776 A. P.

The results for the dispersion relations using the
model E(g) are summarized in Fig. 4. Nearly 900
reciprocal lattice points were included in the summations
in Egs. (13) and (14). Even so, the sums have not con-
verged completely, as evidenced by the small splittings
at the zone boundary in the [0001] direction. Com-
paring Figs. 1 and 4, it is clear that the model
pseudopotential has generally been more successful in
reproducing the observed frequencies than that com-
puted from first principles. There are, however, im-
portant deviations as far as the transverse branches are
concerned.

To summarize, phonon frequencies in magnesium
computed using pseudopotential results obtained from
first principles show poor agreement with experiment. A
model pseudopotential involving two parameters has
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proved more successful in this respect. Comparison of
the pseudopotentials and E(g) for the two cases shows
a difference in the region beyond kp. This suggests that
better agreement with experiment could be obtained if
the accuracy of the basic E(g) were improved by com-
puting the core energies and orbitals more carefully.
We hope to examine this question shortly.
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The work of Kohn is generalized to more than one dimension for a finite-band model by a simple algebraic
procedure. Some results not previously derived for more than one dimension are obtained. The differences
between the analytic properties of the model and those of the complete Hamiltonian are briefly discussed.

INTRODUCTION

T is well known that the motion of an electron in a
crystal is governed in the one-clectron approxi-
mation by a Hamiltonian which is periodic in the lattice.
From this it follows that the wave functions must have

the form
d)n(l’,k) = eik-rUn (l‘,k) )

where U, has the same periodicity in r as the Hamil-
tonian. If the wave functions are to remain finite as
r— o in any direction, then k must have only real
components. However, if the crystal has a boundary,
l.e., say for x>0 we have only free space, then we cannot
restrict &, in the crystal to be real since, if &, has a
negative imaginary part, ¢.(rk) will not diverge as
x— — oo and hence is an acceptable solution. Clearly
then, these solutions, which are simply the analytic
continuation of the Bloch solutions for complex k, will
have ramifications in problems involving surfaces such
as the spectrum of allowed surface states or the match-
ing of electronic wave functions at the boundary of a
crystal in a low-energy electron-diffraction experiment.
Furthermore, solutions with complex k also appear in
the theory of electron tunneling and in any physical

* Supported in part by National Aeronautics and Space
Administration Grant No. NSG 589.

problem involving a “tailing off”” of the wave function
in some classically forbidden region. Finally, we should
mention that the rate of decay of Wannier functions is
intimately related to the analytic properties of the
Bloch waves.

The analytic properties of Bloch waves and Wannier
functions have been exhaustively studied by Kohn! for
the one-dimensional case. However, his methods are
based on the theory of ordinary, i.e., not partial
differential equations, and cannot be extended to two
or three dimensions, not even to a one-dimensional
section of a two- or three-dimensional band structure.
The latter follows from the fact that in one dimension,
bands cannot overlap, whereas in more than one
dimension, one-dimensional sections of the energy may
overlap. More recently, Blount? and Heine? have proved
some general results concerning the analytic properties
of the energy function, but it is not clear how to obtain
the analytic properties of the Bloch waves from their
work.

All the previously mentioned work makes liberal use
of theorems concerning the analytic properties of

1W. Kohn, Phys. Rev. 115, 809 (1939).

2. 1. Blount, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1962), Vol. 13,
pp. 305-373.

3V. Heine, Proc. Phys. Soc. (London) 81, 300 (1963).
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functions of a complex variable, which many workers
in the field may find obscure. Furthermore, since in
actual problems the analytic properties will often be
obtained from a finite-band model, it is not a prior:
obvious that the properties of the approximate treat-
ment reflect those of an exact treatment.

The purpose of the present work is to remedy this
situation by showing that some analytic properties of
an z-band model can be derived by simple algebraic
means and that, furthermore, some results which have
previously been derived only for the one-dimensional
case are valid for an arbitrary number of dimensions.

In particular, we have investigated the analytic
behavior of the energy as a function of the complex
variable k.. We have also derived the analytic structure
of both the Bloch waves and the crystal momentum
representation of the operator x in the neighborhood
of a singular point and found these results to be identical
to the exact analysis for a one-dimensional crystal. The
analysis is applicable to any finite band model in which
one component of k is treated as a complex variable
and the other two are taken as real. The only require-
ment that it be valid at a given point in k space is that
no more than two bands meet at that point.

Differences between our results and the results ob-
tained from treating the exact Hamiltonian are dis-
cussed in the conclusion.

THE n-BAND MODEL

Let H, be the one-electron Hamiltonian which is
periodic in the crystal. We shall not specify whether
we are dealing with one-, two-, or three-dimensional
problems, or whether Hy contains spin-orbit coupling,
so that our results will be valid for the most general case.

The Schrodinger equation for the Bloch wave is then

Hopi(r)k) = e (k)gi(r k), (1

where 7 denotes the band and the spin state if spin-orbit
coupling is included. Equation (1) may also be written
in terms of the cell periodic function U;

HI)Ui(rk)=e:(R)Us(rk), )
where
H(k)=¢ " tH ikt (3)
and is Hermitian for real k. For example, if

H0=?2/2m+ V(r) ’
H (k) =Ho+7ik - p/m~+7212/2m.

then

If we include spin-orbit coupling, H(k) is still a
polynomial of second degree in components of k. The
U,(r,ko), for any ko, span a complete set of orthonormal
functions for any function that is periodic in a cell.
Hence we may write

Unrk)=>;A4;"U,;(t ko). 4)

In this representation the eigenvalue equation
becomes

2 Hij(k)a;= eas, ®)

A1) = 0: () /N,

and where a;" (k) is a solution of Eq. (5), with
e=en(k), and N,, is a normalization constant. In what
follows we shall assume that the summations in Egs.
(4) and (5) go only from =1 to i=# instead of over all
1. This is the mathematical statement of the n-band
model, its justification being that if » is chosen large
enough, we expect to approach the exact solution as
closely as we want. Or, in the language of perturbation
theory, we expect that the interaction of bands very
far away in energy should have a negligible effect.
Hence we expect that as #— « we should obtain the
properties that are characteristic of the original Schrs-
dinger equation. The limitations of this statement are
more thoroughly examined in the conclusion. Further-
more, this method enables us to study the differences
between a finite-band model, with which it is easiest
to do actual calculations, and the infinite-band case
which, presumably, reflects the true state of affairs.

where

ANALYTIC PROPERTIES OF ¢(k)

For convenience we shall treat only %, as complex,
all other components of k taken as real.

It follows from Eq. (5) that since H;;(k) are the
elements of an Hermitian matrix for real k, then e(k)
is real for real k. Furthermore, expanding the secular
determinant we have

P(e)=e+vi(k)er Hya(k)er 2 - -
+7n—l(k)e+7n=01 (6)

where the ; are polynomials in components of k. We
can prove that for real k all v; are real by noting that
Eq. (6) can be written

P)=[e—ea(k)JLe—ex(k)]- - -[e—ea(k)]=0 (7)

and hence the v; are sums of products of the ¢;(k) which
are real for real k. Thus for any k,

vi* (&) =i (k¥). ®)

Hence taking the complex conjugate of Eq. (6) and
using Eq. (8), we have

* (k) =e(k*), )

even if spin-orbit coupling is included.

It also follows from Eq. (6) that since the e;(k) are
solutions of an algebraic equation whose coefficients
are analytic functions of components of k, then the
e;(k) will be analytic functions of k except at a set of
isolated singular points corresponding to the branch
points of the energy functions. These branch points
must always exist because the equation ¢;(k)—¢;(k)=0
must always have at least one solution, since e;—¢; is
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an analytic function of k which must assume every
value including zero at least once (except, of course,
the case e;— ¢;=const).

Let us now examine the behavior of ¢(k) near a
branch point, i.e., near a point such that e;(g)=¢;(g)
=¢(g). Thus from Eq. (7),

dP (e
de

b

e=e(q)

so that expanding Eq. (6) about k=g, e=€(g), we have

&P
0=P(e)=3Le—e(g) F—

4.
€ le=e(a) hz=¢
oP
zle=e(q) kz=¢
Therefore in the neighborhood of Zz.=g,
@ gy (10)
e=¢€(q)E(kz—¢q
! P

Hence e; meets ¢; in a simple branch point in the complex
ks plane. [Of course, if three bands meet at a point in
complex k, space, then d?P/deé=0 and instead of ob-
taining (k,—¢q)"% we would have (k,—q)"? etc. We shall
consider this an accidental degeneracy® and not treat
this case here.] We also note from Eq. (9) that if (g)
has a singularity, so does e(g*) ; thus the branch points
come in complex conjugate pairs.

In general, g=¢(ky,k.) and if it is possible that as
ky and k, are varied ¢ approaches the real axis, then so
does ¢* and

ei— e~ (ka—q) (ke—¢*) ]2~ k—q (11)

as ¢— ¢*. Hence when bands meet for real g, ¢ is no
longer a singularity of e(k). Furthermore, in systems of
high enough symmetry

elks)=e(—Fks),

so that a branch point at ¢ implies a branch point at —g.
Then e;—¢~[ (ka—g) (kz—¢*) (ka=-) (kz4-¢*) ]/%. Then
if q(ky,k.) — 0 we have e;—¢;~k,? as in germanium and
silicon.

It has been previously noted by Heine®* that if a
crystal is to have surface states, there must exist some
eigenvalues for the energy that are real even for com-
plex k.. Lines in complex %, space on which the energy
is real are called real lines. To see how these are analyti-
cally connected to the real k. axis we write for any point
on the real axis,

(12)

0%

<] 1
E(kx): 50+"‘—€‘ (ka;'— ko)+— o (kz—k0)2+ e

x| ko z lko

4V. Heine, Surface Sci. 2, 1 (1964).
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where the derivatives are, of course, real. Then for k.
just off the real axis e(k.) is real only if de/dk,|o=0 or
else the second term would be complex. Furthermore,
this condition is sufficient to make e(k,) real on a line
which crosses the real k., axis at right angles since
(kz—ko)? is real there.

Heine® has investigated the properties of real lines
using only the fact that e(%,) is real on the real &, axis,
without using the condition that e(k) is an eigenvalue
of a partial differential equation. Hence all his results
can immediately be taken over for the e(k) of the 7-
band model, the model being useful in actually deter-
mining the position of the real lines. We summarize
his results by stating that a real line leaves the real
axis at a saddle point of the band structure, is always
symmetric about the real axis, and turns back to the
real axis after going around one or more branch points.
In this way, the maxima of one band are joined across
the band gap by a real line to the minima of a higher
band. If the energy is real at a branch point, then the
real line goes up to the branch point and comes back
down along the same path.

A simple example of this occurs if Eq. (12) is satisfied.
Then de/dk,=0 at k,=0 and a real line is perpendicular
to the real &, axis at k,=0. But from Egs. (9) and (12),
€(ks) will be real on the imaginary axis so the real line
stays on the imaginary axis until it reaches a real
branch point.

ANALYTIC PROPERTIES OF BLOCH WAVES

We see from Eq. (4) that the analytic properties of
the Bloch waves are completely determined by the
analytic properties of the 4; which are related to the
a; by a normalization constant.

Now consider the case in which a,(k)>40 for some
k and a. Since the eigenvalue equation is linear, we can
set aqo(k)=1. [We will find it more convenient to
normalize in a different way after Eq. (13).] Equation
(5) may then be written

2 (Hi—ebij)ai=— (Hia— edia)

i#a

which represents # equations with # unknowns, the
latter being the (n—1)a; (i=1, -+, n; i5%a) and e(k).

We can solve the first (z—1) equations by Cramer’s
theorem for the ¢; in terms of e and the H;;. The nth
equation is then used to determine e. The solution by
Cramer’s rule is

a;=a:;(k,e), (13)

where we obtain both @;” and ;¥ by substituting
e-(k) and €,(k), respectively, for ¢, provided only that
2, and a,® are both not zero at some k.

Since by Cramer’s rule all the a; for a given e have
the same determinant of the coefficients in the de-
nominator, we can multiply them all by this factor so
that the resulting (k) are simply polynomials in e
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and components of H;; and hence are polynomials in e
and components of k. Thus, a;(k,e) is an analytic
function of k everywhere € is analytic. We recall that
the only singularities of e(k) occur at the branch points
in complex k. space connecting two energy functions.
If ¢ is a branch point, then near k,=g¢

() = e(Q)+c (k) -,
(k) =e()—c(kam V2. (14)

Furthermore, if we treat e as a function of k in Eq. (6)
and differentiate with respect to A= (k,—¢)"2, since
the v, are polynomials in k we have

37 dy:
—=2(ks—q)"*—,
('))\ akz

so that we may generate all the derivatives of e at
k.= q except the first. Hence we may write

e(k)=2 cp(ka—q)?"* (15)
=0
which will be valid in the neighborhood of %.=g¢.
Now since a;(k,e) is a polynomial in k and ¢, it can

be developed in a power series about any k and e. In
particular, expanding about k.= ¢ and e=¢(q)

adj
ai(k,e)=a.L ¢,e(q) H—

€

Le—e(@ I+

kz=q,e=¢(q)

a;

Ok,

(ka—g)+- -

kz=q,e=€(q)

(16)

and substituting Eq. (14) we have

ai(T) (k) = ti—l'“'uh'(kx— 9)1/2 4

a9 (1) = ti—wika—g)1", (17)

where #; and w; are independent of Z,.

To complete the derivation of the analytic structure
of U(tk) we must obtain the analytic structure of the
normalization constant N (k) near k,=¢. This can be
done by writing N (k) as a manifestly analytic function
and then taking the analytic continuation. We note
that this cannot be accomplished by simply taking the
analytic continuation of the normalization condition

f U Xk U, (ck)dr =5, (18)
cell

because complex conjugation is not an analytic oper-
ation. We circumvent this problem by writing

Up(rk)= fo(r,k)+ig, (1K),
where both f and g are real for real k. Then for real k
Up*(r k)= fp (1) —ig,(r.k).
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Let us define, for real k,

ij (I',k) = fp (r;k) _‘7’g17 (l',k) .

Then if U, is an analytic function of k, so is U, (r,k),
which, unlike U,*, can be analytically continued for
complex k. (But for complex k, we note that U 5= U ¥,
so that the analytic continuation of the normalization
condition will not necessarily lead to U, being bounded
for k not on the real axis.)

The equation satisfied by the @; is obtained for real
k by taking the complex conjugate of Eq. (5). Using
the property that H;*= H;; we obtain for real k

Z]’ Hj,‘(ij= €;

which is an analytic equation and can be used to deter-
mine @; even for complex k. Also,

Up (tk)=2; A—z‘(p)ﬁi(r,ko) ’
Ai=a,/N'2,

Similar considerations to those made for the a; lead to
the conclusion that @; may be expanded such that

30 (K) =Ei i) -

@i (k) =ti—w(kz— )+ - -. (19)
We rewrite Eq. (18) for real k as
/ U, (k) U,(t,k)dr=3,, (20)
cell

which can be analytically continued for complex k. If
we express the U and U in terms of the k, ¢ by Eq. (13),
then for Eq. (20) to hold, e must be a root of Eq. (6)
[i-e., a continuation of the e(k) for real k] as in Eqs.
(17) and (19). Substituting for U and U in Eq. (20) and
using the orthonormality of the U(r,ko) yields

Zi di(r) (k)a,‘“) (k) =0 ; s,

Therefore, using Eqs. (17) and (19), we obtain to
O (ks—q)'? near k,=gq,

Zz’ iiti‘*’ (kx_Q)llz Zz (ffw@—tzu‘)z) =0.
Hence
2ititi=0,
2 (fawi—tap;)=0. (21)

N, is also analytic, since for real k, choosing the
arbitrary phase to be zero, we have

Nyp=f"+gs*,
which can be analytically continued.
The normalization constant is then given by
Ny=3:d:a,

=2 il 2 Wit wits) (ba—q) 24+ (22)
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and hence by Eq. (21)

No~ (k=g (23)
which gives

A9 () = 0 (K)/N e () .
Similarly,

=3 itti—2 i (widitwits) (ka— V- - -

and hence
N,/N;— —1 as k,—q.

Furthermore, it is easy to see that when we go to
higher orders in the expansion of a;(* as given by Eq.
(16) we have terms like [es-—es(q):}m(kx—g)’ Since
[es—es(q)] can be written as a series in powers of
(kz—q)"2, then the series for a;(*) analogous to Eq. (15)
will have terms like (k,—¢q)??(k,—q)’. Hence we can
break the series into two parts, i.e., even p and odd p,
and finally obtain

0 (=9 )+ (b )7 (k)

or
A0 (W)=, N 2= (=) 4E: (K)
+ (=g GO (), (2)

where both F;(® and G;(® are analytic functions of %,
in the neighborhood of k;=¢.

Equation (24) was previously obtained by Kohn for
the one-dimensional system, from the properties of the
Schrodinger equation. We see, however, that its
validity does not depend on the very special properties
of ordinary differential equations, but instead comes
directly from the fact that the eigenfunctions corre-
sponding to different eigenvalues are orthogonal.

In concluding this section we point out that Eq. (24)
does not violate the finiteness of @, on the real k.,
axis since we have used the condition that ¢ is a branch
point of €, which, by Eq. (11), is not true if ¢ is real. In
fact, when ¢ is real it is easy to see frem Egs. (11) and
(16) that a;» and N2 are series in powers of (k,—¢),
which makes U, (r,k) finite and nonzero for k,=g.

ANALYTIC PROPERTIES OF THE REPRESENTA-
TION OF x IN THE CRYSTAL MOMENTUM
REPRESENTATION

It can be shown?5 that if any function ¢ (r) is written
in terms of the Bloch functions, i.e.,

o(m)= ——1—— dkes* Zn: U, (t,k)fn(k) (25)
then (3)*
(k) for (26)
where 5
Xow (k)= U n*(r,k)ig’:Unr (rk)ydr.  (27)

cell x

5 E. N. Adams, J. Chem. Phys. 21, 2013 (1953).
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The behavior of X, (k) for complex %, will be im-
portant in problems that involve the representation of
the wave function in a region in which it is exponentially
decreasing as in tunneling problems.®

To find the analytic structure of X,, we first write
Eq. (26) as

X (k)=i / s k)a U, (rk)dr

0
=7y ;" Nf”z—*[ai(” Ns"m]
i ok,

(28)

9
=i Y a;ON TN TV
2
x4

AN 12

+ @G a;Ma )N,
d ks

The second term is zero for r#s by orthogonality.
Using Egs. (17) and (19) in the first term we have
near k,=gq

Xpe=IN BN T2 (1) (ky—q) 2 X s taws. (29)
But from Egs. (21) and (22),
iwditwidi=2 Y itawi=N,/ (ky—q)'2.
Substituting this in Eq. (27) gives
N 1
Xom=i( =)
N./ 4(k,—q)
and using
N /Ne— —1 for ky,—q
we obtain
Xoo=1/[4(ka—q)] for k,—q rss, (30)

which generalizes Keldysh’s” one-dimensional result to
an arbitrary number of dimensions.

We note that, unlike Blount, we do not find X,,
undetermined up to an arbitrary phase factor because
in writing (28) we have made use of the condition that
for real k

N,=N,,

i.e., the normalization constant is real for real k.
For the diagonal element we find

X&s(k)zi/ U, (rk) o U,(r,k)dr,
cell

which, using
(9/0ks)
cell

®E. O. Kane, J. Phys. Chem. Solids, 12, 181 (1959).
"L. V. Keldysh Zh. Eksperim. i Teor Fiz. 33, 994 (1957)
[English transl.: Soviet Phys.—JETP 6, 763 (1958)]

U.Usdr=0,
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can be written

i . AU, aU,
Xss(k)':—[/ Us dl"“‘/ Us dl']
2 cell akz cell akx

7 da;(® 9a;®
=-N1 Z [di(s) ——a,-“) :' . (31)
2 i ok oks

Then using Egs. (17) and (19) we have near k=g,
Xss: %iNs_l[Zi (iiwi—' t,"lD,') (kz_ 9)—1/2+O (kz‘_’ 9)0] .

But by Eq. (21) the coefficient of (k,—¢)~/2 is zero.
Hence

Xss’\’Ns~1'\’ (kx_’q)_llz (32)

for k, near ¢. Furthermore, if for all 4, a;(¢ (k) is real
for real k, then from Eq. (31), X,;(k)=0 for real k and
hence is zero for the analytic continuation. This will
be the case if the basis functions U;(r,ko) can be chosen
so that all H;; are real. We also note that if we let
N2 — (N/) 2= N2 expifo*s Xoo(ks)dR,,  then
X,.'=0. Hence X,, can always be made to vanish by
choosing the arbitrary phase conveniently.

The representation of higher powers of x can be
accomplished by repeated use of Egs. (25), (26), and
(30). For example, if we define

#%p (1) =x¢p™ (1)
then

xfn(l) =1

i)
k fn(l)+2; Xnn’fn'(l) ) (33)

z

but 5
fu®=afp=t—fwt+2 Xnwfr. (34)
akz 't

Then substituting Eq. (34) into Eq. (33) gives 4*f, in
terms of the X, and 8X ,./dk, whose analytic struc-
ture is known. Similarly, we can investigate the
singularities of the representations of x? by this method.

CONNECTION WITH WANNIER FUNCTIONS

It is easily seen? that
an(r)~exp[— | Imgz|]

for large x where a,(r) is the Wannier function. This
is a generalization of a result of Kohn.

In the one-dimensional case, this leads to the Wan-
nier functions being localized in a few cells. However,
in more than one dimension there is nothing to prevent
the singularities from approaching the real %, axis and

thus in these cases the Wannier functions are not well
localized as one generally assumes. In such cases, the
assumption that potentials and envelope wave functions
vary little over one cell is not sufficient to justify the
usual derivations in the Wannier representation.

CONCLUSION

The original motivation of this work was to obtain
the analytic properties of Bloch waves and other related
quantities by diagonalizing a finite block of the original
Hamiltonian and then letting the dimensions of the
finite block become infinite. In this way we hoped to
find the difference between the properties of a finite-
band approximation and the complete Hamiltonian.
We have found, however, that none of our results
depend on letting the dimensions of our finite block
become infinite, so that our conclusions concerning the
general properties of (k) and the analytic properties
of wave functions and matrix elements near branch
points are valid in either case. Furthermore, we have
derived certain results in general, i.e., Eqs. (24) and
(30), which had previously been obtained only for the
one-dimensional case by methods not capable of being
generalized to # dimensions.

Finally, we note two limitations of the #-band model.
First of all, the model does not give rise to the result
that in one dimension two bands cannot overlap, which
readily follows from the Schrédinger equation. Second,
the model cannot yield the fact that the energy is
periodic in k space because e(k) is the solution of an
algebraic equation rather than a transcendental equa-
tion. The first difficulty is unimportant for real crystals.
The second is irrelevant because we usually restrict
ourselves to the first Brillouin zone which is finite in
every direction, and within this zone we can approxi-
mate the energy as closely as we want by including
more bands in the model. This problem is intimately
related to the fact that although the general theorems
we have proved do not change as we add more bands,
the positions of the branch points do change—the more
bands we include, the more accurately the model gives
¢ in terms of the interband matrix elements H;;. In
general, the interband matrix elements will not be
known but rather will be deduced by diagonalizing the
finite-band model and determining these parameters
by measurements pertaining to real k. The ¢ are then
determined by these parameters and the analytic form
of e(k). Hence in practice it would not be necessary to
include more than just a few bands to find the branch
points of interest.



