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Hyperfine Structure of Nine Levels in Two Configurations of V".
II. Theoretical*

WILLIAM J. CHILDS

A rgonne Eational Iaboratory, Argonne, Illinois

(Received 2 November 1966)

The experimental data of the preceding paper on the hfs of nine low levels in two configurations of V" are
analyzed and compared with the theory. The effects of intermediate coupling, configuration interaction, and
relativity are considered. Corrections for J mixing within each multiplet are made. The measured J de-
pendence of the hyperfine-interaction constants and electronic g factors of the nine levels is in rather good
agreement with the theory. The ground-state nuclear electric-quadrupole moment is evaluated independently
in each of the two configurations. Since the two values are the same to within 3 jo, the differential Stern-
heimer effect is apparently small. Although the new value of the quadrupole moment is now in good agree-
ment with the theoretical prediction, the absolute value of any Sternheimer shielding is still unknown.

I. INTRODUCTION

'HK preceding paper' presented the experimental
data on BF=O, +1 transitions observed in the

nine lowest levels of V". The purpose of this paper is
to investigate the consistency of ajl the observations,
to extract the proper values of the hyperfine and atomic
parameters for each state, and to evaluate the nuclear
ground-state electric-quadrupole moment. Both the
lack of consistency between AF =0 and DF = 1 observa-
tions and the lack of self-consistency among the AF =0
observations for several of the states indicate a clear
need for detailed corrections for the mixing among
members of each rnultiplet.

The magnetic-dipole hyperfine-interaction constants
may include contributions from relativity and from

configuration interaction. Though dificult to separate
theoretically, these contributions are allowed for by the
use of appropriate adjustable parameters. Relativistic
contributions to the electric-quadrupole hyperfine
interactions are expected to be « l%%u~ and are ignored.
The procedure will be to determine the intermediate-
coupling wave functions and to make theoretical
predictions for the magnetic-dipole and electric-
quadrupole hyperfine-interaction constants A and 8 in
terms of the appropriate hyperfine parameters. The
experimental values of A, 8, and C will then be cor-
rected for the J mixing caused by the off-diagonal
hyperfine interactions. The theoretical expression for
A and 8 will be least-squares fitted to the corrected
experimental values; and the resulting values for the
hyperhne parameters will be used to extract the value
of the quadrupole moment Q. Since observations in the
two configurations 3d'4s' and 3d44s are completely inde-
pendent, any difference between the Sternheimer
shielding' in the two cases can be measured. Finally, the
problem of extracting the proper value of gg from the
hF =0 data will be considered.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' W. J. Childs and L. S. Goodman, preceding paper, Phys. Rev.
156, 64 (1967).' R. M. Sternheimer, Phys. Rev. 146, 140 (1966).References to
earlier work are included.
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FIG. 1. The low even configurations of V I. Hfs measurements
on the nine components of the two lowest multiplets are analyzed
in the present paper.

' Taken from the data of Atomic Energy Levels, edited by C. E.
Moore, Natl. Bur. Std. (U. S.) Circ. No. 467 (U. S. Government
Printing and Publishing OfFice, Washington, D. C., 1949), Vol. I,
p. 292.

71

II. INTERMEDIATE-COUPLING
WAVE FUNCTIONS

Figure 1 shows schematically' the low even-parity
configurations of V I. The small splitting of each multi-
plet shows immediately that the spin-orbit parameter
i &q is small in both the configurations of interest. Be-
cause of the small departure from the I-S limit, it was
not felt necessary to make a complete treatment of the
spin-orbit mixing.

For the 3d'4s' configuration, a computer program
was used to vary the appropriate Slater parameters
and the spin-orbit parameter to make a least-squares
fit to the spectroscopic energies' of the 15 identified
levels. Con6guration interaction was ignored and its
effects were thus absorbed to some extent in the best-6t
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III. HYPERFINE-INTERACTION CONSTANTS

The nonrelativistic magnetic-dipole hyper6ne oper-

ator for configurations of the form nP is normally

written4

Ri,t.(M1) =a~i Q LI;—10'"(sCis&) &'&] I (3)

where
rs. i=2PP~(yr/I)(» ') i (4)

Bauche and Judds have pointed out that in calcu-

lating the magnetic hfs of states of the configuration P,
one of the most important complications is the so-called

core polarization. Since this may be regarded as con-

figuration interaction with configurations containing

unpaired s electrons, the hyperfine interaction will in-

clude a contribution a(s)I S of the contact type, a(s)
being an adjustable parameter. Wybourne' has shown

4 B. Q. Wybourne, Spectroscopic Properties of Rare Earths
(Interscience Publishers, Inc. , New York, 1965), pp. 112—113.

' J. Bauche and B.R. Judd, Proc. Phys. Soc. (London) 83, 145
(1964).

6 3. G. V/ybourne, Ref. 4, pp. 148-150.

values found for the parameters. This is probably the
principal remaining source of inaccuracy in the
intermediate-coupling wave functions calculated by the
computer for the 3d'4s'4F states. The IS scheme was
used for the calculation, and the departure from the LS
limit was found to be very small for each state. As an

example, the eigenvector found for the 'Il;~~ state is

~

~Fs/s )=0.999»8 I'~sis)
+0.010444[ s'Dsgs) —0.006777

[ i'Ds(s)

+0.003073
i sFsgs)+0. 000149

i
4Psgs), (1)

in which the notation is standard except that the lower

left-hand subscript on the 'D states gives the seniority.
The 3d44s configuration contains many more states

than the 3d'4s' configuration, and the sects of spin-
orbit mixing were not investigated as completely. The
computer program was used as described above to make
a least-squares fit to the term energies' of the nine 'D
and 4D levels of the 3d4(sD)4s configuration. Terms of
3d44s higher than 4D (at 8500 cm ') were ignored, as

was configuration interaction with terms of 3d'4s'. The
nine levels were thus 6tted to within 4 cm '. Although

the coupling scheme most closely approached by the
atom is again LS, the scheme used for computation in
this case was (Ji,j), where the four d electrons couple

to Ji, which adds in turn to the j=-', of the s electron

to form J. The eigenvectors are generated by the
computer program. As an example, the eigenvector of
the 'Ds~s state in the (Ji,j) scheme was found to be

P('D, (s) =0.897195$('Ds,s; -', )—0.441634$(sDs, s; —,'), (2)

which is extremely close to the composition in the LS
limit (f'sq= 0).

that all types of con6guration interaction that can affect
the magnetic-dipole hfs can be taken into account if
the term a(s)I S is added to Eq. (3) and, in addition,
separate parameters are used to describe the radial
dependence of the terms P I,"I and P (sC"&);"& I.
For states of P, Sandars and Beck~ have recently
shown that relativistic sects on the magnetic-dipole
hfs can be taken into account with a three-parameter
Hamiltonian of exactly the same form. Thus, for states
of an / configuration, the magnetic-dipole hfs Hamil-
tonian may be written~

Xi,r, (M1)

=P [a(l)I,—u(sC')10'I'(sCi'&) "&+a(s)s;1 I. (5)
i=1

This Hamiltonian, which is a function of the three
parameters a(l), u(sCs), and a(s), should be exactly
consistent with the magnetic-dipole hfs of all the states
of a term of P, regardless of the magnitude of relativistic
contributions or the extent or type of configuration
interaction. Sandars and Beck. have emphasized that,
because of the identity of the effective Hamiltonians for
describing the e6ects of con6guration interaction and
relativity, it is dificult or impossible to distinguish
between these effects. The extent to which the Hamil-
tonian of Eq. (5) is consistent with experiment will

depend, however, on the accuracy with which the
intermediate-coupling wave functions are known.

For configurations of the type ePe's, the nonrela-
tivistic magnetic-dipole hyperfine-interaction operator
is given by Eq. (3), but with the additional term
a,s I for the unbound s electron. The quantity a „
defined by Wybourne, is proportional to gr~g, (0) ~'. For
states of such con6gurations, the Hamiltonian of Eq.
(5) is not sufficiently general in that it fails to take
adequate account of the unbound s electron. Equation
(3), modi6ed to apply to the isPI's configuration, thus
contains the term a„,sN+~ I which does not behave
like the operator P;=i s,"I of Eq. (5) in the presence of
intermediate coupling. In principle, then, for INs

configurations a term a„.,sN+~ I shouM be added to
Eq. (5). The two contact terms, which have exactly the
same J dependence in the LS limit, are difficult to
distinguish in the 'D states of V" because of the ex-

tremely small extent of intermediate coupling. An
attempt to include both terms led to nonphysical
results, as will be discussed below. For this reason, the
smaller of the two contact terms (that associated with
the P core) was dropped. The Hamiltonian actually
used for the 3d44s con6guration is

N

Kzr. (M1)=P La(l)1,—a(sC')10'I'(sC~'&) &'&g I
i=1

+~(s)»+i I. (6)
'P. G. H. Sandars and J. Beck, Proc. Roy. Soc. (London)

A289, 97 (1965).
s B.G. %ybourne, Ref. 4, pp. 112, 113, 124, and 130.
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TABLE I. Intermediate-coupling predictions for the magnetic-dipole and electric-quadrupole hyperfine-interaction
constants A J and Bg, and for the electronic g factors gg.

Conlguration

3d'4s2

3d4 (sD)4s

State

~9/9
~v/s
~5/2

4p

6D6/I
D'r/&

6D6/g

D3/2
Dl/2

AJ

0 66.6765a(l)+0 03.5527a(sC')+0 33.3235a(s)
0.761946u(l) —0.016447u(sC')+0. 238055u(s)
0.971405u(l) —0.063763u(sC )+0.028596u(s)
1.599856a(l) —0.130084a(sCs) —0.59985 7a (s)

0 """"4.a(l)+0 06349.a(sCs)+0 11111.a(s)
0.412'71a(l) —0.05571a (sC') +0.11840a(s)
0 3428.7a(l) 0 1—341.5a(sCs)+0 1331.3a(s)
0.13335a (l) —0.14091a(sCs) +0.17567a (s)—1.33331a (l)+0.26708a(sC')+0.47002a(s)

—0.28549beg—0.19041beg—0.13476b3g—0.13723blg

-0.57143b3g—0.09526b6@
0.20407bgg
0.28571bsg

0

gz

1.33398
1.23860
1.02867
0.39873

1.55684
1.58866
1.65865
1.86865
3.33872

The last term of this expression absorbs the large
contact term of the unbound s electron and to some
extent the smaller contact term by which Eq. (5) in-
cludes the contributions from relativity and configura-
tion interaction. The quantity a(s) is, of course, treated
as a free parameter.

In calculating the expectation value of the magnetic-
dipole hyperfine-interaction constants Ag, one uses the
intermediate-coupling wave functions discussed above
and the expressions for the matrix elements of the dipole
operator between the basis states involved. Expres-
sions for (PnSLJIFM ~Xhq, (M1)

~

Pn'S'L'JIFM) and
(Pn~S~L& Jq,s; JIFM

~
Xh fs(M1)

~

Pnq'Sq'Lq'J&', s; JIFM)
are given by Eqs. (A7) and (A1), respectively, in the
Appendix. The results are given in Table I. The calcu-
lated intermediate-coupling values of the electronic g
factor are also given in the table. They follow from
evaluating the matrix elements of the operator L+g,S
(with g, =2.002319) which, though diagonal in the LS
scheme used for 3d'4s'4E, is not diagonal in the J&,j
scheme used for 3d'(sD)4s 'D.

It has been pointed out that the relativity and
configuration-interaction contributions to the magnetic-
dipole hfs cannot be distinguished because of the
equivalence of the effective operators involved. The
situation for the electric-quadrupole hyperfine inter-
action is quite different. The effect of configuration
interaction is to multiply the interaction energy by a
Sternheimer shielding factor, which in the non-
relativistic limit, is the same for every state of the
con6guration (i.e., independent of nSLJ). The effect
of relativity' is to replace the single interaction by three
terms, two of which vanish in the nonrelativistic limit.
The three radial integrals involved, in addition to being
different from each other, are not directly derivable
from the observed magnetic-dipole hfs constants. For
the 3d electrons in V", calculations of the Sandars-Beck
type7 using Casimir correction factors indicate that
relativistic effects should be considerably smaller than
1%.The approach followed in the present treatment of
the quadrupole interaction is nonrelativistic. The
appropriate value of (r ')su to be used in estimating the
nuclear. electric-quadrupole moment will be discussed.
Although the extent of configuration interaction is: not

known for either of the configurations studied, the
relative importance of such shielding (or antishielding)
is obtained.

The electric-quadrupole hyperfine operator for either
configuration may be written'

Xhh(E2) = —e'(r„'/r, ') (C„&'& C &'&) (7)

where n and e refer to the nucleus and the electrons,
respectively. The electric-quadrupole moment Q is
defined by the relation

Q=2(II j
r„'C„&'&tII).

The quantity
b.&

——e'Q(r-'). ( (9)

is found to be a convenient parameter for the problem.
Expressions for the quantities

(PnSLJIFM I Xhs, (F2) i
Pn'S'L'JIFM)

and

(t n~S~LqJ~, s; JIFM~Xh~, (E2)
~
Pnq'S&'L~'J~', s; JIFM)

are given by Eqs. (A9) and (A2), respectively, in the
Appendix. %ith these and the intermediate-coupling
wave functions, the expected J dependence of the
electric-quadrupole hyperfine-interaction constants J3z
was calculated for each multiplet. The results, which
are functions only of the parameter baq, are also given
in Table I. The value of b3~ need not be the same in
the two configurations.

The J dependence of the magnetic-octupole
hyperfine-interaction constants Cz was not calculated
since no octupole interactions were observed. The
expression for the P dependence of the octupole con-
stants is given in Eq. (AS) of the Appendix.

It may be noted that the theory used in interpreting
the magnetic-dipole and electric-quadrupole hfs and the
electronic g factors of the 3d'('D) 4s 'D states also makes
predictions, with no additional adjustable parameters,
for the next higher multiplet 3d'('D)4s'D. It is un-
fortunate that these levels were insufficiently populated
for study in the present experiment.

' R. E. Trees, Phys. Rev. 92, 308 (1953);3.R. Judd, Operutor
Techniques in Atomic Spectroscopy (McGraw-Hill Book Company,
Inc., ¹wYork, 1963), p. 91.
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IV. J MIXING WITHIN THE MULTIPLETS

Before the theoretical expressions for the hyperfine-
interaction constants are compared with the experi-
mental values, a comment concerning the signs of the
interactions should be made. Since the sign (and value)
of gq is known' for V", the theoretical sign of @3~ and
hence the signs of all the A factors are known. Experi-
mentally, however, only the signs of 8/A and C/A are
determined. That the sign of A is positive for all the
states measured is inferred from the high level of agree-
ment between theory and experiment.

Theoretical expressions for the A and 8 factors of all
the levels studied have now been developed in terms of
a small number of adjustable parameters. The expres-
sions for the dipole constants take account of inter-
mediate coupling, configuration interaction, and rela-
tivistic effects. The expressions for the quadrupole
constants, though nonrelativistic, take account of
intermediate coupling and configuration interaction.
The two configurations are considered independently;
ratios between the configurations are of interest and
will be dealt with below.

Before these expressions can be compared with the
observed values of A J and BJ for a particular state,
however, it is necessary to take some account of the
degree of admixture of states of different J. Since the
admixture of a state ISI-J') into ISIJ) depends on F,
however, the most convenient approach leaves the
theoretical prediction for the state of pure J untouched;
instead, the observed values of A J and 8J are corrected
to those that would have been observed if all states of
different J were infinitely far removed from the state
under consideration. Theory and experiment can then

be compared.
The complete hfs Hamiltonian for the problem is

&=x „+„,H [ (L+g,S)+g I], (10)

where

3Car, =A:si.
(MI)+~his�(I~

2)+~i,„(N'3)+ . . (11)

Within the limits of the simple theory, n» ——1.Because
of complex configuration interactions, spin-orbit mixing
in each of the configurations involved, relativistic and
diamagnetic corrections, and other effects, however, it
is found in practice that a J-dependent adjustable
parameter must be kept for fitting the field dependence
of transition frequencies. The simplest way to do this is
to choose n JJ to reproduce the diagonal matrix elements
that result from the Hamiltonian employed in the
preceding paper (in which J is considered a good
quantum number) and to give the theoretical values
for the oG-diagonal elements. For this, n JJ is defined by

for J'/ J,
=gz/gz~s for J'= J, (12)

regardless of Ii'. The quantity gJ is the JS limit ob-
tained for the g factor when the Schwinger correction
is included. The quantity gJ is an adjustable parameter
and has the usual significance, and g, = 2.002319.

Zero or Very Low Field

Since the measured values of AJ, BJ, and CJ are
derived from the transition frequencies of AF = 1
transitions at very low field (typically 1 G), the J
mixing caused by the Zeeman operator can be ignored.
(This will not be the case when values of gq are to be
extracted from high-field measurements. ) For the field-
independent part of the Hamiltonian (which is sufFicient
to describe the zero-held hyperfine-transition fre-
quencies), perturbation theory with the lowest-order
correction for J mixing yields the energy

E(~&&IF~)=E(gzJ)+(JIFiII I~his(~1)+~h& (E2)+~&&~(~3) I»FIICK)

I (JIFM I3Chi, (MI)+Kgi, (E2) I
J'IFIIE) I'

E(SZJ) E(SZJ')—(13)

where the quantum numbers represented by script
letters are not entirely pure. The off-diagonal matrix
elements of Xhi, (M3) have been ignored in Eq. (13)
as negligibly small. The first-order term in Eq. (13)
(the second term on the right-hand side) is just

(FIIIIIA I 9+8 Q.,+C Q., IFIIII), (14)

in which the constituent matrix elements are as defined

in Eqs. (A3), (A4), and (A5) of the Appendix. Hence,

the final term of Eq. (13) is seen to be the lowest-order

'0 G. H. Fuller and V. %. Cohen, in Nuclear Data Sheets, corn

piled by K. Way et al. (Printing and Publishing Ofhce, National
Academy of Sciences —National Research Council, Washington
25, D. C., 1965), Appendix 1.

correction (for the effects of J mixing) to the zero-field
theoretical energy. The next higher order should be
negligibly small for V5' because the hyperfine interaction
is extremely small compared with the fine-structure
interaction for the multiplets considered. In Eq. (A12)—
(A15) of the Appendix, the expressions for the required
matrix elements are given in the I.S basis; the energy
denominators may be obtained from Table I of the
preceding paper. '

The uncorrected values of the quantities AJ, BJ,
and CJ given in the preceding paper' and again in
Table II below were determined, in effect, by fitting the
observed zero-field hyperfine intervals to the theoretical
expressions involving A J, BJ, CJ but not including the
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off-diagonal mixing term. The theoretical expressions
for A q and I3~ (from Table I of the present paper) were
then fitted to these uncorrected experimental values,
and best-fit values of the parameters were obtained.
These values were then used" to evaluate the off-

diagonal matrix elements; and the theoretical expres-
ions for the zero-field hyperfine intervals, induding
the OG-diagonal contributions, were again 6tted to the
observed values by readjusting the values of A I, Bg,
and Cg. These new values are the Anal values, corrected
for the oG-diagonal effects of the hyperfine interactions
with other members of the same multiplets.

Because of the large degree of mixing found. within
each multiplet, even at zero field, it becomes important
to estimate the extent to which levels of other multi-
plets may be mixed in by the off-diagonal hyperfine
interactions. The nearest other levels to both the
3d'4s'4F and 3d'4s 'D levels are about 50 times as far
removed as the neighbors considered. In view of this,
the additional perturbation to the values of A J-, BJ,
and C~ caused by hyperfine mixing with more distant
levels of the same configuration is probably somewhat
smaller than the uncertainties found (from the com-

puter fit) for the uncorrected values. However, inter-
actions of the type

(3ds4s' 'F; JIFF
~
Xst,

~

3d'4s 'D J'IFII/I), (15)

where J' need not equal J, might conceivably be larger
because of the relatively closer spacing of the two
multiplets. To estimate the additional uncertainty
caused by such intercon6guration hyperhne inter-
actions, the corrections already calculated for mixing
within the multiplets can be scaled down in the ratios
of the appropriate energy separations. The uncertainties
calculated in this way (and combined with the experi-
mental errors) are probably overestimates because the
dipole orbital and contact operators, which contribute
most of the corrections within each configuration,
vanish between configurations.

The uncertainties in the corrected values of the
hyperIj. ne-interaction constants in Table II have been
assigned on this basis. The uncertainties which the
computer program deduces directly from the fitting of
the experimental data are listed with the uncorrected
values of the hfs constants. The oG-diagonal correction
is listed as a separate column in the table. It was, of
course, not calculated directly, but rather was obtained

by subtracting the uncorrected value of each constant
from the corresponding corrected value. The corrections
to the A factors are found to be extremely small
(&~0.01%), but corrections to the 8 factors range up
to 17 jq. The magnetic-octupole hyperfine-interaction
constants CJ, which were found to be zero within

"The oG-diagonal corrections were made with the simpliacation
that c(sC) has the value found for u(l). The estimated resulting
error is included in the uncertainties given for Aq, 8J, and CJ
in Table II.

TmLE Il. Values of A g, 8J, and Cg for the nine lowest levels
of V~'. Corrections for the e6ects of off-diagonal hyperhne mixing
have been applied to the values in the right-hand column.

State Quantity

3d'4s' 4P9/g

Measured
value

(Mc/sec}

227.1324(6)
7.822 (15)
0.002 (2)

OG-diagonal
correction
(Mc/sec)

0.0035
0.437
0.000

Corrected
value

(Mc/sec)

227.136(1)
8.259(6O)
o.oo2 (2)

249.7398(7}
5.081(20)—0.001(2)

321.2265 (12)
3.384(25)
0.000(2)

0.0122 249.752(2)
0.514 5.595 (60}
0.000 —0.001 (2)

0.0239 321.251(3)
0.580 3.964(55)
0.000 0.000(2)

560.0482 (6) 0.0204 560.069(2)
4.264(8) —O,2S2 3.982(24)

(Assumed to be 0;
only two hyper6ne intervals measured)

38 4$ 6DQg2

6D.(2

406.8513(16)
14.324(65)
o.oo6(9)

382.3670(10)
2.26S (29)
0.001(3)

373.5180(10)—5.459(25)
0.000(2)

0.0002 406.852 (2)
0.020 14.344(65)
0.000 0.006(9)

0.0022 382.369(1)
0.174 2.442 (30}
0.000 0.001(3)

0.0118 373.529 (1)
0.517 —4.942 (35)
0.000 0.000(2)

6D~/2
ga
Ca

40S.6038 (12) 0.0443 405.648 (2)—8.107(12) 1.191 —6.916(50)
(Assumed to be 0;

only two hyperfine intervals measured)

751.4778 (28) 0.0668 751.545 (5l
0 0 0
0 0 0

a The quantities B and C were assumed to be 0 for the 6Di/2 state sinceJ=$. The quadrupole and octupole interactions do contribute, however,
to the single zero-field hyperfine interval E =4 ~ Ii =3 because of the
admixture of states with J &$. These contributions to the A factor, along
with the o6-diagonal dipole contribution, constitute the correction listed.

experimental error, were virtually unchanged by the
col rectlons.

Nonzero Field

The considerable e8ect of J mixing on the resonance
frequencies of the M=O transitions has been pointed
out above. %hen the AIi =0 transition frequencies are
calculated with the uncorrected values of A J, B~, and
Cg and with the assumption that J is a good quantum
number, the values of X' and of the residuals (presented
in Tables V and II, respectively, of the preceding
paper') are very large in several cases. Very little im-
provement is obtained if one repeats the calculation
using the corrected values of A~, B~, CJ and again
treats gg as an adjustable parameter. The point is that
at 6nite field the Zeeman operator acts as an additional
mixing agent to mix both I and J. It cannot, however,
be treated separately since there are large interference
effects between the hyperfine (both dipole and quadru-
pole) and Zeeman mixing mechanisms.
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In considering J mixing at nonzero 6elds, it will be
assumed that the resulting corrections to the resonance
frequencies can. be calculated in the limit of LS coupling.
This assumption, which is inherent in the form of
Eq. (10) for the Hamiltonian, should be excellent
for Vr.

In the case of the 3d34s Ii and 3d 4s D multiplets
in V5', the matrix of K is of order »&20 for four diferent
values of

I MI, and in an optimization program for g~

many such matrices must be diagonalized repeatedly.
Since the ratio of matrix elements o6'-diagonal in J to
the difference of diagonal elements (for different J) is
typically 3X10 ', the use of perturbation theory would
appear to be a simpler approach. If the zero-order
energy of the level

I
JISM) at Geld // is taken to be the

value calculated, on the assumption that J." is a good
quantum riumber, then the shift caused by J mixing
may be expressed as

I(J»MIxhf, (M1)+xhf, (E2)+/loH (L+2S) I
J'»'M)I'

~~=K Z
J'HJ p' ~(J)—~(J')

(16)

where the script P indicates that the zero-order wave functions have the mixture of F s calculated. for the Fidd H
with J considered a good quantum number. This may alternatively be written

I(J»MI &+2sI J'J~'M) I'
~~=( A)' Z g (J) g (J')

1(J»M I xhf. (M1)+x"(&2)+uoH (&+2s) I
J'I~M) I'

(17)
J'A J ~(J)—~(J')

Twm. E III. Thc gg values both before and after correction for
J mixing within thc multiplets. More precise evaluation of the
corrections as discussed in the text will eventually permit reduc-
tion of the uncertainties assigned to the corrected values. The
departure of these corrected values from the calculated
intermediate-coupling values is also given. The discrepancies,
which are remarkably independent of the state, are probably due
primarily to relativistic and diamagnetic effects which were not
taken into account in the calculation.

Configu- Uncorrected
ration State gg Correction

Corrected
gz gz(exp) —gJ (caIc)

3d34st 4E9/t
4py/t
4pt/t
4pa/t

M44s &Dt/t
&Dv/t

6D5/t
eDI/t
ODl/t

1.33362
1.23820
1.02839
0.39899

1.55649
1,58838
1.65846
1.86851
3.33683

-0.00002
+0.00001

0.00000
—0.00051

—0.00002
-0.00005
-0.00015
-0.00022
+0.00164

1.33360(5)
1.23S21(4)
1.02839 (4)
0.39848 (15)

1.55647 (4)
1,5SS33(5)
1.65831(6)
1.86S29(10)
3.33847(50)

-0.00038
-0.00039
—0.00028
—0.00025

-0.0003/
-0.00033
—0.00034
—0.00036
-0.00025

in which the pure Paschen-Back term is written
separately. The matrix elements of the Zeeman operator
are given by Eq. (A16) in the Appendix.

A computer program to make these corrections and
then to vary gJ to obtain the best least-squares 6t. to
the AP= 0 data'„'is being written. The corrections to the
various HZ=0". ' transition frequencies measured, have
been calculated. , ;by hand, however, under the assump-
tion that F is identical to F even at the strongest fields
used (600 6). This is very nearly true, and the calcula-
tion for the 'D1/2 state made possible the observation of
the 5F=1 transition. In addition, the calculations for
the other states reconcile the hE= 0 and. hF =1
observations.

When the AIi=0 resonance frequencies calculated
by the fitting program are corrected in this approximate
way, a high-quality least-squares fit is obtained, for each
state when the corrected values of A J, BJ, and CJ are
used and gJ is allowed to vary freely. The resulting
values of gJ, referred to as the "corrected experimental
values, " are given in Table III, along with the un-
corrected values described. in the preceding paper. It is
seen that the corrections, which are dominated by the
interference term rather than the Paschen-Sack term
in nearly every case considered, are substantial for
several levels. The departure of the corrected experi-
mental values from those calculated in intermediate
coupling is also given for each case. It is presumably
due primarily to neglect of the relativistic and diamag-
netic corrections, "and possibly also to the presence of
configuration interaction.

The uncertainties assigned to the corrected values of
gJ are larger than the experimental uncertainties; they
reAect the additional uncertainty due to the approxi-
mation that 5 is identical to Ii in the calculation of the
corrections. The detailed results of the computer fitting
calculations (in which the mixture F is taken into
account) and the resulting values of gJ will be published
separately when complete. It is anticipated that un-
certainties of 2 to 5 in the 6fth decimal place will be
found. These computed values will make possible a
meaningful test of Judd's equation" giving the theo-
retical J dependence of gJ factors within a multiplet.

"B.R. Iudd and I. Lindgren, Phys. Rev, 122, 1802 (1961);
I. Lindgren, University of California, Lawrence Radiation
Laboratory Report No. UCRL-9184 (unpublished).
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TAm.z lV. Best Gts to the corrected experimental values of A g and Bg in V".

3d'4s2 4FQ/2

F7/2

'F6/2

4F3/2

Coniguration State
Calc.

(Mc/sec)

227.133
249.769
321.233
560.073

A factor
Obs.

(Mc/sec)

227.136
249.752
321.251
560,069

DB.
(%)

+0.001
—0.007
+0.006
—0.001

Calc.
(Mc/sec)

8.332
5.557
3.933
4.005

8 factor
Obs.

(Mc/sec)

8.259
5.595
3.964
3.982

DiG.
(%)
—1.0

0.6
0.8

—0.5

3d4 ('D)4s '&2/2

'D7/2

+6/2

D3/2

+1/2

407.168
381.879
373.326
406.078
751.491

406.852
382.369
373.529
405.648
751.545

—0.08
0.13
0.05

—0.11
0.01

14.166
2.361

—5.059
—7.083

0

14.344
2.442

—4.942
—6.916

0

1.2
3.3
2.4
2.4
0

V. COMP)QGSON OF HFS THEORY
WITH EXPERIMENT

Now that the experimental values of the hyperfine-
interaction constants Ag, Bg, and Cq have been cor-
rected for the effects of Jmixing, they may be compared
with the theoretical expressions developed above.
Least-squares 6ts to the observed values were made
independently for the two configurations. The 6t to the
magnetic-dipole constants used three parameters; that
to the electric-quadrupole constants used one parameter.

Table IV lists the results of the fits. The diGerences
between the calculated and the corrected experimenta1
values of the magnetic-dipole hyper6ne-interaction
constants As are not greater than 18 kc/sec (0.00'/%)
for the 'F states, and 0.13%for the 'D levels. The agree-
ment between theory and experiment appears remark-
ably good, although the differences are larger than
experimental error for both multiplets. For the 'P states,
.the differences are presumed to be due to extremely
slight inaccuracies in the intermediate-coupling wave
functions used. The sensitivity of the 6t to the small
departure from the IS limit is illustrated by the fact
that the X' for the 6t found in intermediate coupling is
only 1/147 of that for a similar 6t in the I.S limit.

For the 'D states, the 6t found in intermediate
coupling is not appreciably better than that found in
the IS limit. The remaining 0.1% difference between
theory and experiment is probably due, in addition to
inaccuracies in the intermediate-coupling wave func-
tions, to failure of the contact term in Eq. (6) to
simulate the effect of the other contact term (that
associated with the d4 core) as discussed. above. To
investigate this further, a 4-parameter 6t, which
included both contact terms properly, was made with
the same intermediate-coupling wave functions.
Although it was found possible to 6t all five of the A
factors of the 'D term to within 8 kc/sec (0.002%), the
values found for the four parameters were entire1y
unrealistic; a(l) =+252.598 Mc/sec, a(sC') = —67.265
Mc/sec, a„(s)=+9419.920 Mc/sec, and a, (s)
=—34989.953 Mc/sec, where the subscripts on the

-25- '

-26—

-27—

-28—
Vsl 4F

-29-

"25- g
V5I ep

J

"28—
f

9 7 5
2 2 2 2

I I I I

9 7 5
2 2 2 2

Fze. 2. Plot of the values of b3q = e Q(r 3)3g both before and after
correction for off-diagonal hfs in two multiplets of V". The data
for 3d 4s F9/2, 7/2, 6/2, 3/2 are given at the top, and for 3d'(6D)4s
~D9/2, 7/2, 6/2, 3/2 at the bottom of the figure. The values obtained
from the raw data are shown at the left and the values determined
after correction for oG-diagonal hyper6ne interactions at the
right. For each multiplet, applying the correction gives a dramatic
improvement in the consistency of the results. The results are
consistent within experimental error for the 4F term, but not
quite consistent for the 'D levels. The slight remaining discrepancy
is discussed in the text.

contact terms identify their origin. In spite of the ex-
tremely high quality of this 6t, no physical signi6cance
is assigned to it. The parameters have evidently assumed
unreasonable values to compensate for deficiencies in
the intermediate-coupling wave functions. Meaningful
improvement of the agreement between theory and
experiment will probably come for the 'D states only
when the basis states used in the calculation for the
spin-orbit mixing are expanded to include all levels of
the con6guration, and both contact terms are included.
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TABIE V. Values of parameters used for the Gts of Table IV.

Quantity

a(l) (Mc/sec)
g(sc') (Mc/sec).(&)/ ( c)
a3" (Mc/sec}
a(s) (Mc/sec)
b (Mc/sec)
Q{V") (b)

3d'4s'( F) 3d'('D)4s{'D)

353.662
322.866

1.095
338.3

—60.456
—29.2%0.3
—0.0515

302.013
272.333

1.109
287.2

2300.847
—24.8+0.7
—0.0515

p/6D

1.172
1.185
0.987
1.178

1.177
1.00&0.03

Thus the theory of the magnetic-dipole hyperfine
interaction is felt to be entirely consistent with the
experimental results. This agreement has been demon-
strated to 0.13%, and this slight remaining discrepancy
is thought to be understood.

The 6ts to the corrected observed electric-quadrupole
hyperfine-interaction constants Bz are not as good as
for the dipole interaction. The four constants are 6tted
within 1.0% for the 3d'4s' configuration, and within
3.3% for the 3d'4s configuration. The fit is within
experimental error in the case of the 3d'4s'4P term, but
outside it for the 3d'4s 'D term. Figure 2 illustrates this
graphically. For the 4F term, shown in the upper half
of the figure, the values of b3d found from the uncor-
rected values of 8g are shown at the left; the large
scatter is evident. The values of b~~ found after correc-
tion of the observed B~ values for off-diagonal hyper6ne
interactions are shown at the right. The dashed line
gives the average value found for bad in this con6gura-
tion. The corresponding plots for the 3d44s 'D term are
given in the lower half of the 6gure. While the off-

diagonal corrections clearly effect a dramatic improve-
ment in consistency, the correction still does not bring
complete agreement between the values of b3q found
from the four different levels. The origin of the dis-

crepancy is not fully understood. While the quadrupole
calculation did not take account of relativistic effects,
it has been mentioned above that these effects are
estimated to be too small to account for the discrepancy.
Although inaccuracies in the intermediate-coupling
wave functions could account for it, the wave functions
used were far more satisfactory in accounting for the
dipole effects. Configuration interaction, at least in
first approximation, should scale the values of b&& by
the same factor for each of the four states. It is perhaps
possible that the uncertainties assigned to the off-

diagonal hfs corrections are underestimated, and that
for this reason the uncertainties assigned to the cor-
rected values of 8(eas) should be increased. Because
the discrepancy is not understood, the uncertainty
given for b3~ in the 3d'4s con6guration has been made
large enough to include the spread of the points in
Fig. 2.

Table V lists the values of the parameters used in

calculating the results presented in Table IV. Calcu-
lations of the Sandars-Beck type using Casimir cor-

rection factors in place of relativistic radial wave func-
tions, indicate that relativistic effects for the magnetic-
dipole hfs of the 3d electrons in V" should be much less
than 1%.They also show that if the difference between
a(l) and a(sC') were due to relativistic eRects, then it
would follow that a(sC') ~&a(l) and that any difference
should not exceed 1%.The fact that a(sC') is found to
be about 10% smaller than a(l) (in both configurations)
indicates strongly that the effect is due to con6guration
interaction rather than relativity. It is likely that inter-
action between the configurations 3d'4s' and 3d44s is
involved.

While a~q varies as r ', $3d departs from an r ' de-
pendence to the extent that the nucleus is shielded.
When the shielding is taken into account in the standard
way (by the use of an effective charge), the observed
values of a3~ are consistent with the observed values
of P&z and the previously known values'e of pr and
I(=-,') for V"

The values of a(s) found in the two configurations
are not directly comparable since, as seen in Eqs. (5)
and (6), they are not defined in the same way. The
value expected for a4, is calculated" to be +3500
Mc/'sec while the observed value of a(s) for the 3d44s

configuration is+2300 Mc/sec. The difference between
these numbers is far too large to be due to relativistic
effects, according to Sandars-Beck type calculations,
and must be attributed to core polarization (i.e., to
configuration interaction with configurations containing
unpaired s electrons). The same conclusion can be
drawn for the large negative value of a(s) observed in
the 3d'4s' configuration. It would be interesting to
compare these numbers with ab initio calculations.

The values obtained for b3~ in each configuration
were discussed above and are illustrated in Fig. 2. The
uncertainty assigned includes all four measured values.
The electric-quadrupole moment of the nuclear ground
state of V" can be extracted from Eq. (9) once a value
for (r '),q is chosen. The normal way of doing this is to
calculate (r ')~q from Eq. (4). Although the value
obtained in this way clearly depends on whether one
extracts it from a(l) or a(sC'), the uncertainty is over-
shadowed by the still larger uncertainties associated
with Sternheimer shielding. ' For the virtually non-
relativistic 3d electrons of the V" atom, each of these
two sources of uncertainty is associated primarily with
configuration interaction. The values of Q given in
Table V are calculated by use of the values of (r ')3&
obtained from a8q 2[a(l)+a(s——C')j If one arbi.trarily
assigns an uncertainty of 20% to allow for these effects,
the value'4

Q(V") = —0.052~0.010 b

is obtained. The agreement between this value and the
value —0.03 b predicted theoretically by Horie and

"The procedure is outlined, for example, on p. 131 of Ref. 4."K.Murakawa, J. Phys. Soc. Japan 21, 1466 (1966).
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b~d (d's')/b, ~ (d4s)
= 1.00&0.03.

a,d (d's')/a, g (d4s)
(19)

This ratio is nearly independent of the procedure used
for evaluating (r ')3q so long as the same procedure is
used for each configuration. Thus, regardless of the size
of the Sternheimer shielding in either configuration, it
is clear that it is very nearly the same for the two cases.

VI. CONCLUSIONS

In general, it is felt that the extent of agreement
between theory and experiment is excellent. The
magnetic-dipole hyperfine-interaction constants are
accounted for to within 0.13% for the nine states
studied, and this small remaining difference is thought
to be understood. The electric-quadrupole hyperfine-
interaction constants are accounted for to within the
1% experimental error for one configuration, and to
within about three probable errors for the other.
Although the origin of this slight remaining discrepancy
is not known, several possible sources are discussed.
The differences between the (corrected) experimental
electronic g factors and the calculated values are very
small, and their signs and approximate magnitudes are
as expected for the usual relativistic and diamagnetic
effects. Computation of these corrections is extremely
tedious and has not been carried out.

The value obtained for the ground-state nuclear
electric-quadrupole moment of V" is in good agreement
with the expectation" from present nuclear theory.
However, a theoretical calculation of the Sternheimer
shielding factor for the two configurations would be of
great interest for two reasons: (1) The value of Q(V@),
which has been the subject of some controversy in
recent years, would be known very well if this last
remaining uncertainty could be resolved, and (2) the
ratio of the calculated shielding factors for the two
configurations could. be checked against the relatively
accurate experimental value.

While the "effective operator" technique~ used to
take account of the magnetic-dipole hfs is in good agree-
ment with experiment, it is not without its limitations.
The parameters involved absorb many complex effects
by being allowed to vary freely and are therefore
difFicult to interpret quantitatively. One cannot, for
example, expect them to be in good agreement with any

'~ H. Boric and A. Arima, Phys. Rev. 99, 778 (1955).

Arima" is felt to be rather good for such a small
moment.

The size of the Sternheimer shielding (or anti-
shielding) cannot be measured in the present experiment
because it is expected to be the same for every state of
a configuration. It is possible, however, to determine
the differential Sternheimer effect between the two
configurations. This is just

but the most sophisticated ab initio calculations. One
approach to this problem for V" might be to expand
the set of LS basis states to include all levels of the
three low even configurations (3d'4s', 3d'4s, and 3d')
simultaneously. The configuration interaction between
these could then be examined separately and compared
with the results of the effective-operator treatment.
Such a treatment might well help in the interpretation
of the ratio a(l)/a(sC') and shed more light on the
quadrupole interaction.
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APPENDIX

In writing this paper, an effort has been made to
avoid detailed expressions for the matrix elements. For
the convenience of other experimentalists engaged in
similar calculations, however, the required matrix
elements not tabulated elsewhere are listed below.

In setting up the matrices for the electrostatic and
spin-orbit interactions for the states of the P(SiLiJi)s
configuration, the matrix elements in the J&j scheme
may be computed from expressions on pp. 53 and 54
of Ref. 4. The matrix elements for Ps in the LS scheme
are given in Ref. 4 on pp. 32, 33, and 39 (note that in

Eq. (2—110) on p. 39, the quantity / in the third, 6-j
symbol should be l'); and the spin-orbit elements for P
are given on p. 38. The values of (PnSL~( V &"&~~Pn'S'L')

and of the electrostatic elements for 1~ may be found in
the compilation of Nielson and Koster. "

In listing expressions for the matrix elements of the
hyperfine operators, a considerable degree of generality
has been retained to increase the usefulness of the
expressions. Elements may be evaluated between any
states of any configuration of the types nP and nPn's.
For the dipole elements, the three terms in the expres-
sions for the matrix elements bear a one-to-one corre-
spondence to, and are in the same order as, the three
terms in the appropriate Hamiltonian LEq. (5) for P
and Eq. (6) for Psj

For the Ps configuration, the J&,j matrix elements of
BChi, (M1) and BChr, (E2) that are off-diagonal in Ji but

'6 C. W. Nielson and Q. F. Koster, Spectroscopic Coegcients for
the p", d", and f" Conpgurations (The MIT Press, Cambridge,
Massachusetts, 1963).
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diagonal in J are given by

(I ngS(L&J& s; JIFMlXh(. (MI) lPn('S&'L('J(', s; JIFM) =(FMl I JlFM&

X —i ~'+~-:
2J+1'" J J 1

[(2J~+1)(2J''+1)3'"
J(J+1) J(' J(

J]. J]. i
$(n&n&)$(S(S&)$(L(I&)( 1)s(+L(+J(+1[L&(I(+])(2I(+1)]1(2 a(l)

Lg Lg Sg

Si Ss' 1

—(30)'(' Lz Lz' 2 (lllC"'ill)(l n(S(L&llV("&llPnz'S&'Lz'&a(sc')

.Jg Jg' i.

J(J+1)+' J'(J'-+—1)
+a(s)~(n(, ng')&(Sg, S(')&(L(,L(')~(J(,J(') (A1)

2J(J+1)

(PngSgLgJg's; JIFMlXg(. (~2) lPng'Si'Li'Ji''s) JIFM) =(FMlQ.plFM)

-4J(2J—1)(2J+1) '" J J 2
g(S S ()g ( 1)2z(+1+8(+I(' l[(2J&+—1)(2J&+I)] /

(J+1)(2J+3)

where, as is shown by Ramsey, "for example,

x «~n&s, L,llU(»llPn, 's, L,'&(lllc&»ill), (A2)
Lg' I g Sg

(FMl I JlFM) =-', [F(F+1)—I(I+1)—J(J+1)j—=-,'K

~3K(K+1) I(I+1)J(J+—1)
(FMlQ., lFM)=

2I(2I—1)J(2J—.1)

For completeness, the corresponding equation for the magnetic-octupole interaction is

(FMla., lFM) =
4[I(I—1)(2I—1)J(J—1)(2J—1)]

X(K'+4K'+45K[ 3I(I+1)J(J+1)+I(I—+1)+J(J+1)+3j 4I(I+1)J(J+1)}. (A—5)

The reduced matrix elements of the tensor operator U&'& are given for p~, d~, and f~ by Nielson and Koster, "and
those for V&(2& are given. by Racah's for p~ and d~ configurations. For f~, they maybe calculated from Eq. (2—101)
of Ref. 4. The required coeKcients of fractional parentage are listed by Nielson and Roster. The quantity
(lllC('&ill) is defined by the expression

(lllc( &III&=—
l(l+1)(2l+1)-'('

(2l—1)(2l+3)
(A6)

'~ N. F. Ramsey, Molecular Beams (Oxford University Press, New York, 195$), pp. 272, 277.
'8 Giulio Racah, Phys. Rev. 63, 367 (1943).
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In the LS scheme, the matrix elements of the magnetic-dipole hyperfine operator for the P eon6guration is

(PnsL JIFM I Xh(, (M 1) I
Pn'S'L'JIFM) = (FM I

I J I FM &

30(2J+1)i((s
y (2—g, ')S(n,n')S(S,S')S(L,L')a(l)—

I &ill&"'lli&&PnsLII v""llPn's'L')
J(J+1) i

X L L' 2 ( C')+ (gs*—1)~(n,n')~(S, S')S(L,L')a(s), {A7)

in which gq is the electronic g factor computed without the Schwinger correction, i.e.,

J(J+1)+S{S+1) I,(I+—1)
gz =1+ (As)

The expressions for the Ps con6guration are

(Pn(s(L(, s; SLJIFM
I Xh(, (M1) I

Pn('S('L(', s; S'L'JIFM) = (FM I
I J

I FM)
S S'

30(2J+1)-'"
(2—g~")8 (n(,n(') 8 (S(,s(') 8 (L()L(')5 (S,s')a (i)— "I. L' 2»(—1)s'+s'-&

J(J+1)
S S' 1 (2J+1) '"

XL(2S+1)(2S'+1)j'" &ill~"'lli&&Pn(s(L(IIV""llPn('S('L('&a(s&'}+
Sg' Sg J(J+ 1}

J J 1 S S' 1
x(—1) '"'+~+ ~( „,')s(s„s,')s(L,L')L-;(2S+1)(2S'+1)3 ( (.), (Aio)S' S L -', -', S,

4J(2J—1)(2J+1) '"
(Pn(s(L(, s; SLJIFM

I Xh(, (E2) I
Pn('S('L(', s; S'L'/IF M& = (FM l Q,p l

F'M&b„(
(I+1)(2J+3)J J 2

X (—1)s+~'+~+'(((S S')5 (S(,s(') (A»)L'LS
Note that for Ps con6gurations, L~= L and Li'=L'. For t+, the hyperfine matrix elements that are o6-diagona]
in J are

(PnsI JIFMlXh(, (M1) I
Pn'S''L'J'IFM) = {—1)s'+'+~ LI(I+ 1)(2I+ 1){2J+1)(2J'+ 1)]((2

/ J F

2J(J+1)
The corresponding expression for the electric-quadrupole matrix element is

(PnSLJIFM I Xh(, (E2) I
Pn'S'L'JIFM) = (FM [Q.p I FM)

4J(2J—1)(2J+1) '" J J 2
~{ss') &P SLIIII"'IlP 's'L'&«llc"'llew& (»)

(J+1)(2J+3) L' L 5

X S(n n')S(S S')S{LL') (—1)s+i+~+(LL(I.+1)(2Ly 1)J» a(j)
L L 5

-S S'

—(30)( ~ L L' 2 &tllc illa'&&PnsLllv IIP 's'L'&a(sc)

+5( n n)b( S S)b( L L')(—1)s'+ +'+'[S(S/1) (2S+ 1)y' a(s)
S S L

(A12)
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(E"nSLJIFM
f
3Cs(, (E2) f

Pn'5'I. 'I'IFM) = b (( 1)—"+I+"+'+s+~'+'B(S5')

(I+1)(2I+1)(2I+3)(2J+1)(2J'+1)-'(' J J' 2 J J' 2

4I(2I—1)

Similarly, for l~s the hyperfine matrix elements that are off-diagonal in J are

&P n(5& L(, s; SLJIFM
f
Xs(,(M1) f

Pn('5('L(')s) 5'L'J'IFM) = (—1)s'+'+("

(A13)

J J'
X [I(I+1)(2I+1)(2J+1)(2J'+1)]'" h(n(, n(')E'((5(, S(')E'((5,5')E'((I L') ( 1)s+(+—J+(

I I F
.5 5'

J J' 1
X[L(L+1)(2L+ 1)]'(' a(E)—[30(25+1)(25'+1)]((2(—1)s'+s' —l I. I.' 2

I. I. 5
J J 1J

X &EIIC('&IIE&&E"n,S,L, II
V( ~IIE n, '5,'L, ')a(sC2)

Si' Sg

J J' 1 5 5' 1
+~(s) (—1)'+""'+"+''~(n( n(')~(5(P'(')~(L)L') [k(25+1)(25'+1)7'"

5' 5 I. —,
'

—,
' 5

(A14)

&P n(5(L, (sSLJIFM
f
BC'(, (F2)

f
Pn('5('L(', s; 5'L'J'IFM) =E(„(( 1)s'+(+~+(+—s+~'+~

-(I+1)(2I+1)(2I+3)(2J+1)(2J'+1)-'" J J' 2 J J' 2

4I (2I—1)

X 6 (SS')EI (5(5(')(EffC("
f f

E) &E"n&5(L&
f f

U('&
f f

E~n&'5, 'L, ') . (A15)

The (electronic) Zeeman operator may have nonzero matrix elements off-diagonal in F as well as in. J. For
either configuration, the general expression is

(nSLJIFM f((OH ~ (L+gS) f

n'5'L'J'IF'M) =((0III((n n')EI (5 5')lI(L L') ( 1)" ~+s+(+~+—s+~

1 P Z
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M —M 0 J J' I
J J' 1 J J' 1

x (—1)' [L(L+1)(2L+1)]'"+g.(—1)' [5(5+1)(25+1)]»2 . (A16)I I. S 5 5 J.

For the I+s configuration, the element is also diagonal in 5~.
Note that all the expressions given for off-diagonal elements may be used to compute diagonal elements as well.


