloying. With Zitter’s
value of (ui/us*)pi and the value of N, and N, from our
dHvA data we compute p; and p, from Egs. (22) and
(23) listed in Table VII.

The main scattering mechanism we need be concerned
with is that due to ionized impurities. To obtain the
contribution of the ionized impurity scattering to the
mobility, we subtract the intrinsic scattering rate from

88 B. H. Schultz and J. M. Noothoven van Goor, Philips Res.
Rept. 19, 103 (1964).

the total rate. If u; and ug; are the mobilities for alloy
and pure metal, respectively, the ionized scattering
mobility p, is given by

pa=p1/ (1—p1/pss);

a similar expression holds for holes. The values of ug;
for electrons and holes used are 4.2)X107 cm?/V sec and
1.2X107 cm?/V sec as obtained by Zitter®? at 4.2°K.

To explain the ionized impurity scattering, two ex-
treme cases have been discussed in the literature ac-
cording as whether 2R>1 or kR<K1, where % is the
carrier wave number and R the range of the scattering
potential. For our case, kR>>1, as shown later. This case
has been discussed for the semiconductors by Conwell
and Weisskoff?® who used the Rutherford scattering
formula cut off for small angle scattering and independ-
ently by Brooks and Herring,* and Dingle*! who use
the Born approximation and a screened Coulomb
field. The most appropriate computation for our case
is that of Dingle,* who also considered the simul-
taneous presence of holes and electrons in degenerate
semiconductors.

Under Thomas-Fermi screening, it is well known that

U= (e*/Kr)e"/®

is the potential of an electron in the field of a screened
singly ionized impurity, K being the dielectric constant
of the medium and R the screening radius. If holes and
electrons are both present, the screening radius for the
degenerate system is given by

R2= (47,—32/K){n(e,,)+n(ep)} ’

where 7(e)’s are the density of states of the particular
carrier at the Fermi energy. For a parabolic dispersion
law n(e)=2(N/¢), where N is the total number of the
particular carrier and e is the density of states energy.”
For pure Bi, ¢,=15.4 meV, ¢,=11.0 meV, and N,=N,
=3.0X10"7/cc. Using these values we obtain R™2
=0.80X10'2 cm~2. The value of R~2 does not change
by more than 29 from pure Bi to the highest Pb-doped
sample.

3 E. M. Conwell and V. F. Weisskopf, Phys. Rev. 69, 258
(1946); 77, 388 (1950).

4 Cf. P. P. Debye and E. M. Conwell, Phys. Rev. 93, 693
(1954).

4 R. B. Dingle, Phil. Mag. 46, 831 (1955).



156 Bi

Dingle’s expression for the relaxation time is

K2m*23
r=—
2w N et

{1n<1+s>—1—j—£] L

where m* is the isotropic effective mass and » the Fermi
velocity of the carrier, N; the number of scattering
centers, K the dielectric constant, and {=4k2R2. £is a
measure of the ratio of the range of the scattering po-
tential R to the de Broglie wavelength of the carrier.
Using the values of R and & we obtain §,=102.0 and
£,=231.0. For pure Bi, since £>1, we can approximate
the expression {In(1+£)—£/14£} by (Iné—1) in Eq.
(24).

The dependence of the mobility u, on the number of
scattering centers is then given by

E, (E./m*)\?
i EoPE @)
N i (ln&,.— 1)

For electrons, if we use the relation between m* and E
as derived on the basis of Eq. (9), m™* being the mass in
the binary direction, we note that the factor within the
bracket in Eq. (25), does not change by more than 29,
from one alloy to another. For all practical purposes
we can neglect the variation of this for electrons. Since
the number of scattering centers is some constant
multiple of A we can plot logu versus log(Aes™Y), where
A 1= A"1E,. The plot showed in Fig. 11 is a straight
line of slope approximately —1.0. Thus Eq. (25)
qualitatively explains the variation of u with the number
of scattering centers.

For holes, m* is independent of energy, we have

(Ep) 3/2

Up~———. (26)

’ N,(logt,—1)
Figure 11 shows the plot u, versus logAess, where Aest
=const X N;(logé,—1)/E,%2 The slope of the line is
—1.2. Since £{=4k2R? we note that (kR),=35.0 and
(kR),=2.8 for pure Bi. As kR~1 for holes, the Born
approximation is not very good. This may be the reason
that the straight line for holes in Fig. 11 deviates from
a slope of 1.0.

VI. CONCLUSION

It is confirmed that in Bi, the electron Fermi surface
consists of three ellipsoids which are very well described
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Fic. 11. The variation of electron and hole mobilities as a function
of doping. Ae¢s is related to A as defined in the text.

by an ellipsoidal, nonparabolic dispersion relation, and
that any nonellipsoidality present is small; the hole
Fermi surface is ellipsoidal. From the studies of lightly
Pb-doped Bi alloys it is established that Pb acts as a
single valence acceptor, and that for these low dopings
band edges do not move with respect to other. The
mobilities in these alloys are dominated by the ionized
impurity scattering.
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