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Lattice Dynamics of Magnesium Using a PseufIoyotential Apyroach
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The lattice dynamics of hexagonal closed-packed metals is discussed using the pseudopotential approach
of Harrison. Explicit expressions for the elements of the dynamical matrix are obtained and numerical
calculations are made for the phonon dispersion relations along the L0001] and L0110j directions in mag-
nesium, using the results previously obtained by Harrison from a first-principles calculation. Comparison
with the experimental data of Iyengar et al. , however, shows poor agreement. Calculations are also made
using a two-parameter-model pseudopotential proposed by Harrison, which shows better agreement with
experiment.

L INTRODUCTION

'HE availability in recent years of accurate ex-
perimental data on phonon dispersion relations

in metals has stimulated considerable interest in their
calculation from basic principles. The earliest work of
this type is due to Toya, ' who used the classic result
of Bardeen' for electron-phonon interactions in sodium
to compute the dispersion relations for that metal. The
calculations were found to be in rather good agreement
with experiment, ' and later the method was used with
suitable modihcations to obtain the dispersion relations
for lead4 and copper. ' ~ A somewhat diferent approach
based on the pseudopotential concept has been proposed
by Sham. ' Using a local as well as a nonlocal pseudo-
potential, calculations were made for sodium, and the
agreement with experiment was as good as that obtained
by Toya. The pseudopotential method has also been
used by Harrison~ ' ln a slightly differ ent way& to
compute dispersion relations for aluminium and lead.
More recently, the dispersion relations for sodium,
aluminium, and lead have been recalculated by Vosko
et ul. ,"using a many-body treatment of screening, and
the orthogonalized-plane-wave (OPW) method for
evaluating the ion-electron matrix element. A notable
feature of all the calculation~ which have been reported
so far is that they are for metals which have just one
atom per unit cell.

In this paper, we present some calculations of dis-
persion relations for magnesium —a metal with two
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Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962).

4 T. Toya, in Lattice Dynamics, edited by R. F. %allis (Perga-
mon Press, I td. , Oxford, England, 1964), p. 91.

T. Toya, in Inelastic Scattering of EeNAons in Solids and
Liglids (International Atomic Energy Agency, Vienna, 1965),
Vol. I, p. 25.

P. L. Srivatsava and B. Dayal, Phys. Rev. 140, A1014 (1965).
~ S. K. Sinha, Phys. Rev. 143, 422 (1966).
8 I-. J. Sham, Proc. Roy. Soc. (I.ondon) A283, 33 (1965).
9W. Harrison, Phys. Rev. 136, A1107 (1964). See also T.

Schneider and E. Stoll, Physik Kondensierten Materie 5, 330
(1966}.
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atoms per unit cell—using Harrison's approach. Two
types of calculations are reported. In the 6rst, the dis-
persion relations were obtained using Harrison s pseduo-
potential results' computed from erst principles. The
calculations show rather poor agreement with experi-
mental results" obtained in this laboratory some time
ago. The dispersion relations were then recalculated
using a model pseudopotential, "the parameters of the
model being determined by 6tting to a few select ex-
perimentally measured frequencies. The latter results
show much better agreement with experiment. The
model pseudopotential thus derived should prove useful
in computing various other properties of the metal.

Section II gives an account of the theoretical formula-
tion. The numerical results obtained using the two
approaches mentioned above, and a discussion of them,
are presented in Sec. III.

In this section we shall brieQy review Harrison's
approach and then give the expressions used in our cal-
culations. The basic problem in computing phonon
frequencies is to calculate the second-order change in
energy of the crystal when the ions are displaced from
their equilibrium positions. Harrison approaches this
problem for metals with nearly free-electron behavior
(of which Mg ls an example) as follows. Starting with
the one-electron Schrodinger equation

(&+&)6=&A~,

where V is the self-consistent potential and Pa is the
31och wave (expressed in terms of OPW's) correspond-
ing to energy Ej„he goes over into a consideration of the
pseudopotential equation

(~+~')4~= &~4&

Here pa is a smooth and nearly free-electron-like func-
tion devoid of the rapid oscillations that occur in ft,
near the ion cores. U Pa is to be nearly free-electron-like,
then clearly the pseudo potential 8' must be small. It

"P. K. Iyengar, G. Venkataraman, P. R. Vijayaraghavan,
and A. P. Roy~ Dl In8lasAc ScatteFMg of KANA'ons 'bn Solfds and
Liquids (International Atomic Energy Agency, Vienna, 1965),
Vol. I, p. 153.
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has been pointed out by several authors" that there is
a certain arbitrariness in pl, and„correspondingly, in
O'. Harrison uses this Qexibility to choose a convenient
form for W which leads to the smoothest $q possible,
and then obtained Eq via a perturbation approach, i.e.,

=k'k' &kl wlk+q)&k+ql ~lk)
E,= +&kl el I )+P'

2' (&'/2m) [k' (—k+q) 'j
where

l k), etc., are plane waves, and the prime denotes
the omission of the q=o term from the summation.
Having obtained the one-electron energies in this
fashion, Harrison next calculates the total (potential)
energy of the crystal by erst summing the one-
electron energies over all states within the Fermi
sphere. From this he subtracts the Coulomb self-energy
of the conduction electrons (since it is counted twice
in the Hartree approximation) and then adds the direct
CoulolTlb intcI'Rctlons bctwccn the lons. Thc total
energy obtained in this way is then regrouped into three
terms: Eg,, E„,and E&b,. Of these, Eg„called the free-
electron energy, depends only on the density of the
ions and not on their detailed arrangement. E„is the
electrostatic energy given by

where r(l) denotes the position of the origin of the lth
cell and r(k) the equilibrium position of the kth ion
with respect to that cell. The remaining quantity E(q),
called the energy —wave-number characteristic, depends
only on thc atomic volume Qo Rnd the pseudopotential.
It has a simple physical meaning, as we shall see later.
It is to be noted that there is no term in the potential
energy associated with short-range repulsive forces
arising from overlap of adjacent ions. This term is
absent because the cores are assumed to be small,
an assumption which is quite good in the case of'

magncslum.
The problem of computing vibration spectra center

on calculating the changes in the various contributions
to the energy of the ion-electron system when the ions
are displaced from their equilibrium positions. Ke shall,

in what follows, confine our attention to ionic rearrange-
ments at constant volume. "This means that Eg, can
be dropped from further consideration, since it depends

only on thc voluDlc and not on lonlc posltlons.
Now it is well known in the theory of lattice dynamics

that the change in potential energy of the crystal (up
to second order in displacements of the ions) associated

with a periodic disturbance of wave vector q can be
quite generally expressed as"

E-=k 2 (Z*~)'l(lr' —r~l)
—', P P [D q(q, kk')a *(q,k)us(q, k')

+(eileigy of iiitei'ac'tioil of ioils witll uniform +D &*(q,kk')a (q,k)as~(q, k')]. (&)

compensating background) . (I)

Z* is the effective valence, which is different from the
true valence Z(= 2 for Mg) because of effects connected
with the orthogonalization of the conduction-electron
wave function with core states.

The Anal term Eb, is referred to by Harrison. Rs the
band-structure energy. It is given by

Eb,=nXZ Q' S~(q)5(q)E(q) .

Here 9 is the 3e-dimensional dynamical matrix. Thc
3m eigenvalues of this matrix give the squares of the 3m

vibrational frequencies associated with wave vector q.
The vector a is an amplitude vector related to the dis-

placernent u(l, k) of the atom (l,k) by

I..(l,k)= - — { (q,k) -p['q ((l)+ (k))1
(XM)"'

+a*(q,k) expL —lq (r(l)+r(k))j&, (6)

&(q) is the structure factor defined by

&(q) = — P exp[—iq r(l,k)],
EN &I

where e is the number of ions per primitive unit cell,
E is the number of unit cells, and r(l,k) is the position
of the kth ion in the 1th cell. If the ion is in its equili-
brium position, then r(l,k) will be given by

r(l, k) = r(l)+r(k),
"See, for example, M. H. Cohen and V. Heine, Phys. Rev. 122,

1821 (1961).

where M is the mass of the ion (the crystal is assumed

to be monatomic). In Eq. (6), we have to take both a
and a* into account in order to ensure that the dis-

placement is real.
Since there are two contributions to the potential

energy, namely, E„and Eb„ there will correspondingly

be two contributions to the dynamical matrix. Of these,
that due to Coulomb interactions has been considered

previously by Kellermann, " and the relevant ex-

~4The limitations of such an approach have been discussed

by Sham (Ref. 8).
"M. Born and K. Huang, DyrIamica/ Theory of Crystal Lattices

(Oxford University Press, London, 1954), p. 173.
'6 E. Vf. Kellermann, Phil. Trans. Roy. Soc. (London) A238,

513 (1940).



LATTI CE D YNAM I CS OF M g 77i

pressions are as follows:

4~(Z*e) ' (~+q).(~+q) e 1 (Z*e)'
D.e'(q, kk') = P exp — (~+q)' expL —i~.r(k'k)]+

eQ~ ~ (~+q)' 4g' 3E

erfc(gIr(t', k'k) I) 2g expI —y'Ir(t', k'k) I']
8 p-

Ir(l', k'k)I' gs Ir(l', k'k)I'

6g expr ri'Ir(l', k'k)
I
'] 4ri'

+ — + expL —g'I r(l', k'k)
I
'] expI +iq r(l', k'k)] (&.)

I
r(t', k'k)

I

P

tr(t', k'k)] [r(t',k'k)]e 3 erfc(gI r(t', k'k) I)

I r(l', k'k)
I

p Ir(l', k'k) I'

47r(Z*e)P (~+q) (~+q) 1 (Z*e)' erfc(g
I r(l,k) I )

D.e'(q, kk) = P exp — (~+q)' +
~a~ ~ (~+q)' 4&' m i Ir(t,k) I

'

2g expL —g'Ir(t, k)I'] Lr(t,k)] Ir(t,k)]e 3erfc(gIr(t, k)I) 6g expL —lr'Ir(t, k)IP]
+ 8 p- -+

I r(l,k) I

'
I
r(l, k) I

'
I r(l, k) I

' gm I r(l, k) I

'

4g' 4(Z*e) 'rj' 4~ (Z*e)'
+ expL —~'Ir(l») I') expI iq r(t»)] — ~ e+

'ir 3(gs)M 3 3IIQp

In the above equations, the various symbols have the
following meanings: z is a reciprocal lattice vector;
r(k'k) is the distance of the k'th ion from the kth ion
in a given cell, while r(l', k'k) is the vector joining the
kth ion in the unit cell at the origin to the k'th ion in
the l'th cell. All distances in Eqs. (7) and (8) refer to
the undistorted crystal. erfc(x) is the complementary
error function of argument x de6ned by

erfc(x) =1— e "Ck.
+7r p

The only difference between Kellermann's expressions
and the ones given above is the term L4~(Z*e)'/
33IIQp]8 e in Eq. (7). This arises from the interactions
between the ion and the uniform (nonresponsive) elec-
tron background. In Kellermann's case, since he was
considering an ionic crystal, this term is absent. Ke
follow Sham in including this contribution with the
diagonal terms of the Coulomb coeS.cients. The quan-
tity g is a parameter whose value is chosen such that
the series converge rapidly both in real space and in
reciprocal space.

The task of calculating the change in the band-
structure energy and the contribution therefrom to the
dynamical matrix still remains. In doing this, we note
that the change in band-structure energy arises prima-

S(Q) = 2 expL iQ {—r(t)+r(k)+u(l, k) }]En»

2 expL —iQ {r(t)+r(k)}]En»

i
X 1—iQ u(l, k) ——{Q u(l, k)}'+

2|

=p sy),

where S'(Q) denotes the contribution to S(Q) from the
term involving the jth power of u. Substituting for u
from Eq. (6) and using the result

P expI iQ r(t)]—=Neo (10)

it follows that

rily from the change in the structure factor. 'r E(Q) does
not change when the crystal is distorted at constant
volume, since, as already remarked, it does not depend
upon ionic positions. Consider now the structure factor
S(Q) of the distorted crystal corresponding to a Fourier
component Q. This will be given say, by,

1
S'(Q) =-2 expL —iQ r(k)]~o...
s (Q)=-

i 1 1—P expL —i(Q —q) r(k)7{Q a(q, k)}h~o p&,,+—P expI —i(Q+q) r(k)]{Q a*(q,k)}b~o+p~,,EM'~' n ~ k

'7 W. Harrison, PseudopotenHal in the Theory of Metals (W. A. Benjamin, Inc., Neer York, 1966), p. 42.
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I
S'(Q)= -Z expL —I(Q—2q) r(k)1{Q a(qk)}'t'io-2~1 +-E expL —I(Q+2q) r(k)j2' e I g k

2
X{Q a*(qk)}'8, „,„+—P exp[—iQ r(k)j{Q a(q, k)}{Qa (qk)}8,, (11)

The higher-order terms are not of interest to us, since we shajl be worldling in the harmonic approximation, which
means that in the product S*(Q)S(Q) we shall need only terms up to second order in a.

Ke thus have

Eb,(distorted) —Eb,(equilibrium) = BEb,——n2VZ p [S*(Q)&(Q)E(Q)—&' '(Q)S'(Q)E(Q)].

Using Eqs. (9)—(11) and retaining terms up to second order in a, it is straightforward to show that"

z
'E"= —

L & {I E (~+q) "(q,k) exp[I'r(»)l'E(l~+ql)+ I & (~-q) '(q k)
elf lt,

'

&«xp[i~ r(k) jl'E(l ~—ql) —2{~ a(qk) }{~a*(qk) }F(k)E(l~l)1 (12)

F(k) =P cos(~. r(k'k)).

Comparing with expression (5), we obtain finally for the electronic contribution to the dynamical matrix the
follovnng results:

D-~'«»k) = ~ [(~+q)-(~+q)~E(l ~+ql)+(~ —q)-(~ —q)~E(l~ —ql) —2(~).(~)i j'(»E(I ~I)3;
eM r

D-s'(q»k')= Z [(~+q)-(~+q)s exp[—~~ r(k'k)j
eM

xE(l ~+ql)+(~ —q).(~—q)s «p[I~ r(k'k)X(l ~—ql)]. (14)

Z*'e' 2Z
+ &E(Q) pLQ jE 0

= V'(&)+ V'(r) . (15)

Illtloduclng tllc Follllcl lcplcsclltRtlon of V(R) glvcll by

V(R)== —Q V(Q) exp[iQ Rj
nÃ00 o

Note that in our formalism D(q, kk) is real. In general„
it is Hermitian.

The results given above can also be arrived at via a
more conventional force-constant approach by noting
the fact, pointed out by Harrison, " that there exists
a central interatomic potential V(r), say, of the form

Using this result in the familiar equation

B2V
D p(q, kk')= —P

BEnBEP- R=r (l, It,}—x'(v, k'}

Xexp[—I'q {r(lk) —r(l' k') }]
the expressions given earlier for the elements of B~
may be easily obtained. Ke might add that our expres-
sion for D s (q,kk) reduces to that given ea,rlier by other
authors' ""for the case of crystals with one ion per
unit cell.

Before concluding this section, we shall refer briefly
to tllc pllyslcR1 slgnlkcancc of E(g). From Eqs. (15) Rlld

(16), it is clear tha, t E(It) is (apart from a constant) the
Fourier transform of the ion-electron-ion potential
V~(r). This has been pointed out earlier by Cochran. "

it immediately follows that

8 V—————ZQ-Q~V(Q) e p[iQ Rj
BE BEp eEQO o

'g W. A. Harrison, Phys. Rev. 129, 2503 {1963).

The expressions given in Sec. II for the elements of
the dynamical matrix have been programmed for corn

» %.Cochran, in Inelastic Scattering of Xeltronsim Jiqljds cmd

Solids (International Atomic Energy Agency, Vienna, 1965),
Vol. I, p. 3.
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TAPIR L Coulomb coetlicients for the two principal symmetry directions of the ideal hcp lattice, expressed in units of LZ*e'/MQp].
The notation for the dynamical matrix is the same as in Ref. 12, except that the indices have been put on the same line. The contribu-
tion from the nonresponsive compensating background has been included in the diagonal terms. Only those components of the dynamical
matrix are given which 6gure in the computation of the dispersion relations for the two symmetry directions. In the case of L0001],
D»(q, 22) and D»(q, 22} are not given, since by symmetry they are identically equal to D&1(q,11)and D»(q, 12), respective y.

ig/gmaxl

L0001]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D11(q,11}

0.575
0.575
0.575
0.575
0.575
0.575
0,575
0.575
0.575
0.575

Dd3(q, 11)

23.988
23.988
23.988
23.988
23.988
23.988
23.988
23.988
23.988
23.988

—0.560—0.539—0,505—0.459—0.401—0.333—0.257—0.175—0,089
0.0

1.119
1.078
1.010
0.917
0.801
0.666
0.514
0.350
0.177
0.0

D11(q,12) Dd3(q, 22)

(fII'/gnaax }
0220j

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D11(q,12)

0.624
0.765
0.986
1.264
1.574
1.886
2, 168
2.392
2.536
2.586

D22(q, 11)

13.263
13.608
14.125
14.742
15.383
15.983
16.489
16.870
17.104
17.183

D33(q, 11)

11.248
10.762
10.024
9.128
8.177
7.266
6.477
5.871
5.492
5.363

D»(q, 12)
Real Imag.

—0.572 0.179—0.587 0.356—0.610 0.527—0.639 0.689—0.670 0.839—0.700 0.973—0.734 1.085—0.739 1.172—0.741 1.231—0.727 1.259

11.810
11.260
10.410
9.338
8.126
6.849
5.564
4.309
3,103
1.950

—0.181—0.372—0.581—0.820—1.097—1.421—1.801—2,249
2.772—3.378

D2..(q, 12)
Real Imag.

—11.240—10.680—9.802—8.700—7.456—6.150—4.841—3.571—2.363—1.224

0.002
0.016
0.055
0.131
0.257
0,448
0,716
0.077
2.541
2.119

D»(q, 12)
Real Imag.

putation in a CDC-3600 computer. In the evaluation of
the Coulomb coefficients it was found that a value of
0.561 A ' for rf gave good convergence. With this
choice for g, it was necessary to sum over only 50
lattice points in reciprocal space, and up to 30 in real
space. The coeKcients thus obtained are tabulated in
Table I for the principal symmetry directions of the
hcp lattice, namely, t 0001] and L0110j.A check on the
coefficients is provided by the conditions"

4w(Z*es) s

P D:(tl,kk)=;P D '(q, kk') =0.

branches. In particular, the percentage screening of
the longitudinal acoustic (LA) branch along L0001j is
as large as in lead. "The transverse branches are less
affected.

Let us now turn our attention to the case where
screening effects are taken into account. For this case,
the Coulomb contribution was computed with a value
of 2.17 for Z* as quoted by Harrison. ' The electronic
contribution was determined by carrying out the sum-
mations in Eqs. (13) and (14). For E(q), we used the

The values quoted satisfy these relations to within
about 0.01%.

It is interesting to compute the phonon frequencies
for the case in which the conduction-electron gas is
nonresponsive, i.e., does not produce any screening
effect. This can be readily done by substituting the
Coulomb coefficients for the elements of the dynamical
matrix. The frequencies obtained in this way are
tabulated in Table II" along with the experimental
frequencies, all frequencies being expressed in units of
v„, the plasma frequency, which is given by

0 ~
0

Vl
a. s Log
C)

(

I I I

[0001]
7 — 0

6—
4

ll
5

) 3

I

[0110]
~ ll

II
4 0 ()

4~ Z&»~'

2~ ~00

From the table it is clear that the electron gas pro-
duces large screening effects for the longitudinal

'0 In these calculations, Z* was set equal to the valency Z.

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1

IS/ ImaxI I I/9 maxI

FIG. 1. Phonon dispersion relations in magnesium along the
two principal symmetry directions. The solid lines are theoretical
curves based on Harrison's pseudopotential results computed from
erst principles, while the data are those of Iyengar et al. The
theoretical results for the LA branch along the L0001] direction
are not shown. The frequencies for this branch were found to be
imaginary for ft/ft, (0.5.



TAax.E II. Comparison of experimentally measured frequencies for magnesium with those calculated without taking screening into
account. All frequencies are expressed in terms of the plasma frequency ~„=1.77X10"cps. The experimental frequencies were ob-
tained by drawing smooth curves through the datum points of Iyengar st af. (Ref. 12).

(ft/g Inax)

[00011

0.2
0.4
0.6
0.8
1.0

LQ
Kxpt. Theor,

0.403 1.000
0.397 1.000
0.371 0.999
0.335 0.998
0.294 0.985

LA
Kxpt. Theor.

0.065 0.963
0.127 0.966
0.181 0.972
0.240 0.978
0.294 0.985

TO
Kxpt. Theor.

0.212 0.212
0.203 0.204
0.202 0.200
0.189 0,174
0.166 0.152

0.034
0.068
0.102
0.129
0.166

0.035
0.067
0.098
0.126
0.152

TA
Kxpt. Theor.

(f/gmsx)

PofiOj

0.2
04
0.6
0.8
1.0

LO
Kxpt. Theor.

0.237 1.00
0.297 0.989
0.345 0.965
0.378 0.939
0.389 0.925

0.119
0.226
0.315
0.356
0.373

The or.

0.308
0.467
0.604
0.698
0.734

0.406
0.393
0.368
0.359
0.346

0.932
0.850
0,738
0.624
0.563

TOg
Kxpt. Theor.

TAL

Kxpt. Theor.

0.062 0.050
0.124 0.130
0.186 0.212
0.220 0.295
0.235 0.343

TAI1

Kxpt. Theor.

0.062 0.050
0.119 0.114
0.167 0.167
0.206 0.202
0.210 0.215

tabulation provided hy Harrison' " with a suitable

interpolation formula, and the summation was carried

up to q= 2Ir+14/a (a= 3.2028 A for Mg), corresponding

to about 300 reciprocal lattice points. The two contribu-
tions to the dynamical matrix having been determined,

it was then diagonalized in the usual way —taking, of

course, due advantage of the simplihcations provided

by symmetry. "The theoretical results thus obtained for
the [0001j and [0110] directions are compared with

the experimental data of Iyengar e$ u/. , in Pig. 1.22

The agreement between theory and experiment is

rather poor. Further, according to theory, the fre-

quencies of the LA branch along [0001]are imaginary
for (q/q, „)&0.5, i.e., the crystal is unstable against
these modes of motion —a conclusion contra, ry to ex-

periment. Theory also predicts incorrectly the order of

the two transverse acoustic branches along [0110j.
According to theory, the frequencies of the TAl,
branch are higher than those of TA& branch, while the

reverse is found to be the case experimentally.
In view of the poor performance of the basic E(q) in

predicting phonon frequencies, it was felt desirable to
derive E(q) from experiment using some model. The

E(q) thus obtained should be of value in computing
various other properties of the metal.

One possible form for E(q) is that based on the
"Bardeen model"."In this model, the pseudopotential

"This E(fj) computed from first principles will hereafter be
referred to as basic E(q) as opposed to a model E(q), to be intro-
duced later.

22 Recently, Squires Lin Symposium on Inelastic Scattering of
Neutrons by Condensed Systems, Brookhaven National Labora-
tory, New York, 1965, p. 78 (unpublished)g has remeasured the
phonon dispersion relations in magnesium in the basal plane. His
results for the $0110jdirection are in good agreement with those of
Iyengar et al. (Ref. 12). In Fig. 1 we show only the data of the lat-
ter authors, since a tabulation of their results was readily available.

'g L. J. Sham and J. Ziman, in SOHd State I'hysics, edited by
P. Seitz and D. Turnbuii (Academic Press Inc. , New Vorir, 1963),
Vol. 15, p. 221.

is local and has the form"

4zZe'
u-(q) =—— + g(q"),

Oo- q

where r,, is the radius of the Kigner-Seitz sphere,

g(x) =3(sinx —x cosx)/x',

and o. is a constant which can be calculated from first

principles. In practice, o. is treated as a parameter. The
expression for E(q) in the Bardeen model is

q' 4mZe' -2
E(q)=—,—,+~ g(qr. )

SxZf.'Qp q'

17
e(q)

In this explesslon, If p and kg are, lespectlvely, the

energy and wave number of an electron at the Fermi
surface.

AIlotllcl' possible for111 fol' E(q) ls tllat sllggcs'tcd b)j'

Harrison, "i.e, ,

q' 4mZe'
E(q) =-

S~Ze'~o- q' [1+(qr )'1'-

1
18

e(q)l

'4 A. Sjolander, Brookhaven National Laboratory Report
No. BNL 940 (C-45), p. 29 (unpublished).

e(q) ls 'tllc Hal'tice-self-collslstcllt dlclcctrlc fullctloll

for a free-electron gas, and is given by'9

6IrZes 4k g' q' 2&I +q-
s(q) = 1+ —,'+ ln

q'Oping Sk gg 2k p —
q
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which is based on the local pseudopotential

1 4s.Ze' P
~-(q)=——,+

L1+(q')'j'-

01

Here P and r, are parameters to be derived from experi-
ment. Harrison has tried out such a model E(q) for
aluminium and lead and has shown that the model
pseudopotential considered should be a reasonably good
one for metals having small spin-orbit interaction.
Since spin-orbit effects are small in magnesium, " we
might expect the model E(q) to be useful for this metal.

Before making calculations using the model E(q), it
is necessary to first determine the parameters P and r,.
To do this, we adopted the following procedure, which
is similar to that employed earlier by Harrison. Fre-
quencies for two select phonons were calculated for a
range of values of r„varying P over a wide range for
each r, . A preliminary scan of this type showed that
values of r, (0.17 a.u. were unsuitable, since E(q) had
a very long and large tail. Similarly, values greater
than 0.43 a.u. were also unsatisfactory, since i3 became
imaginary.

Having set limits on r, by this trial run, the region
0.17—0.43 was then scanned in greater detail until a
pair of values for r, and P were found which predicted
frequencies close to the observed values for the two
phonons under consideration. Actually, there were two
values of P, both of which could reproduce very nearly
the observed frequencies at the two select points in
reciprocal space. Of these two values, only one gave an

E(q) similar to the basic E(q), and this value of P was
preferred for further calculations. The values of the
parameters finally chosen by us were r, =0.265 a.u. and
P=37.2 Ry (a.u.)'. This value of P is to be compared
with the value of 4j..6 derived earlier by Harrison"
from a consideration of electron scattering on the Fermi
surface.

Figure 2 shows the E(q) according to Eq. (18) with
the values quoted above for the two parameters. Also

& -0.2
ILJ
Lh
A

O
lal
Z
LLI -0.3
ILJ
R
EJ
LII

-04
0

FIG. 3. Screened pseudopotential for magnesium. The solid
curve was obtained by Harrison in his basic calculations by con-
sidering scatterings restricted to the Fermi surface. This is also
referred to as the OP% form factor. The dashed curve is based on
the model pseudopotential discussed in the text. The parameters of
the model were derived by fitting to two selected measured phonon
frequencies.

Ops(q),

I I I I

shown in this 6gure is the basic E(q) of Harrison. For
values of q(ks, the two E(q)'s agree with each other.
In the region beyond kp, however, there are significant
differences, with the model E(q) having a longer tail.

Ke have also computed the screened pseudopotential

47rZe' P+ (19)
51+(qr.)'j'-

or what Harrison calls (k+cI ~rdI Ir). This is shown as a
dashed line in Fig. 3 and is compared with the values ob-
tained by Harrison in his basic calculations for the
special case where both k and it+el lie on the Fermi
surface. Once again we 6nd that for q&kp the agree-
ment between the basic and model results is good. The
differences are in the region q&kp.

Fn. 2. E(ct) for
magnesium as com-
puted by Harrison
from first principles
(solid curve), and as
derived from experi-
mental phon on-dis-
persion data using a
two-parameter model
{dashed curve).
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FIG. 4. Comparison of experimentally measured phonon dis-
persion relations with those theoretically computed using the
model pseudopotential. The various symbols have the same
meanings as in Fig. 1.
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The results for the dispersion relations using the
model E(q) are summarized in Fig. 4. Nearly 900
reciprocal lattice points were included in the summations
in Eqs. (13) and (14). Even so, the sums have not con-
verged completely, as evidenced by the small splittings
at the zone boundary in the L0001] direction. Com-
paring Figs. 1 and 4, it is clear that the model
pseudopotential has genera, lly been more successful in
reproducing the observed frequencies tha, n that com-
puted from first principles. There are, however, im-
portant deviations as far as the transverse branches are
concerned.

To summarize, phonon frequencies in ma, gnesium
computed using pseudopotential results obtained from
first principles show poor agreement with experiment. A
model pseudopotential involving two parameters has

proved more successful in this respect. Comparison of
the pseudopotentials and E(q) for the two cases shows
a difference in the region beyond kl . This suggests that
better agreement with experiment could be obtained if
the accuracy of the basic L'(ti) were improved by coin-
puting the core energies and orbitals more carefully.
We hope to examine this question shortly.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor W. A. Harrison for
encouraging us to undertake this calculation and for
giving helpful advice while the work was in progress.
We would also like to thank Dr. P. K. Iyengar for his
keen interest in the work and ahri V. C. Sahni for a
careful reading of the manuscript.

PH YS ICAL REVIEW VOLUME 156, NUM B ER 3 15 AP R IL 1967

Some Analytic Properties of Finite-Band Models in Solids
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The work of Kohn is generalized to more than one dimension for a Rnite-band model by a simple algebraic
procedure. Some results not previously derived for more than one dimension are obtained. The differences
between the analytic properties of the model and those of the complete Hamiltonian are briefly discussed.

INTRODUCTION

' T is well known that the motion of an electron in a
~ ~ crystal is governed in the one-electron approxi-
mation by a, Hamiltonian which is periodic in the lattice.
From this it follows that the wave functions must have
the form

y„(r,k) = '"e'U„(r,k),

where U„has the same periodicity in r as the Hamil-

tonian. If the wave functions are to remain finite as
r —+ oo in any direction, then k must have only real

components. However, if the crystal has a boundary,
i.e., say for x)0 we have only free space, then we cannot
restrict k, in the crystal to be real since, if k, has a
negative imaginary part, p„(r,k) will not diverge as
x~ —~ and hence is an acceptable solution. Clearly
then, these solutions, which are simply the analytic
continuation of the Bloch solutions for complex k, will

have ramifications in problems involving surfaces such
as the spectrum of allowed surface states or the match-
ing of electronic wave functions at the boundary of a
crystal in a low-energy electron-diffraction experiment.
Furthermore, solutions with complex k also appear in

the theory of electron tunneling and in any physical

*Supported in part by National Aeronautics and Space
Administration Grant No. NSG 589.

problem involving a "tailing off" of the wave function
in some classically forbidden region. Finally, we should
mention that the rate of decay of Wannier functions is
intimately related to the analytic properties of the
Bloch waves.

The analytic properties of Bloch waves and Wannier
functions have been exhaustively studied by Kohn' for
the one-dimensional case. However, his methods are
based on the theory of ordinary, i.e., not partial
differential equations, and cannot be extended to two
or three dimensions, not even to a one-dimensional
section of a two- or three-dimensional band structure.
The latter follows from the fact that in one dimension,
bands cannot overlap, whereas in more than one
dimension, one-dimensional sections of the energy may
overlap. More recently, Blount' and Heine' have proved
some general results concerning the analytic properties
of the energy function, but it is not clear how to obtain
the analytic properties of the Bloch waves from their
work,

All the previously mentioned. work makes liberal use
of theorems concerning the analytic properties of

' K. Kohn, Phys. Rev. 115, 809 (1959).
E. I. Blount, in Solid State I'hysics, edited by F. Seitz and

D. Yurnbull (Academic Press Inc. , New Vork, 1962), Vol. 13,
pp. 305—373.' V. Brin, Proc. Phys. Soc. (London} 81, 300 (1963).


