748

of holes allows the magnetic breakdown that has been
observed in several experiments.”~® Since all of the data
recorded here were obtained in magnetic fields less than
1 kG, no breakdown effects were observed.

The curve labeled G in Fig. 2 is assigned to the
portion of the third band of electrons occurring on the
Brillouin zone boundary (stars). The peaks recorded on
curve G are an order of magnitude Jess intense than the
other observed peaks and become obscured for caliper
dimensions of the same size as those arising from the
first and second bands. The free-electron construction
indicates that the calipers obtained from this sheet of
the Fermi surface should trace out an ellipse for field
rotations in the basal plane. The data, however, show
a distortion from this picture, with the expected
elliptical shape being squeezed into an elongated
cigar shape.

There are four remaining curves, H, I, J, and K,
which we have been unable to assign to orbits on the
various sheets of the Fermi surface predicted by the
free-electron construction. Curve H has the same
angular dependence for both its caliper size and its
intensity as the minimum open orbit and remains an
almost constant value of &, smaller than the calipers for
this orbit for all angles. Curves I, J, and K are of low

8 A. D. C. Grassie, Phil. Mag. 9, 847 (1964).
9 J. K. Galt, F. R. Merritt, and J. N. Klauder, Phys. Rev. 139,

A823 (1965).
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intensity. All of the k. values obtained in these remain-
ing curves are too large to agree with the expected sizes
of the fourth-band holes (cigars). The fact that no size-
effect peaks are observed, which can be attributed to
the fourth-band cigars, by no means precludes their
existence. In the field ranges that they are expected to
occur, the surface impedance changes rapidly and they
may be lost in the background.

A direct comparison of the results of this experiment
to calipers obtained by ultrasonic geometric resonance
can only be made for the third-band lens and the first-
band caps. The various values for the diameter of the
lens in the basal plane are tabulated in Table I. The
[11207 caliper assigned to the caps in the present experi-
ment is 0.300 A~L. This is in excellent agreement with
the value of 0.295 A~' obtained by Chang* for this
direction. Gibbons and Falicov? have assigned a caliper
of 0.31 A~ for the [1120] direction to the second band
at the AHL plane. This particular caliper cannot be
obtained directly from the present results, but it is in
agreement with the first-band caliper for this direction,
since the energy gap between the first and second bands
is small in this direction.
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Geometric resonances in the ultrasonic attenuation have been studied in magnesium for sound propa-
gated in the three principle crystallographic directions. A total of twenty different geometric resonance
branches have been obtained. The assignment of these branches to Fermi-surface calipers shows that the
magnesium Fermi surface is much more free-electron-like than currently thought. Three of the first four
local pseudopotential Fourier expansion coefficients are estimated from data to be 5X10~* 1.0X1072, and
1.7X10~2 Ry for the absolute value of the [1010], [0002], and [1011] coefficients, respectively. A two
orthogonalized-plane-wave model is given for the lens-shaped piece of the Fermi surface in the third Bril-
louin zone, and various physical properties of this model are calculated and compared with experi-

mental data.

lous skin effect’ has yielded a value for the total area
of the Fermi surface; the de Haas—van Alphen effect?®

1E. Fawcett, J. Phys. Chem. Solids 4, 320 (1961).

I. INTRODUCTION

HE Fermi surface of magnesium has been the

subject of several experimental and theoretical
investigations during the past few years. The anoma-
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2W. L. Gordon, A. S. Joseph, and T. G. Eck, in The Fermi
Surface, edited by W. A. Harrison and M. B. Webb (John Wiley
& Sons, Inc., New York, 1960), p. 84.

$ M. G. Priestley, Proc. Roy. Soc. (London) A276, 258 (1963).

4 M. G. Priestley, L. M. Falicov, and Gideon Weisz, Phys. Rev.
131, 617 (1963). .

5 R. W. Stark, Bull. Am. Phys. Soc. 11, 169 (1966); (to be
published).
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has been used to measure several of its extremal cross-
sectional areas; cyclotron resonance®7 has given values
for the cyclotron mass of various orbits on the surface;
and the galvanomagnetic properties®™® have yielded
information about its topology. All of these experiments
have been shown to be in reasonable agreement with a
Fermi-surface model based on Falicov’s orthogonalized-
plane-wave (OPW) band-structure calculations.!!

The present contribution describes the results of
extensive magnetoacoustic measurements in mag-
nesium.!? The objective of this work is to gain a better
understanding of the magnesium Fermi surface.

II. THE MAGNESIUM LATTICE

The real-space lattice of hexagonal-close-packed
(hcp) magnesium is shown in Fig. 1. This is defined
by a right-handed system of three primitive translation
vectors ty, te, and ts, the angle between t; and t; or t;
being 90°, and the angle between t; and t; being 120°
with

It1| =C,
[to] = ts] =a. 1)

There are two atoms per unit cell of the hep structure,
located at the origin and =, respectively, where

= %tr‘-%tz—'—%ts (2)
The volume V of this unit cell is
V=t1't2><t3= a% sin(27r/3). (3)

The lattice parameters measured at 293°K and
extrapolated to 0°K using the thermal-expansion data
of McCammon and White®® are listed in Table I to-
gether with other information pertinent to the crystal
structure.

The reciprocal lattice is defined by the three vectors
G, G, and G, related to the real-space vectors by

G, =2mt; Xty /t; ;X s (4)
i, 3, k=1, 2, 3 in cyclical order.
Thus,
I GII = 27('/6,

|Gz2| =|G3| =2n/a sin(27/3). (5)
The first Brillouin zone of the hcp structure is shown

8 T. G. Eck and M. P. Shaw, in Proceedings of the 1Xth Inier-
national Conference on Low-Temperature Physics, Columbus, Ohio,
1964 (Plenum Press, Inc., New York, 1965), p. 759.

"D. M. Zych, Ph.D. thesis, Case Institute of Technology
(unpublished); D. M. Zych and T. G. Eck (to be published).

8 R. W. Stark, T. G. Eck, W. L. Gordon, and F. Moazed, Phys.
Rev. Letters 8, 360 (1962).

9R. W. Stark, T. G. Eck, and W. L. Gordon, Phys. Rev. 133,
A443 (1964).

O R. W. Stark (to be published).

117, M. Falicov, Phil. Trans. Roy. Soc. (London) A255,55 (1962).

22 J. B. Ketterson and R. W. Stark, Bull. Am. Phys. Soc. 11,
90 (1966).

(1;615{)' D. McCammon and G. K. White, Phil. Mag. 11, 1125
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Fi1c. 1. The hexago-
nal-close-packed lattice
structure. t;, ty, and t;
are the primitive trans-
lation vectors. There are
two atoms per unit cell
centered at the origin
and ~.

in Fig. 2 together with various points and lines of
symmetry. The volume @, enclosed by this zone, is

Q= G] : ng G3= (21!')3/V. (6)

Each zone contains a number of states sufficient to hold
two electrons for each unit cell of the crystal.

III. BAND-STRUCTURE THEORY

Atomic magnesium has the electronic configuration
1522522p%3s%. In the solid state the two 3s electrons
are contributed to the conduction band leaving the
magnesium core in the tightly bound neon-like con-
figuration. Since there are two atoms per unit cell of
the hcp lattice, a total of four electrons are contributed
to the conduction band for each unit cell of the crystal.
This just fills a volume of states in reciprocal space
equal to twice the volume Q.

The wave functions of the conduction electrons in
the crystal show little resemblance to the 3S wave
functions for the free atom. The Schrodinger equation
for the crystal,

L(=#/2m)V*+V () W=Ey, ™

Tasie I. Physical constants for magnesium
(in atomic units).

Real-space lattice:
11 (300°K) =9.8461

12(300°K) =1#3(300°K) = 6.0645
11 (0°K) =9.7811

12(0°K) =#3(0°K) =6.0260
V(0°K) =307.62

Reciprocal lattice:

G1(0°K) =0.6424 G2(0°K) =G3(0°K) =1.2039

2=0.8063

Free-electron Fermi sphere:
kr=0.7275

Density:
p=1.738 g/cm?
Tlastic constants:

€11=6.322X10" g/cm-sec?
¢33=0.561X 10" g/cm-sec?

Longitudinal sound velocity:
VBasarL=6.036X10% cm/sec

Ep=kp*=0.5292

Vooor=06.144X 105 cm/sec
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must be solved. The conduction-electron wave functions
¥ are now Bloch states and V (r) is the periodic potential
due to the ion cores and the self-consistent field of all
electrons. V(r) is a rapidly varying function with a
strong attractive part close to the ion cores. The con-
duction states ¥ must be orthogonal to the core states
Y.. This constraint forces the conduction electrons to
sample V() in a very special way which can be repre-
sented by a new wave equation which is identical to
Eq. (7) but with an effective or pseudopotential U (r)
(replacing V (r)) which is both much weaker than V (r)
and more smoothly varying,* and a new wave function
¢ which is much smoother than ¢. In practice U (r) may
be represented by a Fourier expansion

U (f)=§ Vo', ®

where the Vg; in general are momentum-dependent.
In the local approximation these are treated as mo-
mentum-independent. In either case, the Fourier ex-
pansion generally converges sufficiently rapidly so that
the series can be truncated after a few terms. In fact,
a reasonable first approximation to the electronic band
structure of magnesium is obtained by keeping only
the leading constant term U (r)=V,. This results in
spherical constant-energy surfaces centered on I'. The
radius kp of the spherical surface at the Fermi energy
is kr=(3Q/27)Y%. The higher-order terms in the ex-
pansion, though small, are of essential importance in
determining the electron dynamics and the actual form
of the Fermi surface. The idealized single-OPW model
proposed by Harrison!® truncates the series to its leading

UW. A. Harrison, Psuedopotentials in the Theory of Metals

(W. A. Benjamin, Inc., New York, 1966) and references therein.
15 W, A. Harrison, Phys. Rev. 118, 1182 (1960).

term but constrains the electrons motion to a single
zone.

Since the magnesium lattice contains two atoms per
unit cell, the Vg, contain contributions from the ion
core potentials vg, of the individual atoms. The con-
tribution from each of these cores must be added with
the proper phase. This can be written in the form
Ve;=S(G:)ve;, where S(Gy) is the structure factor for
magnesium,

It should be noted that S(G;) is identically zero for
G;=G;. This is a property common to all hcp metals.
For the position-dependent potential ¥ (r) used in Eq.
(7) this leads directly to a vanishing of the energy
discontinuity across the AHL plane of the Brillouin
zone shown in Fig. 2.1 However, a more general treat-
ment including spin-dependent terms,!” in particular
spin-orbit coupling, yields a discontinuity across the
AHL plane except along the AL line. In magnesium
(because of its low atomic number) the maximum value
of this discontinuity is expected to be about 5X10~*
Ry. This is so small that one must consider the proba-
bility that magnetic breakdown'®% may be important
in magnetic fields as small as a few hundred gauss. The
measurements reported in this paper were made in

1N, F. Mott and H. Jones, The Theory of the Properties of
Metals and Alloys (Dover Publications, Inc., New York, 1958),
p. 161.

17 M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 5, 544
§196()); L. M. Falicov and M. H. Cohen, Phys. Rev. 130, 92
1963).

( 18 M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 7, 231
1961).

1 E, I. Blount, Phys. Rev. 126, 1636 (1962).

2 A, B. Pippard, Proc. Roy. Soc. (London) A270, 1 (1962);
Phil. Trans. Roy. Soc. (London) 256, 317 (1964).
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F16. 3. The single-OPW model Fermi surface for magnesium: (a) monster (2nd-zone holes); (b) cap (Ist-zone holes); (c) cigar
(3rd-zone electrons) ; (d) lens (3rd-zone electrons); (e) butterfly (3rd-zone electrons); (f) fourth-zone electrons.

magnetic fields of less than 300 G and in this range of
fields we found that the Brillouin zone shown in Fig. 1
was appropriate for the description of the band
structure.

The single-OPW model has sheets in the first four
zones. These are shown in the reduced zone scheme in
Fig. 3(a)-3(f) and are described below in order of
increasing zone number.

Caps: Two identical hole pockets in the first zone
centered around H. Their shape is approximately that
of two regular tetrahedrons set base to base. [Fig. 3(b)].

Monster: A multiply-connected hole surface in the
second zone centered on I'. This sheet is capable of
supporting a band of open trajectories parallel to Gy
(the T'4 direction) in low magnetic fields [Fig. 3(a)].

Cigars: Two identical electron pockets in the third
zone centered around K. The cross sections of these
pieces in the TKM plane is very nearly that of an
equilateral triangle [Fig. 3(c)].

Lens: A large electron pocket in the third zone
centered on I' which has the shape of a convex lens
[Fig. 3(d)].

Butterflies: Three identical electron pockets in the
third zone centered on L. These have the shape of two

intersecting convex lenses tilted at an angle of approxi-
mately 57° with respect to one another [Fig. 3(e)].

Fourth-zone electron pockets: Three identical electron
pockets centered on L in the fourth zone. The cross
section of these pieces in the LAM plane is approxi-
mately that of an equilateral parallelogram with an
enclosed angle of about 57° at the vertex toward M.
These sheets do not have a conventionally accepted
colloguial name [Fig. 3(f)].

At this time no reasonable doubt remains as to the
existence of all of these pieces of the Fermi surface of
magnesium. Previously reported de Haas—van Alphen
measurements have verified their presence; galvano-
magnetic measurements have verified their general
topology.

Falicov! has carried out a careful OPW calculation
from first principles for the band structure of mag-
nesium. His results yield all of the pieces described
above for the single-OPW model. The relative shapes
of his pieces agree with the single-OPW model but their
dimensions are generally somewhat smaller. A com-
parison of our experimentally determined dimensions
with both the single-OPW model and Falicov’s model
will be made later in this paper. (see Table II).
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IV. ULTRASONIC-ATTENUATION THEORY

In the standard geometry used for studying geometric
resonances in the ultrasonic attenuation of a metal, the
magnetic field H is constrained to move in the plane
perpendicular to the sound propagation direction q.
With this geometry, a simple expression relates the
frequency F of a geometric resonance to an extremal
Fermi surface caliper kex;, by?!?

F=(hc/eN)kexs, (10)

where M is the sound wavelength and ¢, %, and ¢ have
their usual significance. kext measures the extremal
projection of the Fermi surface in the direction per-
pendicular to both H and g, i.e., in the direction of the
unit vector
d=¢xH. (11)
In principle, these extremals are determined by ex-
amining the projection of orbits in reciprocal space
upon 4 for a continuous series of parallel-orbit planes
separated by an amount dky, where kg is measured
parallel to H. When such a projection passes through
an extremal as a function of ky, a geometric resonance
may be observed. In general these extremal calipers
can not be uniquely converted into radius dimensions
of the Fermi surface. However, this conversion is unique
if a given Fermi surface sheet has sufficient symmetry
so that a set of extremal calipers measured on it for
different directions of H all occur in a common plane
about a common center. This happens, in particular,
if a given sheet of the Fermi surface has both reflection
symmetry in a plane perpendicular to q and inversion
symmetry about some point in that plane.
Throughout this paper we will use the following
system of notation. If the Fermi surface sheet in
question has sufficient symmetry, we will reduce the

B. KETTERSON AND R.
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measured calipers to radii. These reduced radii will be
referred to by the symbol %, generally including a
subscript name identifying the orbit calipered and a
superscript indicating the direction of the caliper with
respect to the Brillouin zone shown in Fig. 2. For
example, krens™® refers to the radius of the lens
measured from I' toward K. Calipers associated with
orbits having insufficient symmetry to allow a direct
conversion into Fermi surface radii will be denoted
by the symbol C which will also carry equivalent
superscripts and subscripts.

To observe geometric resonance the electron-mean-
free path / must be much larger than ), i.e., ¢g&>1. 1 is
generally determined by impurity scattering, phonon
scattering, and surface scattering. At low fields the
resonances begin when the electron completes approxi-
mately one orbit before scattering. If / is limited pri-
marily by the geometrical size of the crystal, the
resonances begin when the orbit size is smaller than the
shortest crystal dimension in the plane of the orbit
(usually the propagation direction). In either case, the
resonances cease at high fields when the orbit size
becomes comparable to \.

Since the sound waves constitute probes of finite
dimensions, the resonance condition specified by Eq.
(10) will not necessarily be valid in fields sufficiently
high that the extremal orbit dimension is only a few
sound wavelengths (low-phase region). In this case A
is a significant fraction of the orbit diameter and the
phase of the oscillation shifts from its low-field asymp-
totic value. Thus, the oscillations are no longer strictly
periodic in A, In addition, a larger fraction of neigh-
boring orbits with slightly different values of kg may
distort the phase in this region. In much lower fields
where the extremal dimension is much larger than A
(high-phase region), we expect Eq. (10) to be rigorously
satisfied and the resonances to be strictly periodic in

-
q

Fi1c. 4. Cross section of the monster
in the TKM plane showing the ex-
K tremal calipers on the orbits which

—

Gy

may give rise to observable geometric
resonances for q parallel to (a) [1120]
and (b) [10107.

(a)

(b)

2 M. H. Cohen, M. J. Harrison, and W.
2 A.B. Plppard Proc. Roy. Soc. (London) A257 165 (1960)

Harrison, Phys. Rev. 117, 937 (1960).
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H~1. Deviations which may occur in the low-phase
region are thus easily detected.

A given orbit may have more than one extremal
caliper associated with it if it has more than one turning
point. For example, consider the hexagonal-shaped
orbit which occurs in the TKM plane of the monster.
This is shown in Fig. 4(a) for q parallel to [1120]. It
has been shown® that we may expect geometric reso-
nances associated with the calipers kext=Cr, 2kour™,
Cr/24kour™.

The question naturally arises as to the relative
amplitudes of these and other calipers. Intuitively we
expect that if the electron spends a reasonably large
fraction of a cyclotron period 27/w, at a turning point,
the amplitude will be large. The exact theory® bears
this out and shows that there is a factor (pa05)Y/2/v.0m*2
in the amplitude, where p, and p; are the radii of curva-
ture of the orbit at the turning points ¢ and b, v, and
v, are the velocities at the turning point (i.e., normal
to the wavefront) and m* is the effective mass of the
electron on this orbit. In addition, we expect the
amplitude to depend on the rate of change of the caliper
as we move along ky away from the extremal plane;
the amplitude being smaller the more rapid this rate
of change. Again, this is born out by the exact theory
which contains a factor (62C/dkg%) 12, where C is the
nonextremal caliper dimension as a function kg and the
expression is evaluated in the plane of the extremal
orbit where C=Cex. In a later section of this paper
we will use a two-OPW approximation to evaluate these
amplitude factors for orbits on the lens.

We now examine the monster in the TKM plane with
q parallel [10107] as shown in Fig. 4(b). In this case
we note that the point 7" near the tip of the arrow
denoting Crrp is not in reality a turning point on the
orbit. As it happens, however, the motion of an electron
on the segment of the orbit near this point is very nearly
parallel to the sound wave front. The electron changes
direction abruptly at 7" and then moves approximately
perpendicular to the wave front. This introduces a
cutoff in the electron-phonon energy-exchange integral
and we expect an uncanceled energy exchange on a
length A% of the orbit near T given by Ak=eH\/
2he siny, where ¢ is the angle between the tangent line
of the orbit at T" and the sound wave front. This will
contribute a geometric resonance of frequency
(hc/ex)Crip. We then expect to find geometric reso-
nances arising from the calipers 2kour"%, Crrp, and
kour"¥£Crrp/2.

Geometric resonances associated with nonextremal
calipers may also be produced by another type of cutoff.
In this case the cutoff is not in the energy-exchange
integral as discussed above but is in the phase integral
along ky. For example, consider the orbits on the
butterfly for H parallel to [0001] and q parallel to
[11207]. These are shown for the single-OPW model in

% S. G. Eckstein (to be published).
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Fig. 5(b) for a series of planes cut perpendicular to k.
Notice that a saddle point occurs at ky=0.09 a.u. (ky
is measured with respect to L). After the saddle point
(SP) the projection of the orbits along u changes
abruptly to one-half the value before the saddle point
(shown in Fig. 5). Thus the phase integral will yield
uncanceled contributions both above and below the
saddle point. We expect a contribution above the saddle
point for approximately the distance Akp=eH\/
2% tanw, where w is the angle between the tangent line
to the butterfly in the TM LA plane at kz=0.09 a.u.,
and the I'4 direction. The resulting geometric resonance
will measure the caliper Csp shown in Fig. 5(b).

V. EXPERIMENTAL TECHNIQUES

The high-purity single crystals of magnesium which
were used in this investigation were grown directly
from the vapor phase in a special high-vacuum furnace.
The details of this technique will be reported elsewhere.2
The residual resistance ratio of these crystals was
greater than 250 000.

Several samples with cross sectional areas and thick-
nesses of approximately 20 mm? and 2-3 mm, respec-
tively, were prepared for directions of q parallel to the
[00017, [1010], and [1120] crystallographic directions.
The crystals were normally oriented to within 0.5° of a
given crystallographic axis using standard x-ray tech-
niques. The samples were cut to size with an acid string
saw using a 12.59, aqueous solution of HCI and then
the appropriate sides were planed parallel with a Servo-
met spark planer. The [0001] and [10107] samples were
planed to within 0.1° of their respective crystallographic
planes utilizing the natural crystalline faces which
resulted as these crystals were grown.

ky

e > o
O 0018 au
O 0036 0.
O 0054 a.u.

%spg 0088 qu.
J—— te

e

: ‘EP—“Q 0.108 au.

(o) (b)

M
.

F16. 5. (a) Cross section of the butterfly in the ZAM plane
showing the location of the saddle-point along the LM line at
kr=0.090 a.u. (b) Cross sections of the butterfly normal to the
LM line for various values of %k g.

# R. W. Stark (to be published).
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Fi1G. 6. Block diagram of the experimental apparatus.

The planing surface of the Servo-met planer was
replaced by a surface having f-in. wide grooves instead
of the original -in. wide grooves. The reason for this
was simply that the sample dimensions were usually
slightly smaller than % in. and the results of planing
with the original planing surface were quite unsatis-
factory. The surfaces obtained were neither parallel
nor unstrained. Satisfactory results were obtained with
the {5-in. wide grooves.

In order to observe the geometric resonance signals
over a sufficient field range to get an accurate deter-
mination of their frequency, it was found to be necessary
to restrict the sample thickness to 2-3 mm. This was
the result of an unusually high nonresonant monotonic
background attenuation which increased rapidly as the
strength of the magnetic field was increased. This
background became so large that no echoes were
transmitted through these thin specimens when the
magnetic field strength was raised to approximately
500 G.

An acoustic delay line (Z-cut quartz) was used to
delay the transmitted pulse for a time sufficient to
allow the cessation of the original pulse, since this was
found to couple capacitively to the receiver. Coaxially
plated x-cut transducers were used to generate and
receive longitudinal sound waves. These were bonded
to the crystal with Dow Corning No. 200 silicon fluid
of viscosity 2)X 108 ¢P. The mounting geometry is shown
in Fig. 6.

The upper curve in Fig. 7 shows a typical x-y re-
corder data trace of the logarithm of the transmitted
signal amplitude as a function of the magnetic field

strength. Most of the signal results from the large
slowly varying monotonic background. The geometric
resonances show up as minor perturbations on this
background. The dominant frequency component of
the geometric resonance signal is shown as the lower
curve in Fig. 7, which is an x-y recorder trace of the
“processed” data. The method of processing is described
below.

The geometric resonances were periodic in H~1. A
special magnet sweep generator was constructed which
made H! a linear function of time, i.e., H~'=g¢. Thus,
the geometric resonances became periodic in time and
normal electronic filtering techniques could be used to
separate the resonances from the background and
different resonant frequencies from each other. A block
diagram of the apparatus used to do this is shown in
Fig. 6. The details of these techniques are reported in
Ref. 25.

The data obtained in this investigation were taken
in magnetic fields of less than 300 G as a result of the
large background attenuation. In these fields the reso-
nances were almost always in the high-phase region
(~30x) so that errors resulting from low-phase devi-
ations from Eq. (10) were negligible. All of the data
were taken at 1.2°K to minimize the effects of electron-
phonon scattering.

The experimentally determined resonant frequencies
F were converted into extremal calipers using Eq. (10).
The wavelength A which enters this equation was
determined using the velocity measurements of Eros

2 J, B. Ketterson and Y. Eckstein, Rev. Sci. Instr. 37, 44 (1966)-
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and Smith,® together with the oscillator frequency.
The velocities for longitudinal sound waves which were
used are

Vioto= V1130=6.036 X 10° cm/sec,
and (12)
Vooo1=06.144X10% cm/sec.

The oscillator frequency was measured with a phase-
cancellation technique accurate to 0.5%,. All data were
taken at 180 Mc/sec or 260 Mc/sec.

VI. EXPERIMENTAL RESULTS

Figure 8 shows a composite of most of the results
obtained during the course of this investigation. For q
parallel to [1010] and [11207, 6 measures the angle
between [0001] and u in the (1010) and (1120) planes,
respectively. u, as defined by Eq. (11), is the unit
vector along which the extermal calipers are meas-
ured. For q parallel to [00017], ¢ measures the angle
between [1010) ] and u in the (0001) plane. The extremal
calipers are plotted in atomic units. The calipers are
accurate to about 29; the angles are accurate to
within 1°,

Nine distinct resonance branches were observed for
q parallel to [1010], six distinct branches for q parallel
to [11207] and four distinct branches for q parallel to
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Fic. 7. Typical experimental data for q parallel to [0001] and
H in the basal plane. The upper trace shows the unprocessed data
directly from the receiver (the receiver had logarithmic response).
The lower trace shows the data after being electronically processed.

[0001]. In addition, several other frequency branches
were detected at various points in these planes. These,
however, did not have a large enough amplitude to be
accurately resolved from the dominant branches. Each
of the branches which are shown in Fig. 8 have been
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756 J. B.

designated by a Greek letter. The subscripts 1, 2, and
3 refer to calipers in the (1010), (1120), and (0001)
planes, respectively.

The branches A, Ag, and A3 have been assigned to the
lens. The resonances associated with these branches
had the largest amplitude of any of the resonant
branches of \;, and X\ was large enough to obscure other
frequencies in that region. Thus we were unable to
accurately resolve resonant branches associated with
extremal calipers of about 0.5 a.u. (atomic units) for
6560°.

B1 and s have been assigned to the butterflies. For
6=90°, 81 (90) measures the extension of the butterfly
along the LH zone line in the HA L plane. The butterfly
cross section in this plane is that of a convex lens elon-
gated along LH. Thus we expected and observed that
for 6=90°, 82(90) = (vV3/2)B1(90). These branches could
not be followed to small values of 6 because of the large
amplitude of the A\; and A, branches and their harmonics.

1 has been assigned to the cigar. Although it had a
relatively large amplitude in the (1010) plane it was
not observed in the (1120) plane. Some evidence was
observed for this branch near ¢=30° in the (0001)
plane but its amplitude was too small to be accurately
resolved. The v; branch was ultimately obscured by
the \; branch.

The ay, 0, 63, €1, €2, 61,, 62’, Xl, X3, gi, and 0’2’ branches
have all been assigned to various calipers on the mon-
ster. The a branches have been assigned to the diagonal
arms of the monster. These are the arms shown in Fig.
3(a) which are directed toward the symmetry point H.
The & branch has been assigned to the monster waist
[shown in Fig. 3(a) near the symmetry point M ]. The
¢, X, and ¢ branches will be discussed in detail in the
next section. The us branch does not seem to fit any
of the extremal calipers that are predicted by our Fermi-
surface model. However, as we shall discuss in the next
section, it is quite possible that us may measure a
nonextremal caliper.

VII. CALIPER ASSIGNMENTS

The lens is the only sheet of the magnesium Fermi
surface which has symmetry sufficient to allow the
unique conversion of all of its extremal calipers into
radius dimensions. The A1, Ag, and A3 extremal caliper
branches have been assigned to the lens. The isotropic
A3 caliper measures the extremal dimension of the lens
about I' in the TKM plane. The number # of resonant
oscillations that occur in the range between a given
field H; and H= « is n=F/H,, where F is defined by
Eq. (10). =30 for the \; frequency when H,=100 G.
The A3 oscillations remain phase locked to within 0.15
cycles for different directions of H in the (0001) plane
when H=100 G. Thus, An<0.15 and

ANs
=-—<0.005.
kext )\3

An AF Ak ext
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F16. 9. The cross section in the 'K H A plane of the lens, monster,
and cigar sheets of the Fermi surface as constructed from the
experimental data. The single-OPW contours are shown for
comparison.

The radius of the lens about I' in the TKM plane is
then isotropic to within $9.

The Ay and M\, branches measure the radius of the
lens about I' in the TKHA and the M LA planes,
respectively. The radii plotted in the TKHA plane are
shown in Fig. 9. The cross sections of the single-OPW
model are also shown for comparison. Notice how closely
the experimental radii follow the single-OPW contour.
The only major deviations occur as the surface crosses
the TKM plane. This perturbation results, to first order,
from the gg02 coefficient in the Fourier expansion of the
pseudopotential [Eq. (8)]. The radii plotted in the
T'MLA plane are shown in Fig. 10. The cross sections
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Fic. 10. The cross section in the TM LA plane showing both
the experimentally constructed surfaces and the single-OPW
contours.
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of the single-OPW model are again shown for com-
parison. Notice that the experimental radii in this
plane are practically identical to the experimental
radii in the TKHA plane. This together with the
isotropy of the radii in the TKM plane suggests that
the lens is very nearly a surface of revolution about the
T'4 line.

The experimental radius along T'4, krexs"™, is 0.058
a.u. and the experimental radii along both 'K and T'M,
krensTETM ) are 0.313 a.u. These values are in sharp
contradiction to the values of 0.094 and 0.217 a.u.,
respectively, deduced by Priestley® from his pulse-field
de Haas-van Alphen measurements in magnesium.
Reference 5 shows that this results from the misidenti-
fication of a de Haas—van Alphen frequency branch.
The single-OPW value for krens™ T is 0.341 a.u. The
difference Argns between the experimental value and
the OPW value is Apens=0.028 a.u.

When H is within 7° of the (0001) direction (8283°)
extremal calipers are measured for orbits going about
the inside and about the outside of the monster waist.
Representative orbits of this group are shown sketched
on the monster in Fig. 11. Sections of the monster
showing these orbits in the TKH plane for H parallel
to (0001) are shown in Figs. 4(a) and 4(b). These orbits
are centered on I' and are symmetric about the line of
intersection of the orbit plane and the I'KM plane.
Thus their extremal calipers (er,es,€2’) can be converted
uniquely into radius dimensions.

Perhaps the most interesting set of radii are obtained
from the e, and e, branches. These measure the dimen-
sions kin™ and kour"¥, respectively, as shown in Fig.
4(a). The e, and e’ radii are plotted in the TM LA
plane in Fig. 10. Note that these two branches nearly
completely determine the cross section, centered on 2/,
of the monster waist in this plane. The experimental
cross section deviates from the single-OPW cross section
primarily by rounding off the sharp corners of the OPW
model. The rounding off as the surface cuts across the
TKM plane results, in first order, from the g2 co-
efficient of the potential. The rounding off of the two

Fi16. 12. Cross section in the TMLA
plane of the butterfly-fourth-zone-
electron-pocket complex. The two
bands are degenerate in this plane
along the L4 line. (a) The butterfly
orbit; (b) the coupled orbit; (c) the
fourth-zone orbit.
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Fic. 11. Typical orbits around the inside and around the outside
of the monster for H parallel to [00017. The cross section in this
orbit plane is shown in Figs. 4(a) and 4(b).

corners toward L result, in first order, from the 1011
coefficient of the potential.

The €; branch measures the radius k;x™ in the
TKHA plane. These are shown in Fig. 9. We find
experimentally that the k™% and kin™ are equal in
magnitude having a value of 0.370 a.u. This compares
with the single-OPW value of 0.341 a.u. The difference
Arn between the experimental and single-OPW values
is A1N=0.029 a.u.

Arexs and Ay, then, are essentially equal in mag-
nitude. This, together with the fact that the calipers
of both the lens and the inside of the monster waist are
isotropic in the KM plane, suggests that a first-order
perturbation calculation using only two OPW’s will
yield a reasonable estimate of the value of the vogo2
pseudopotential coefficient. We will obtain a value for
this coefficient later in this paper.

The next caliper assignments which we will discuss
will be those relevant to the butterflies. These assign-
ments can not be made uniquely for most directions of
H; they can, however, be made unambiguously using
the single-OPW model as a guide. Figure 12(a) shows
the cross section of the butterfly in the TALM plane

00874+ 007au.
023t02au.

(b) (c)
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for H parallel to LH [11207, and q parallel L4 [10107;
cross sections of both the single-OPW model and the
“real” butterfly are shown. The experimental caliper
(0.37 a.u.) measures the projection of this orbit on the
LM line. The most useful information, of course, is not
this projected length but the actual length of the butter-
fly tip from L to Z’. Since the tip is centered on the
(1011) plane of the third Brillouin zone and L lies in
that plane, the orbit projections along the LM line can
be transformed to a length measured on the (1011)
plane with a high degree of accuracy. This transfor-
mation can be made for arbitrary directions of H as
long as q is parallel to [1010].

Figure 13(a) shows the second Brillouin zone of
magnesium. The butterflies occur as overlaps across
the (1011)-type faces of the zone in the extended zone
scheme. Fig. 13(b) shows a (1011) face with the trans-
formed values of the B8, extremal caliper branch plotted
as butterfly radii about L. The intersection of the single-
OPW spherical Fermi surface with this plane is also
shown. The most notable feature of the data is that it
shows that the real butterfly is not much smaller than
the single-OPW model butterfly. The radius of the
butterfly kppZ¥ from L along the LH line is 0.184 a.u.
compared with a single-OPW wvalue of 0.252 a.u.
Falicov’s band-structure calculations, on the other
hand, seriously underestimate this dimension, giving a
value of only 0.043 a.u.

The second interesting feature that shows up in the
experimental data is an apparent anisotropy in the
linear perturbation of the butterfly from the single-
OPW model in this plane. This is probably due to the
near proximity of other zone planes, in particular, the
(1010) plane which intersects the (1011) plane along
the LH line and the (1011) plane and (0002) plane
which intersects the (1011) face along its edges parallel
to the LH line.

The B, branch also measures the dimensions of the
butterflies. In this case the orbits are projected onto a
line in the A LH plane making an angle of 30° with the

]
‘ 0
(a) (b)

Fi16. 13. (a) The second Brillouin zone of magnesium showing
the pertinent symmetry points. The point =" designates the
intersection of the £ (T'M) zone line with the (1011) zone face.
(b) The intersection of the (1011) zone face with the monster
and the butterfly in the extended zone scheme.
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LH line. The B calipers can not be uniquely or even
unambiguously reduced into radius dimensions for the
butterfly. For H parallel to [00017], 82 (90)=0.335 a.u.
compared with the projected value of 8; on this line,
V3 8; (90)=0.318 a.u. The former is slightly greater
than the latter as expected for a surface with a positive
radius of curvature.

The v, extremal caliper branch has been assigned to
the cigar. This sheet of the Fermi surface is centered
about K but does not have inversion symmetry about
this point. Hence, the v; branch can not be reduced to
Fermi surface radii. The cigar does, however, have
mirror symmetry across the I'KHA plane. The v
branch measures the calipers of the cigar in this plane
about K. Reference 5 shows that the general shape of
the cigar is very nearly that of the single-OPW model.
We have thus plotted the v, calipers in Fig. 9 using
the single-OPW cross sections as a guide. This plot
illustrates a significant point. The ‘“real” cigar is a
little larger than the single-OPW cigar along the T'K
line. In addition the calipers indicate that the ‘“real”
cigar is more cylindrical parallel to the KH line than
in the single-OPW model. These conclusions are in
accord with those reached in Ref. 5.

The a branches have been assigned to the diagonal
arms of the monster. They are about a factor of 1.7
smaller than the dimensions of the diagonal arms on
the single-OPW monster but their angular variation
fits the variation expected. In addition, the de Haas-
van Alphen measurements of Gordon ef al.,? show that
the cross-section area of the diagonal arms is about
3.4 times smaller than on the single-OPW model. This
area reduction is thus just about right to go along with
the dimension reduction discussed above.

The 83 branch has been assigned to the caliper of the
monster waist in the TMK plane. Notice in Fig. 4(a)
that the waist caliper parallel to I'M, CwarsrT¥, should
be equal in magnitude to the quantity (kour™
—FkinT¥). The experimental value of Cwarsr™ is 0.10
a.u. The experimental value of (kour™ —kin') is
0.106 a.u. These agree within the experimental error
and offer further confirmation of our assignments. The
angular variation of the §; branch agrees quite well with
that expected from the single-OPW model if we include
the added perturbation due to the vg02 coefficient of the
pseudopotential discussed earlier.

The 7; branch has been assigned to the fourth-zone
hole pocket centered on L. The caliper at §=0° ([0001)]
measures the extension of the pocket along the LM line.
This caliper can be converted directly into a radius
dimension since this pocket has both reflection and
inversion symmetry. The experimental radius of the
pocket (P) from L along the LM line is kpt”=0.043
a.u. The cross section of the pocket in the '/ L4 plane
is shown in Fig. 12(c).

Two other calipers which have been assigned to the
butterfly-fourth-zone-pocket complex were observed for
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this same orientation of H and q. One measures the
extension of the butterfly along the LM line as discussed
earlier. The experimental value obtained for this caliper
is Cr¥M=0.37 a.u. The corresponding cross section is
shown in Fig. 10(a). The second caliper has a value of
Ccourren?=0.23 a.u. This has been assigned to the
coupled orbit shown in Fig. 12(a). The spin-orbit-
coupling induced energy gap which separates the
butterfly and the fourth-zone-pocket in the 4 LH plane
vanishes along the AL line. Thus the electron orbits in
the TMHA plane should be those shown in Fig. 12(b).
The gap increases as k2 out of this plane'® so the orbits
out of this plane are those for the butterfly [Fig.
12(a)] and the fourth-zone-pocket [ Fig. 12(c)]. Mag-
netic breakdown effects will of course create a region of
finite thickness about the I'M LA plane in which all
three of these orbits exist simultaneously. For con-
sistency, Ccourrep™™ should be equal in magnitude to

Fic. 14. A (1011)
plane orbit on the
monster in the re-
peated zone scheme
for u in the direction
defined by §~28.5°;
=0°.

3Cprl M4k pM=0.228 a.u. This agrees quite well with
the experimental value of Ccovpren™™.

The o5’ branch has been assigned to an orbit on the
monster in the repeated zone scheme. One of these orbits
is shown in Fig. 14 for H parallel to the [1011] direction
(6~228.5°). Note that for this field direction the orbit
plane coincides with the (1011) zone plane shown in
Fig. 13. The intersection of the monster in the extended
zone scheme with the (1011) plane shown in Fig. 13(b)
defines this orbit. For this orientation of H, the o
branch yields the radius of the monster in the extended
zone scheme along the 42’ line. The experimental value
of this radius is Ayvonsrer?Z =0.65 a.u. When H is
tilted from [1011], the oy’ branch yields the radius
from A of the monster waist in the TM LA plane.

The ¢y branch has also been assigned to an orbit on
the monster in the repeated zone scheme. The cross
section of this orbit is shown in Fig. 15. The caliper of
the orbit shown is extremal for the single-OPW model.
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T16. 15. A repeated zone orbit on the monster for u
in the direction 2~20°; ¢=30°.

At 6=20°, the experimental caliper of 0.952 a.u. com-
pares quite well with the value of 1.005 a.u. predicted
by the single-OPW model. The most significant point
that can be made about these multizone calipers is that
they were observed to have relatively large amplitudes
in magnetic fields as large as 300 G. This means that
the spin-orbit-coupling-induced energy gap across the
ALH plane is sufficiently large in the immediate neigh-
borhood of H that magnetic breakdown across this gap
is not too significant in magnetic fields as large as 300 G.
This is the first reported direct experimental evidence
for the existence of this gap near H.

The X; branch has been assigned to the nonextremal
caliper Crip of the hexagonal-shaped orbit around the
outside of the monster waist. This orbit as well as Crip
is shown in Fig. 4(b) for #=90°. The reasons that this
nonextremal dimension contributes a geometric reso-
nance have been discussed in Sec. IV. The experimental
value obtained for Crrp is 0.622 a.u. We note in Fig.
4(b) that Crre forms one side of the equilateral triangle
TT'T. Thus, the radius dimension kour'™® must be
identically equal to Crrp.

We did not observe the geometric resonance asso-
ciated with the caliper 2koyr™®. However, we have
assigned the caliper ¢’ to the dimension (Zoyr'®
+3Crip)=1.5 Cr;p=0.95 a.u. This is shown in Fig.
4(b). The experimental value of ¢’ is 0.97 a.u. This
agrees with the predicted value within the error of e,’.

The branch X; also measures the caliper Crrp when
¢=230°. In this case, however, the caliper is measured
on quite a different shaped orbit than that shown in
Fig. 4(b). Figure 16 shows the location and shape of
this orbit on the monster. Here the dimension Cryp is
extremal in a given orbit plane but is not extremal for
a succession of orbit planes cut parallel to H. The cutoff
which gave rise to the X; geometric resonance was a
cutoff in the electron-phonon energy exchange integral.
In this case the cutoff which gives rise to the X; geo-
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I'16. 16. The orbit responsible for the geometric resonance sig-
nal showing the giant amplitude growth shown in the lower trace
in Fig. 17 at 7I~125 G. H was parallel to [10107] with q parallel
to [00017.

metric resonance is a cutoff in the phase integral for
successive orbit planes.

An interesting “giant” growth in the amplitude of
the X; geometric resonance oscillations was observed
for H~125 G. The upper curve in Fig. 17 shows a trace
of the geometric resonance oscillations arising from the
A3 branch (lens) for ¢=0°. Here, there is only the one
pure As frequency. Its amplitude growth as a function
of H is essentially that predicted by theory. For a
given value of H the amplitude of the A3 branch was
found to be independent of ¢. At ¢=30°, X; is almost
degenerate with A;. The lower curve in Fig. 17 shows a
trace of the sum of the geometric resonance oscillations
from the X3 and A3 branches for ¢=30°. Below 125 G
the X; oscillations are nearly in phase with the A;
oscillations and the X; amplitude is about 4 the As
amplitude. At about 125 G the amplitude of the X;
oscillations begins to increase very rapidly and by
175 G the X; amplitude is about four times as large as
the A3 amplitude.

We attribute this giant amplitude growth to the
peculiar shape of the orbit shown in Fig. 16. Notice
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F16. 17. The upper curve shows the geometric resonance oscil-
lations arising from the lens for H parallel to [1120]. The lower
shows the sum of the geometric resonance oscillations arising from
the lens and the monster orbit shown in Fig. 16. For HX125 G
the lens amplitude is dominant in the lower curve. For H 2125 G
the orbit shown in Fig. 16 is dominant.
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that this orbit has six turning points. Three of these
on each end are separated by the small distance .
When & becomes less than A\/2, the ends of this orbit
look essentially flat with respect to the sound waves.
Thus the electron-phonon energy-exchange integrals
yield a much greater net exchange and the amplitude
of the X3 oscillations shows a considerable increase.
This condition is expected to occur at about 100 G on
the single-OPW model.

The ue branch has been assigned to a nonextremal
caliper on the butterfly. The geometry of the orbits
which are associated with this caliper was discussed
earlier in the Sec. IV. The geometric resonances arise
as a result of a saddle-point cutoff in the phase integral
along H. The experimental value of ps at §=90°is 0.15
a.u. compared with the single-OPW value of 0.18 a.u.
The former is a little smaller than the latter but the
disagreement is in the expected direction. A finite value
for the vyo1; pseudopotential coefficient will reduce the
amount of overlap across the (1011) face of the Bril-
louin zone and hence reduce the dimension of the butter-
fly at the saddle-point cutoff.

A tablulation of all of the important experimentally
determined Fermi-surface dimensions along symmetry
lines of the Brillouin zone is shown in Table II. Also
included for comparison are the single-OPW dimensions
as well as those resulting from Falicov’s band-structure
calculations. Note that in general the experimental
dimensions are in closer agreement with the single-OPW
model than with Falicov’s model.

VIII. ESTIMATES OF THE PSEUDO-
POTENTIAL COEFFICIENTS

Perhaps the most significant result of this investi-
gation is that the actual Fermi surface of magnesium
shows only very small departures from the single-OPW
model. This is true for all of the sheets of the Fermi
surface. We can thus proceed with confidence to esti-
mate the coefficients of the Fourier expansion of the
pseudopotential [Eq. (8)] using first-order degenerate
perturbation theory?” in the vicinity of a Bragg re-
flection plane associated with a given reciprocal lattice
vector G;. These coefficients can be expected to be quite
accurate providing that they are calculated in regions
of the extended zone scheme where the Fermi surface
intersects and is close to only a single Bragg plane. In
this case the pseudo-wave function ¢ can be repre-
sented as a linear combination of two plane waves, i.e.,

(p=A06ik'r+A iei(k—Gi%r' (14)

When this wave function is substituted into the modi-

27 N. F. Mott and H. Jones, The Theory of the Properties of
Metals and Alloys (Dover Publications, Inc., New York, 1958),
p- 59.
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TABLE II. Fermi-surface dimensions (in atomic units).
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Experimental SOPW Falicov
2nd-zone monster
Inside
kinTETM =0,370 kinTE M =().341 kinT¥=0.405
AN =kINTETM (SOPW) — b nTE.TM (exp) =0.029 kinTM=0.415

Outside
kourt¥=0.476
koutt£=0.622
Waist
Cwarst™=0.100
kour™ (exp) —kin™™ (exp) =0.106
kwarst®'L'=0.064

3rd-zone lens
krensT4=0.080
krensT K TM=0.312

kout™ =0.476
kourt¥£=0.634

Cwarst™™=0.135

kwarst®'£=0.110

k1ens®4=0.085
krenstETM =0.341

Arpns=krensT X T¥ (SOPW) —krensT X T (exp) =0.029

3rd-zone cigar
CcrcarT®¥M =0.100
korgar®r~0.067
kchARKM.’EO.033

CeigarEM =0.093
kercarXT=0.062
kcrgar®M =0.031

kour™ =0.452
kout!£=0.606

CwarsT™ =0.037

kwarst®'L=0.062

krensT4=0.058
krensTX=0.253
krens!™ =0.255

Corgar™®M=0.117
kcicar®T=0.073
kcicar®M =0.044

3rd-zone butterfly
kprl¥=0.184 kpplH=0.252 kprl#=0.043
kerl®' =0.206 kerl®' =0.252

qth-zome pocket
kplM=0.043 kpLM=0.090 kpt¥=0.029

fied wave equation (7) the secular equation

P—E S(Gi)vei =0
S*(Gi)ve* (k—G)2—E| (15)
results. The solutions of this equation are
=3[k (k=G (10 (k— G
=k (k=G4S (Gy) ] ve, |22, (16)

We will evaluate this using experimentally determined
dimensions on a given Bragg plane. In this case the
Bragg reflection condition |k|?=|k—G;|? reduces Eq.
(16) to

Er=k+[S(G)] |ve

E-=k2—|S(G)] v, (17
where Et and E~ refer to the energies in two successive
zones, Et referring to the zone of higher index. Since
all of our experimental calipers determine k at the
Fermi surface, we will only be interested in the case
for which Et=E-=Ep=Fkz?

Figure 18 shows the constant energy surface Ep
which results from the solution of Eq. (16) in the
vicinity of the Bragg plane. Since G, is normal to the
plane in which the dimensions k.(exp) and k_(exp)
are assumed to be determined, the solution of Eq. (17)

for |vg,| is simply

*(exp)—ky*(exp)  k-*(exp)—F’sorw
215(G.)| [S(G)]

=k2s0PW—k+2 (exp) )
[S(Gs)]

lsz

providing |S(G:)| 0.

The magnesium Fermi surface intersects only three
types of Brillouin zone planes for which |S(G,)|>0.
These are, in order of increasing |G,|, the (1010),
(0002) and (1011) zone faces. The values of .S(G;) and
| G;| for each of these planes are tabulated in Table ITI.

[ — k-(exp) H

[

[

| T

U /_—[_\

F16. 18. Typical two-
OPW perturbation con-
tours.
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TasLe III. Local pseudopotential coefficients obtained with the
use of a two-orthogonalized-plane-wave approximation.

i |G:| (in atomic units) S(G) |2g;| (in Ry)
[00017] 27 /t;=0.6424 0 indeterminate
[10i0] 47 /V3t,=1.2041 (1£4v3)/2 ~5X10™*
[0002] 4dr/t;=1.2848 2 0.010
[1011] 2x[(1/t:2)+ (4/31:2) Jv2

=1.3647 (3+4V3)/2 0.017

|v1010] : For this coefficient the pertinent experi-
mental calipers are kour'® and our deduced dimension
kcrear®T given in Table II. We note that their sum
(0.688 a.u.) although slightly smaller is, within experi-
mental error, equal to the T'K dimension of the Bril-
louin zone (372G1o10="0.695 a.u.). Thus, |v10r0| must be
very small. The value of this pseudopotential coefficient
was estimated in Ref. 9 from magnetic breakdown
measurements to be approximately 5X10~* Ry. This
is so small that we can ignore its effects when computing
the remaining pseudopotential coefficients.

| vo0ez| : This coefficient can be determined using in
Eq. (18) the dimension krpns™ T and k5T given
in Table II. The value obtained for this pseudopotential
coefficient is |voo02| =0.010 Ry.

|91011| : This pseudopotential parameter can be esti-
mated using the dimensions kpe’® and ksrsopw’?
given in Table II. The (1010) zone plane intersects the
(1011) plane along the LH line but as we have shown
1070 1s negligibly small. Thus we can ignore its effects
and estimate vqo11 using only two plane waves along
this line. The value which we obtain for this coefficient
is 1011=0.017 Ry. The two-OPW theory predicts that
the intersection of the butterfly with the (1011) plane
should be circular. This was not observed experi-
mentally (see Fig. 13). This may be due to the dis-
tortion of the free-electron energy curves by the
proximity of several other zone planes near 2’.

The pseudopotential coefficients have been collected
for reference in Table IIT.

IX. TWO-OPW ENERGY SURFACE FOR THE LENS

In this section we will use the experimentally deduced
value of the vz pseudopotential coefficient in Eq. (16)
in order to parametrize the lens Fermi surface. To do
this it is convenient to transfer the origin of coordinates
in & space, and also the zero of energy, to the point in
the center of the lens. Equation (16) then yields

E’=kx2+ky2+kz2+[kz2G00022+4'U00022]1/2_“2 I 7100021 ) (19)

where
E'= EF—%G00022_ 2 l Vo002 | ) (20)

and k, is measured in a I'M direction, %, in a I'K di-
rection, and %, in the I'4 direction.

Figure 19 shows the cross section of the lens Fermi
surface in the TKA4 plane. The solid curve shows the
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two-OPW controur obtained from Eq. (19). Both the
single-OPW contour (light curve) and the experi-
mentally determined radii are shown for comparison.
It can be seen that the two-OPW approximation yields
a good representation for the actual lens Fermi surface.
We will use Eq. (19) to calculate further properties for
the lens and compare these with existing experimental
data.

When Eq. (19) is used to evaluate krmns™, we
obtain a value of 0.084 a.u. compared with an experi-
mental value of 0.080 a.u. and a single-OPW value of
0.085 a.u. This represents the maximum deviation of
the two-OPW contour from the actual Fermi surface.

The cross-sectional area of the two-OPW surface in
the TMA plane was evaluated numerically. The re-
sultant area of 0.0753 a.u. is to be compared with the
de Haas—van Alphen area’® of 0.0727, and the single-
OPW area of 0.0786. A graphical integration of the
area under the curve traced out by the geometric
resonance radii yields 0.0715. The area in TMK plane
is 7(krensT5 TM)2=0.306 a.u. compared with the de
Haas—van Alphen area’ of 0.308 a.u. and the single-
OPW area of 0.365 a.u.

The effective mass in a.u. is given by

lda
m*z_ZE—’ (21)
m !,

where @ is the area enclosed by the pertinent orbit in
k space. When H is along I'4, both the single-OPW
and two-OPW models give the identical result that
mra*=1. The experimental value of this mass obtained
by cyclotron-resonance experiments’ is mrs*=1.38.
The effective mass for H in the basal plane was obtained
numerically for the two-OPW model using Eq. (21).
This yielded a value of mpagar*=0.315 compared with
the experimental value® of mpasar*=0.42 and a single-
OPW value of 0.311. Because of many-body effects
(electron-electron?®8 and electron-phonon?) one does not
expect the band-structure mass to agree with the
experimental mass. They should in fact be related by

m*(exp) =m*(band structure) (14-8m*e-cF-0m*e-p) .  (22)

F1c. 19. The cross section in the I'K'4 plane of the two-OPW-
model lens. The experimental radii and the single-OPW contour
are shown for comparison.

28 T, M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965).
( 2 N. W. Ashcroft and J. W. Wilkins, Phys. Letters 14, 285
1965).
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Thus, if many-body effects are isotropic over the Fermi
surface, the ratio of the two band-structure masses will
be equal to the ratio of the two experimental masses.
The band-structure mass ratio (mra*/msasar*) is 3.17
compared with the equivalent experimental mass ratio
of 3.29. The fact that the former is slightly smaller than
the latter seems to indicate that the many-body en-
hancement effects are slightly anisotropic, being smaller
around the top of the lens than around the rim. Since
our model is only approximate this difference should be
viewed with caution. However, Zych’s limiting-point
cyclotron-resonance experiments have yielded a value
for the limiting-point cyclotron mass in the I'4 direc-
tion of mra* (LP)=1.31. We will show below that
mra* (LP) should be identically equal to the previously
listed value of mrs*=1.38 if the many-body enhance-
ment effects are isotropic over the two-OPW surface.
The fact that mr,* (LP) is smaller than mr.* agrees
with the anisotropy shown by the mass ratios discussed
above.

Reference 28 shows that §,.%.. is about 0.01 for mag-
nesium. Thus if we assume that all remaining difference
is due to electron-phonon interactions 8,.*., must be
about 0.37 for orbits around the rim of the lens and
about 0.30 for the limiting-point mass along I'4.

In the remainder of this section we will be concerned
with some of the aspects of our model which can be
described in terms of geometrical radii of curvature.
Each point ¢ on the surface can be defined by two
principle radii of curvature, p,‘?, and p;?,, measured
in the mutually orthogonal ¢ and b planes. The Gaussian
radius of curvature ps(?, at the point 4 is given by

pG(i)=|:pa(i>Pb(i)]1/2. (23)
In the following discussion we will need the radii of
curvature at the points labeled 1 and 2 in Fig. 19. The
principle radii of curvature at these points are pp,®;
praca® and pra®; prax®, respectively. These, as
well as the electron velocity have been calculated for
the two-OPW model and are listed in Table IV.

The value of the limiting-point cyclotron mass is
given by the expression

where @; is the area enclosed by an electron orbit very
near the limiting point 4 and v; is the limiting point
velocity. If @; is expressed in terms of the radii of
curvature at ¢ this reduces to

m#*(LP)=2ps /v;. (25)

Since the lens is a surface of revolution about I'4, it is
apparent that pg®=pr, @ =prx®. The values of
pe® and v, tabulated in Table IV show that mo* (LP)
=Mmr A*= 1.

The geometric resonance amplitude factors discussed
in Sec. IV reduce to an especially simple form for orbits
on the lens. When H is parallel to [0001] and q is
parallel to either [10107] or [1120] the amplitude 4,
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TaBLE IV. Two-OPW lens parameters (in atomic units).

MI‘A*=1 mBAsAL*=0.315
91=2k1ENnsTE T¥ =(,625
krensT4Gooo?
=1.424
[ (kLexsT4)2(Goooz)2 4400002 ]2

prarx® =krensTH Y =0.312

v, =2kLENsT4+

4vooookLENsT KT
Pryma D= = 00072
490002+ Gooo2?
pg® =pran® =PI‘AK(2) =krensT4

3kLENsT4Goo0s?

+ =0.712
[ (FLENST4)2(Gooo2)2 44000022 ]2

of the geometric resonance measuring krens™ T is
A1 prygg® (prara @)/ (mp *01)2. (26)

When H is parallel to either [10107 or [1120] and q is
parallel [0001] direction, the amplitude A4, of the
geometric resonance measuring krensT5 ™ is

As < prara @ (oppre )2/ (mpasar*vi)?. (27)

When H is parallel to either [1010] or [1120] and q is
parallel to either the appropriate [1120] or [1010]
direction, respectively, the amplitude A; of the geo-
metric resonance measuring krens™ is

Ag < (pran®)?2/ (mpasar*ve)?. (28)

These have been evaluated using the values tabulated
in Table IV. Their predicted ratios A;: A2: A3=1:1.8:52
are in qualitative agreement with the observed experi-
mental amplitude ratios.

X. CONCLUSIONS

The magnetoacoustic measurements reported in this
paper have shown that the Fermi surface of magnesium
is much more free-electron-like than previously believed.
The data pertinent to the lens and butterflies in the
third Brillouin zone show that these pieces are only
slightly smaller than in the single-OPW model. We
were thus encouraged to estimate the various local
pseudopotential coefficients using a two-OPW approxi-
mation. The wvalues obtained for these coefficients
(listed in Table III) are probably accurate to within
0.002 Ry.

The observation of geometric resonances associated
with multizone calipers on the monster show that
magnetic breakdown of the spin-orbit-coupling-induced
energy gap near point H in the AHL zone plane is not
too significant in magnetic fields as high as 300 G.
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I16. 11. Typical orbits around the inside and around the outside
of the monster for H parallel to [00017]. The cross section in this
orbit plane is shown in Figs. 4(a) and 4(b).



Fie. 14. A (1011)
plane orbit on the
monster in the re-
peated zone scheme
for u in the direction
defined by 6=~28.5°;
o=0°.




T16. 15. A repeated zone orbit on the monster for u
in the direction 8~~20°; ¢=30°.
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I'16. 16. The orbit responsible for the geometric resonance sig-
nal showing the giant amplitude growth shown_in the lower trace
in Iig. 17 at [/I=~125 G. il was parallel to [10107] with q parallel
to [0001].
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I16. 3. The single-OPW model Fermi surface for magnesium: (a) monster (2nd-zone holes); (b) cap (Ist-zone holes); (c) cigar
(3rd-zone electrons); (d) lens (3rd-zone electrons); (e) butterfly (3rd-zone electrons); (f) fourth-zone electrons.
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