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The general failure of theory to account for the observed electrical and thermal resistivities associated
with dislocations is reviewed in the light of the resonance scattering previously shown to be a characteristic
property of linear defects in crystals. Expressions for. the scattering width and density of states near a
resonance are obtained, and the magnitude of the resonance scattering is shown to be consistent with the
observed electrical resistivity of dislocations in a number of metals. Observed stacking-fault electrical
resistivities are consistent with the absence of resonance scattering; such scattering is not expected to occur
for plane defects. The resonance-scattering mechanism is shown to be capable of accounting for the magni-
tude of the dislocation thermal resistivity in ionic crystals, and also, possibly, for the much smaller eGect in
metals. The observed temperature dependence of the thermal resistivity in ionic crystals is rather dificult to
explain in terms of resonance scattering, although it would probably be expecting too much for the simple
treatment given here to deal adequately with this point. The generally encouraging results would appear
to justify the expenditure of more effort, both experimentally and theoretically, on these problems.

I. INTRODUCTION

ESONANCE scattering of electrons and phonons
has been shown' to be a characteristic property of

linear defects in crystals. In this paper, we attempt to
investigate the role of these phenomena in determining
the electrical and thermal resistivities associated with

dislocations.
Previous theories have severely underestimated these

resistivities, and the situation is briefly reviewed in

Sec. II; the existence of resonance scattering opens all

these theories to a rather more definite criticism than

appears to have been previously leveled, and we may
feel reasonably confident in suggesting that this me-

chanism provides a basic reason for the failure of the

theory to date.
The remainder of this paper is devoted to the more

positive procedure of showing how resonance scattering
fits in with the currently available experimental data
on the electrical and thermal resistivities associated with

line and plane defects. Thus, in Sec. III, we develop

simple expressions for the resistivities, in a form con-

venient for such an analysis, and in Sec. IV develop

expressions for the dislocation scattering width near a
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' R. A. Brown, Phys. Rev. 156, 889 (1967).

resonance, and in particular obtain the phase shifts
to be used in the resistivity formulas of Sec. III. The
density of states near a resonance is considered in Sec.
IV B.The relation of the experimental data to the exist-
ence of resonance scattering is discussed in Sec. U.

Analysis of the electrical-resistivity data is particu-
larly encouraging in that resonance scattering is indi-
cated to occur, for the two types of defect, in just the
way predicted by the theory'; that is to say, it appears
to be both necessary and sufhcient to explain the data
on dislocations, at least for those cases where these data
appear most reliable, but is not necessary to explain
stacking-fault resistivities. The need for more accurate
experimental work on a greater number of metals is
evident, and it is hoped that the results of the present
analysis are sufficiently promising to encourage such
measurements.

The situation with the dislocation thermal resistivity
is not quite so happy. On the one hand, the mugmAude

of the observed resistivity in the alkali halides is such
as to be consistent with resonance scattering, and also
the apparent absence of resonances in the low-tempera-
ture phonon scattering from metals' is not an insur-
mountable difliculty, at least at the present shallow level
of investigation. On the other hand, it seems impossible,

' See Ref. 27, however.
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at least for ionic crystals, to predict anything like the
T ' temperature dependence of the resistivity, which
has played such a large part in establishing the theory
of Klemens. ' Recent experiments have, in fact, indi-
cated a more complex temperature dependence, as
discussed in Secs. II and V 8, and it is suggested in the
latter that a more detailed theoretical analysis could
perhaps establish the role of resonance scattering more
definitely. Generally speaking, however, it is felt that
a more detailed treatment than that given here, both
of thermal and electrical resistivities, would better await
the acquisition of more accurate data pertaining to a
wider range of crystals.

II. REVIEW'

The earliest attempts4 to calculate the contribution of
edge dislocations to the electrical resistivity were con-
cerned with the scattering of free electrons by the first-
order elastic-strain field, and involved the use of a first-
order perturbation, or Born-approximation approach;
the existence of resonance scattering clearly throws
doubts on the use of such an approximation, and pro-
vides a plausible reason why such calculations yield.
resistivities typically a factor of 50 or so less than the
observed values. Seeger and Stehle' considered scat-
tering by the second-order elastic strains about a screw
dislocation; the particular form of their perturbing
potential enabled them to fairly easily determine the
phase shifts without resorting to perturbation theory,
but, in common with the above treatments, no account
was taken of the electronic-band structure which we
have shown' to be essential to-the obtaining of resonance
scattering; thus, it is not surprising that their value for
the resistivity due to a screw dislocation in copper was
of the same order as the above estimates for edge disloca-
tions. Seeger and Bross' obtained much higher estimates
for edge dislocations by working to second order in
perturbation theory; apart from the apparent incon-
sistency involved in stopping a perturbation treatment
at the second-order stage after having shown the second-
order contributions to dominate those of first order,
their use of perturbation theory and neglect of band
structure subjects their calculation to the same criti-
cisms as the above, and it has also been criticized~ on
somewhat diRerent grounds. This theory also appears
to be open to some criticism on the basis of experiment,
for the resistivity as calculated by Seeger and Bross
owes its large magnitude to its logarithmic dependence

I P. G. Klemens, Solid State Phys. 7, 1 (1958).
4 J. S. Koehler, Phys. Rev. 75, 106 (1949); J. K. Mackenzie

and E. H. Sondheimer, ibid 77, 264 (1950); .R. Landauer ibid
82, 520 (1951); D. L. Dexter, ibid 85, 936 (1.952); 8, 770
(1952); S. C. Hunter and F. R. N. Nabarrp, Proc. Roy. Soc.
(London) A220, 542 (1953); P. G. Klemens, Can. I. Phys. 34,
1212 (1956).' A. Seeger and H. Stehle, Z. Physik 146, 242 (1956).

~ A. Seeger and H. Bross, Z. Naturforsch. 15a, 663 (1960).
7 F.R. ¹ Nabarro and J.M. Ziman, Proc. Phys. Soc. {London)

A78, 1512 (1961).

on the range of the strain field, which must be supplied
with a cutoff radius. One would therefore expect a
considerable dependence of resistivity on dislocation
configurations. Cotterill' has determined a somewhat
higher resistivity associated with dislocation loops in
quenched aluminium than has been measured for dis-
locations in deformed aluminium "; however, Rider
and Foxon' have suggested reasons why Cotterill's
result may be rather high, and their work combining
electron-microscope observations with resistivity meas-
urements at different stages of annealing shows fairly
conclusively that resistivity is not sensitive to disloca-
tion arrangement.

As an alternative to strain-field scattering, Harrison"
considered the volume increase associated with a dislo-
cation to be located in a hollow core which scattered
free electrons. Working in the Born approximation,
he obtained a resistivity only about a factor of 5
below the observed value for copper. His theory is
open to the criticism that the second-order long-range
elastic-strain field" appears to be responsible for most
of the volume change in cold-worked crystals, so that
this should not all be assigned to the core region.

Howie" considered a diRraction mechanism and ob-
tained the same order of magnitude as Harrison for the
resistivity; his calculation is based on an estimate of
stacking-fault resistivity which has several uncertain-
ties, and indeed appears to considerably overestimate
the stacking-fault resistivity (see below). Ziman" has
also suggested that diRraction eRects may be important,
but has not made any estimates. Just the opposite
view was taken by Basinski et at. ,"who proposed a
semiempirical theory which supposed the residual
resistivity to be proportiorial to the mean-square dis-
placement of the ions from their unperturbed positions,
and so amounted to neglecting all interference eRects.
Having calibrated their theory to agree with the experi-
mental value for copper, their agreement with other
data does not appear to be remarkably good, but their
paper contains a useful summary of experimental data
on dislocation resistivity.

The inability of the early theories to account for the
residual resistivity in terms of dislocation scattering led
Broom" to suggest that the stacking-fault ribbons
associated with split dislocations might scatter elec-
trons suKciently strongly to explain the observations.
Diferent theories gave widely diRerent results for the
stacking-fau1t resistivity, and the situation prior to
1960 was reviewed by Bowie," who considered the

8 R. M. J. Cotterill, Phil. Mag. 8, 1937 {1963).
9 L. M. Clarebrough, M. K. Hargreaves, and M. H. Loretto,

Phil. Mag. 6, 807 {1961).
's J. G. Rider and C. T. B. Foxon, Phil Mag. 13, 289 (1966)."W. A. Harrison, J. Phys. Chem. Solids 5, 44 (1958).~ H. Stehle and A. Seeger, Z. Physik 146, 217 (1956)."A. Howie, Phil. Mag. 5, 251 (1960).
i4 J. M. Ziman, Advan. Phys. 13, 89 (1964)."Z. S. Basinski, J. S. Dugdale, and A. Howie, .Phil. Mag. 8,

1989 (1963).
's T. Broom, Proc. Phys. Soc. (London) B65, 871 (1952).
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problem from the point of view of diffraction and ob-
tained a resistivity of about 10 "0cm' per unit stacking-
fault density in copper. Freeman" showed that a dif-
fraction description of the scattering is not appropriate
for the conduction electrons in monovalent fcc metals,
and also predicted considerably weaker stacking-fault
scattering in zinc. Seeger and Statz" presented a fairly
complete treatment of the problem, but numerical
values" based on their theory depended fairly critically
on certain parameters which were difficult to determine.

Experimentally, the situation is complicated by the
uncertainties involved in separating the resistivity
due to stacking faults from that due to dislocations and
other defects. Measurements on stacking-fault tetra-
hedra in gold have relied on the assumption that the
dislocations associated with the edges of the tetrahedra
do not contribute to the resistivity, " and resistivities

per unit stacking-fault density in the range 7—18)(10 "
Q cm' have been obtained" at 78'K. More recently,
Siegel" has obtained the value 3X10 "0 cm' at 4.2'K.
The applicability of Matthiesen s rule is doubtful. "
Measurements made on faulted loops in aluminium,

attempting to allow for the dislocation contribution
to the resistivity, have yielded" a stacking-fault re-

sistivity of about 4X10 "0cm'. These determinations
serve to show the relative unimportance of stacking-
fault scattering compared to that from dislocations, so
that the resistivity originally attributed to dislocations
was of the right order of magnitude, and Broom's

suggestion does not help to cover the discrepancy in

the theory. This conclusion is supported by the lack
of correlation between residual resistivity and stacking-
fault energy, "and also by experiments combining re-

sistivity measurements with electron-microscope ob-
servations showing dislocations, but no evidence of
stacking faults. ' ' The recent work. on dislocation

resistivity by Rider and Foxon" gives references to
previous measurements on aluminium, while Basinski
et al."give a comprehensive summary of results for a
number of metals.

Turning to the effect of dislocations on lattice thermal

resistivity, we find a far more complex problem, both
theoretically and experimentally, due to the simultane-

ous inHuence of a number of scattering mechanisms at
low temperatures. In order to separate these effects, one

needs to utilize the different temperature dependences

'7 S. Freeman, J. Phys. Chem. Solids 26, 473 (1965).
~8 A. Seeger and H. Statz, Phys. Status Solidi 2, 857 (1962).
» H. Statz, Z. Naturforsch. 17a, 994 (1962).
~ This has been justified by the fact that the long-range strain

fields of such dislocations should cancel; it does not seem justified
in the light of the resonance-scattering mechanism suggested in
this paper.

"See references in Ref. 22.
22 R. W. Siegel, Phil. Mag. 13, 359 (1966).
'3 In this context, see Refs. 10 and 15.

S. Yoshida, M. Kiritani, and T. Vamagata, J. Phys. Soc.
Japan 20, 1662 (1965).

'L. M. Clarebrough, M. K. Hargreaves, and M. H. I,oretto
Phil. Mag. 7, 115 (1962).

of the resistivity due to different defects, and thus the
theory is required to predict the observed temperature
dependence as well as the general magnitude of the
resistivity. Experimental data on metals (alloys
or superconductors), combining thermal-conductivity
measurements with reliable estimates of dislocation
density, are rather scarce, but the resistivity is observed
to vary approximately as T ', in accordance with
Klemens's theory, ' and its magnitude" has appeared to
be in reasonable accord with the theory, provided one
makes liberal allowance for the uncertainties involved
in the choice of certain constants describing the non-
linear interatomic forces essential to the calculations.
However, more recent experiments" suggest that the
magnitude of the dislocation resistivity in alloys may
be considerably higher, so that one should perhaps keep
an open mind until further experimental data become
available. More recent theoretical treatments, " taking
into account the inHuence of three-phonon processes
on the defect scattering, have found the same order of
resistivity as Klemens. All t.he above theories use per-
turbation-type approximations, but, as discussed in
Sec. VH, the existence of resonance scattering does not
necessarily invalidate their use over small temperature
ranges.

In ionic crystals, the dislocation thermal resistivity
appears to be much larger, ""by a factor of about 100,
than the above theories can account for; also, the
relaxation time for phonon scattering by dislocations,
which should vary inversely with frequency according
to Klemens's theory, appears to have a rather more
complex frequency dependence. ""These points are
discussed further in Sec. VH.

III. THE TRANSPORT PROBLEMS

In dealing with the electrical- and thermal-transport
problems, we find it most convenient to treat the scat-
tering of free (plane-wave) electrons and phonons by
point, line, and plane defects characterized, respectively,
by spherical, cylindrical, and planar surfaces of con-
stant potential, so that expressions for the resistivities
in terms of phase shifts or reHection coefficients can be
obtained. As used. in Sec. V, the simple expressions
obtained by this naive treatment facilitate comparisons
between the orders of magnitude of the resistivities due
to each of the three types of defect, and more especially

'6 K. Mendelssohn and H. M. Rosenberg, Solid State Phys. 12,
223 (1961)."P.Charsley and J. A. M. Salter, Phys. Status Solidi 9, K101
(1965).

"A. Seeger, H. Bross, and P. Gruner, Discussions Faraday
Soc. 38, 69 (1964); H. Hross, P. Gruner, and P. Kirschenmann,
Z. Naturforsch. 20a, 1611 (1965); P. Gruner, i'. 20a, 1626
(1965), Phys. Status Solidi 12, 679 (1965)."R. I.. Sproull, M. Moss, and H. Weinstock, J. Appl. Phys.
30, 334 (1959).' S. Ishioka and H. Suzuki, J. Phys. Soc. Japan 18, Suppl. II,
93 (1963).

3' A. Taylor, H. R. Albers, and R. 0. Pohl, J. Appl. Phys. 36,
2270 (1965).

~~ M. Moss, J. Appl. Phys. 36, 3308 (1965).
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enable us to readily see whether a given experimental
value would appear to require resonance scattering for
its explanation.

J(t) = — kf(k, i)d'k,
asm

the integral being over all k space.
For a steady state, we require, for all I,,

Bf
=0

Bt s
(3.2)

where the subscripts E and S denote the rates of change
of occupation of states due, respectively, to acceleration
by the electrical ield E, applied perpendicular to the
defect line or plane, and scattering by the defect.

The first term in (3.2) is written" as (e/k)E %sf(k)
and the second term is expressed, as usual, in terms o
a scattering probability; the resulting solution of (3.2)
is then used in (3.1) to give, for the conductivities normal
to the dislocation and stacking fault respectively,

A. Charge Transport

We denote" by (EQ/4rrs)f(k, t)dsk the number of
electrons in the crystal of volume EQ, which at time t
have wave vectors in the element d'k of k space. Then,
if these are free electrons of mass m, the current density
at time t is

for a crystal extending a distance I. in the direction of
the defect. Here, kf is the wave vector at the Fermi
surface, and ri (k.) is the phase shift in the srsth radial
function involved in the expansion in cylindrical
coordinates of the perturbed wave function correspond-
ing to the unperturbed plane wave of wave vector
k,+k..

A similar treatment of the Schrodinger equation for
the plane-defect scattering shows H/', f to be independent
of k~, and (3.3b) reduces to

Ã0 e' ~f k3

A 2g'A
Zka ~

r(ks)
(3.5b)

with k.f having its cylindrical polar angle in the range

deaf about pf, provided the initial state is occupied and
the final state empty. Likewise, (4rrs/XQ)W, r(ks, ke) is
the probability per unit time of an electron in state
k*+ks being scattered by the stacking fault into the
state k.—k, .

A phase-shift analysis' "of the line-defect scattering
shows that P(ks, k*) is, in fact, independent of ks (for
free electron -scattering) and (3.3a) then reduces to

EO e2

kes(kfs —k") '"

y{ g sin'(ri~, —ri ))-'dk. , (3.5a)

and

EQ ek )'
dks

4~s 2~m& . o

XP (ks, k.) (3.3a)

k*k3'
dk.

W, r (ks, k.)

X . 33b

where A is the area of cross section of the crystal parallel
to the defect, and the reflection coefficient r(ks) is the
probability that an electron of wave vector k~+ks will
be reflected by the fault into the state k.—ks, r takes
values in the range 0&r&1, and is independent of k*.

The corresponding procedure for point-defect scat-
tering yields the well-known result

e'kf4
oo=SQ {P/sin'(sit(kf) —sit t(kf)j) ', (3.5c)

12m'h &=&

Here k=ke+ks, with ke and ks being, respectively,
normal and parallel to the dislocation, or parallel and
normal to the stacking fault. The equilibrium Fermi
distribution function fo is a function only of
h=Issks/2rss, and at T=O takes the values 0 or 1
according to whether b is greater or less than 8~, the
Fermi level. The quantity P(ks, ke) is given by

where ri~(kf) is the phase shift in the 3th radial wave
function, evaluated for electrons at the Fermi surface.

B. Energy Transport

For scattering by static lattice imperfections, the
electronic thermal conductivity ~'& is related to the
electrical conductivity 0. by the Wiedemann-Franz
relation~

P(ks, ke) = We(ks, k~; P) (1—cosp)dP, (3.4) s '= (rr'k '/3e')Ter (3.6)

where k~ is Boltzmann's constant and T the absolute
where (4rrs/EQ)We(ks, k~;pf —4;)deaf is the proba»»ty temperature. Thus, for each type of defect, zt'& is
per unit time of an. electron in state k'=ks+kee being readily calculated from the work of Sec. IIIA.
scattered by the dislocation into a state kf=ks+ke f

ee A. H. Wilson, The Theory of hfetals (Cambridge University
Press, Cambridge, England, 1936), Chap. 5.

~4 J. M. Ziman, Electrons and Phonons (Oxford University
Press, London, 1962), p. 385.
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VXu&o=0 82u&o/Bt +2/&o2V2u/2=0&

and two transverse-wave solutions satisfying

V ui' ——0; 8'ui'/(/8+2/1" V'ui' 0, ——
where

pi"= (h+2/ )//; pi"=/// ~

Now, writing each of these solutions in the form

u'(r, t) =24'(r)(re ' '

(3.8)

(3.9)

(3.10)

(3.11)

where ~=ke' and e is a unit vector either parallel to, or
perpendicular to k, we find

V224p(r)+k224p(r) =0. (3.12)

On introducing the perturbation, we will consider
only the effects of the dilatation A(r) associated with
it, and, following Ziman, " write the local velocity of
the waves as

2/(r) = po{1+yA(r)}, (3.13)

where y is the G-runeisen constant. The perturbed ver-
sion of (3.12) is then

Of more interest is the pkortor4 thermal conductivity
~{».In analogy to Sec. IIIA, we 6nd it convenient to
consider the scattering of plane-wave phonons by a
defect in an otherwise homogeneous and isotropic
medium. tAte expect to lose nothing significant by using
this approximation at low temperatures, where only
the long-wavelength acoustic modes are occupied. Thus,
we set up the equations of elasticity for such a medium,
before introduction of the perturbation, in the form"

/4 V'u'+ (h+/4) V V u'= pi/ u /(tt (3 7)

where X and p, are the Lame constants, p is the density
of the unperturbed medium, and uo(r, t) is its local
elastic displacement.

Equation (3.7) has, for any wave vector k, one longi-
tudinal-wave solution satisfying

Iqpp " 822o(k)
k'

APT

.,~ )=en
24m'

X{+t sin2(2// —
r// 1)} 'dk. (3.15c)

l=j

These equations apply to each polarization branch by
inserting the appropriate value of e; the total conduc-
tivity is the sum of the three ~'s, one for each polariza-
tion. Note that in our approximation the Bose-Einstein
occupation number mo depends on e through

22o (k) = {exp (Itkq//k/2T) —1}—', (3.16)

but, because Eq. (3.14) does not contain v, the phase
shifts g and reQection coeKcient r are the same for all
three polarizations. On the other hand, note that, in
contrast to the electronic case, g and r depend on both

kp and k. (3.15a, 3.15b), for phonon scattering by dilata-
tions due to line and plane defects; this is due to the in-
volvement of k' in the perturbation term in (3.14).The
phase shifts in (3.15c) are functions of k.

IV. SCATTERING FROM A LOCALIZED
LINE DEFECT

A. Resonance Scattering

Using the simple model of a screw dislocation intro-
duced in Sec. IVA of the previous paper, ' referred to in
the following as A, it is a simple matter to carry
through a procedure, analogous in every way to that of
Callaway, "which yields the scattering amplitude, the
differential-scattering width, and the probability 8'g
of (3.4), each in a form exhibiting the resonant nature of
the scattering. Ke will briefly sketch the procedure;
the notation is as in A, unless otherwise defined.

Thus, we substitute

V224(r)+k2{1—2yh(r)}24(r) =0. (3.14)
Vqj (rnn, ne) =

Sq& h~„p5n„, p Vp (4 1)

I- 8x'

i/n p(k)
dkg dk*k*'

8+

Equation. (3.14) is now susceptible to the same type
of analysis as used on the Schrodinger equation in Sec.
IIIA. On carrying through such a treatment, we find,
corresponding to Eqs. (3.5), the expressions

in Eq. (2.9) of A to obtain

Vog~, ,(u.)
(s) —Q„—1/2$ eikn ~ nn+ (4 2)

1—VoBx,q(o)

The behavior of (/e, q(u~) for large n. is obtained"
by the method of stationary phase as

X{ Q sin2(2/„+1 —1/„)}
—',

kpk. p/22p(k)
dk3 dk*

r (kp, k.) i/T

(3 ]5a) g (n )~ v2~3/2~„Q ei(kpq ~ nq+n/4)(g 2+g 2)I/4

X{r/~(~1f2+e2kl)} '", (43)

(3 15b) where the sum is over all points kp* satisfying

&o,q(kp', ko*) =&
"I. S. Sokolnikoff, Jtt/Iathematical Theory of Elasticity (McGraw- and

Hill Book Company, Inc. , New York, 1956), p. 370.
'~ Reference 34, p. 229. LV2.Ep, ,(k„k.)]2„(~ un, (4 4)
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and we have expanded

Eo,o(ko
' k+) =Eo,o(ko ' ko+)+K)81+K2$2

+2brxg'+2boxo', (4.5)

obtained from the partial-wave analysis of free-electron
scattering, we obtain the useful identification, for our
"s-wave" scattering of the Bloch wave of wave vector
Iro+k. ,

where x), xo are orthogonal components of x=k~ —koe.

Rather than complicate matters, we assume the
simple form

sin')/o ——(2(r.x'Vom, *(ko)/O'
I

1—Vogs, ,(0) I
}'. (4.14)

Eo,,(ko ', k )= Ba(ko)+k'k"/2 m,*(ko),

for which (4.3) becomes

To write the above expressions explicitly in their
resonant form, we put

4.6
()~(0)=I(E)—i)rr/(E), (4.15)

m e(k ) g((oeme+Ir/4)

gg, (n.) —(2s )'/oa'—
(k.n.)'"

Now, on using (4.7) in (4.2), we get

(4.7) 1—VoI (Eo)=0.

Then we look. for a solution

(4.16)

and consider an energy Ep in the subband, satisfying

(e) Q —1/2$ (sBce no+ f (k k„)oioene+ —1/2} (4 g)
of

E=Ea il'/2, — (4.17)

Q, (ko,ke) =2vrr, (ko,ke),

and if we compare this expression with

(4.12)

with
(rem, *(ko) Vo

f (ko L)= -e' "(2s)'" . (4.9)
k'ke'" 1—Vob)r o(0)

In the same sense as Callaway, '~ we identify f as the
scattering amplitude, and it is a straightforward manner
to show the diGerential-scattering width v is given by.,(k„k*;y) =

I yo(k„k, ) Io= (2~)o(~.m,*(k,)k- }
p' 2

X (4.1o)
k*I1 VoBn—o(0) I',

Here, r is defined such that rQ)dg is the number of
electrons per second, per unit length of dislocation,
scattered from a beam of unit normal intensity through
a cylindrical polar angle lying between P and (I)+d$.
We define the "normal intensity" of a beam as the num-
ber of electrons in the beam-crossing unit area normal
to the k* direction for that beam in unit time, so that
the normal intensity of the "free-electron" beam
(SQ) '/'e p{ix(k +ko~).r} is eke/SQm. For our simple
model (4.1), we see from (4.8) that f, and hence r, is
independent of P; i.e., we are restricted to "s-wave"

scattering.
From this definition of r(P), we readily find the

scattering probability Wz(P) introduced in (3.4):

Wd(ko, ke, g)= I.(kk./4n'm) r (ko, k. ; P) . (4.11)

Likewise, the total scattering width of the dislocation
for the A%3 subband is

1 —Vogg(0) =0, (4.1S)

7= 2mr/(Eo)I (Eo)/{I (Eo)+x )/ (Eo)},
the primes denoting differentiation. As is shown in A,
for a resonance close to a subband edge, we have

q
—& constant, I—+~, so that we assume I"&&g",

generally, to obtain

and

r=—
2~g (Eo)/I'(Eo)=O. (4.20)

Writing 6p
——Ep—S~, the distance of the resonance from

the bottom of the subband, we obtain from the second
equation of (4.20), for small Ao,

F= —2m-6 p, (4.21)

so that there may be some justification in expecting the
width of a resonance, positioned well in the interior of a
subband, to be an appreciable fraction of the width of
that subband. 'o We shall see, from Eq. (4.23) and Sec.
V, that the width of the resonance is of importance in
determining the likely effect on the resistivity.

By expanding about E=Eo and using Eqs. (4.20), we
obtain

1—Vogz(0) = 2~)/(Eo) VoF '

X{.(E—Eo)+iF/2}, (4.22)

such that Eg Ep, and I'~.
Expanding ()s(0) about the point Eo+io, we obtain,

in the same way as Callaway,

E =Eo 'n(Eo)—n'(Eo)/(I" (Eo)+ 'n" (Eo)}, (419)

and

Q(ko, k.) =4k' —' Q sin')/„(k. ),

~' J. Callaway, 'J. Math. Phys. 5, 783 (1964).

(4.13) "Note, however, that, because of,the divergence of the Green's
function, Kq. (4.14) shows that sin~go —+ 0 at the subband edges,
in accord with the well-known result go —+ nm. for the scattering
of zero-energy plane waves from a point defect.
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which yields in (4.14), using Eq. (3.11) of A for g(Ep),

F2/4
Sln gp=

(E—E,)'+rp/4
(4.23)

Corresponding expressions for the scattering width,
etc., are readily obtained.

B. Density of States near Resonance

Following Klauder, 39 we find for the increase,
X.hg, 2, (E), in the density of ttkp subband states,
brought about by the perturbation V,

v'/4
Sln gp=

(pp2 ~ 2)2+~2/4
(4 28)

resonance; of course, as remarked in A, the edge disloca-
tion gives rise to pairs of resonances, arising together
from the top and bottom respectively of the subband.
The one-one corresponden, ce between resonances and
bound states has been discussed in A.

For phonon scattering by a dilatation representing a
screw dislocation, we find similar expressions to those
above for electron scattering, and, in particular, obtain,
corresponding to (4.23), for the phase shift near the
resonance at ~=orp,

Bed,21,2, (E)= ——g lim
+p dE

1
Xln det, ~, I —V l, (4.24)

E+i p Hp 3—
where 8 denotes imaginary part, and det, &, Q, indicates
the determinant formed from the matrix elements of the
operator 0', with respect to all the Kannier functions
of the qkp subband. For our simple model (4.1),

lim det, 2, (I—(E+ip—Hp} 'V) =1—Vpgg(0) (4 25)
e-++p

and so (4.24) readily yields, near a resonance (cf.
Callaway),

1 F
X~hg, 2, (E)=-

22r (E—Ep)'+F2/4
(4.26)

F cK
a~(E,)=- =~/IPI, (427)

2~ „(E—E,)2+r2/4

which, in conjunction with the second equation of
(4.20), is the result quoted in the discussion of Fig. 1
of A.

C. Further Remarks

The procedure of Secs. IVA and IVB can be carried
through very similarly for the corresponding model
Lsee Eq. (4.4) of Ag of an edge dislocation. The results
are rather more complicated, although of a similar form,
but of course the phase-shift correspondence (4.23) is
no longer meaningful. The density of states near a
resonance takes precisely the same form as (4.26), so
that (4.27) follows and we have exactly one state either
pushed out from, or pulled into, the vicinity of each

» J. R. K/auder, ~n. Phd. (N. Q.) 14, 43 (1964).

To 6nd the number of states introduced into the
neighborhood of the resonance, we can integrate this
expression over an energy interval of order I' centered
on Ep. Since the integral converges fairly rapidly, we
can extend the terminals to +00 and obtain for the
number of states introduced near each resonance,

The width y is given by

v= —2~4(~p')/~ '(~p') (4.29)

for the jth polarization branch of the k~ acoustic sub-
band; the notation is that of Eq. (3.22) of A.

V. INTERPRETATION OF THE
EXPERIMENTAL DATA

Before attempting any numerical analysis of the data
on electrical and thermal resistivities, we should com-
ment on the following basic difference between electron
and phonon scattering by defects; thus, on the one
hand, the majority of conduction electrons in a metal
have wavelengths of the order of a lattice constant, but
on the other hand, the dominant phonon wavelength
increases with decreasing temperature and is of the
order of a hundred lattice constants at the temperatures
(10—20'K), at which dislocation scattering, for example,
becomes important. This difference leads to two im-
portant conclusions. Firstly, the obvious one, that for
electron scattering the effects of the defect core should
dominate those of the long-range strain 6eld, while for
phonon scattering the opposite should be the case; this
remark is consistent with the evidence, "mentioned in
Sec. II, that dislocation electrical resistivity is insensi-
tive to dislocation arrangement, and likewise there is
some evidence" that the opposite is true for thermal
resistivity. Secondly, the e6'ects of the scattering
resonances will be much more sensitive to their actual
positions in the phonon subbands, and also to the widths
of the resonances, than will be the case for electron
resonances. The desirability, from the point of view of
obtaining a high resistivity, of having the electron
resonances near the Fermi energy SJ is evident from
Eqs. (3.5), but it is clear that only changes of an ap-
preciable fraction of Sf in the positions or widths of the
resonances will effect the order of magnitude of the
resistivity. On the other hand, due to the exponential
temperature dependence of 22p, Eqs. (3.15) show that
changes of order kT in the positions or widths of the
phonon resonances can greatly effect the thermal re-
sistivity; this point will be further discussed in Sec.V B.
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A. E1ectron Scattering

For scattering by dislocations, the simple model of
Sec. IV suggests that we obtain the resistivity from
Eq. (3.5a), retaining only the zeroth-order phase shift.
Then, by (4.23), the value of sin'rfe will never be far
below unity, provided the width of the resonance is not
too small, so that, according to the above remarks re-
garding the relative insensitivity of the resistance to
the positions of the resonances, we can take sin~go

outside the integral and replace it by some average
value which we expect to be close to unity. Thus, (3.5a)
yields, for the resistivity due to a density of P disloca-
tions per unit area,

pe ——P(12m'h/e'kg') (sin'rfe), v. (5.1)

The same sort of argument applied to (3.5b) yields,
for a density of o. stacking faults per unit length,

(5.2)

where we expect the "average" reQection coeKcient to
be signi6cantly less than unity, since resonance scatter-
ing is not predicted' as a characteristic property of
surface defects.

We take the experimental data for dislocations from
Ref. 15, except for a more recent value" for aluminium.
For stacking-fault resistivity, we take an upper limit of
1.8)&10 " 0 cm' for gold, which appears to be the
largest experimental value obtained for this metal, "
and the value of 4X10 "0 cm' for aluminium"; the
value of Hiki et u/. ,

' for copper, is unreliable, due to the
considerable uncertainties in determining the width of
the fault.

Using the above data, the appropriate parameters are
evaluated" from Eqs. (5.1) and (5.2), taking for ky the
free-electron value (3rrmm)'~', where n is the electron
density. The results are shown in Tables I and II. We
see that the value of the refIection coeKcient for Au and
Al suggests no resonance scattering from stacking
faults in these metals; the high value for the specihc
resistivity in copper must be regarded as very uncer-
tain, "particularly since it is so much greater than the
apparently more reliable values for gold, " so for the
present we feel justi6ed in overlooking the high value of
(r), for Cu. Turning to the data on dislocations, we
6rst of all note that the estimates of dislocation density
leading to the experimental values quoted for the Gve
metals in the left-hand segment of Table II have been
made"" by one or more of the techniques of thin-61m
electron microscopy, stored energy measurement, and
density change measurement; such techniques are
known to be reasonably self-consistent. On the other

Y. Hiki, T. Suzuki, and K. Yajima, J. Phys. Soc. Japan 18,
Suppl. II, 105 {1963).

4'The "experimental" values of r and sin'qo shown in Tables
I—III, having been deduced from Eqs. (5.1)-(5.3), apply to an
array of parallel stacking faults or dislocations. For a random
distribution of orientations, these values will be approximately
twice those shown.

TABLE I. Electrical resistivity of stacking faults.

Metal

(p,gjn) 0 cm'X10 "
(r)

Au Al

1.8 4.0
0.02 0.08

Cu

60
0.86

hand, the estimates of dislocation density associated
with the remaining five values of Table II do not seem
to be so well-founded. "We can therefore be reasonably
satisfied, from the results for Cu, Ag, Au, and Al, that
resonance scattering appears to be capable of explaining
dislocation electrical resistivities.

The need for more accurate experimental determina-
tions of dislocation and stacking-fault resistivities for
a wider range of metals is apparent. The values quoted
in Table II for Ni, Fe,4' W, and Zr would appear to be
unthinkably high, since, even allowing for the undoubted
oversimpli6cations of a model which gives rise to only
"s-wave" scattering, it is dificult to see how the more
general expression

could average a value so much greater than unity. Sy
way of some support for this contention, we note that
if Eq. (3.5c) is applied to the analysis of the alloy data
of Linde, as tabulated by Blatt, 4' the values obtained
for

Q l sin'(r)t(kr) —gt r(kr))
l-i

do not exceed 2.5, and most are less than unity.

TABLE II. Electrical resistivity of dislocations.

Metal Cu Ag Au Al Ni Pt K Fe W Zr

( g/p) Q cm»(10» 2.0 1.9 2.6 1.8 9.4 9 4 20a 19 100
(Sin+0)av 1.0 0.7 0.9 2.0 10 3.6 0.3 24 15 52

& See Ref. 42.

~Thevalueof pq/P=1. 7X10 "Qcm', quotedbyI. 'LDekhtyar,
S. G. Litovchenko, and R. G. Fedchenko t Ukr. Fiz. Zh. 6,
233 (1961)g for Fe-Mo alloys, leads to a value of (sin'qo), =2.0,
and so would seem more reasonable than the value quoted in
Ref. 15.

4' F. J. Blatt, Solid State Phys. 4, 199 (1957).

B. Phonon Scattering

The need to consider the temperature dependence of
the dislocation thermal resistivity was mentioned in
Sec. II. The peak in the conductivity curve usually
occurs at around 10—20'K, and at higher temperatures
the eRects of dislocations are not important; thus, any
successful theory should account for the magnitude
and temperature dependence of the dislocation scatter-
ing up to about 20'K. Now this range of temperatures
corresponds to a range of phonon energies extending up
to only about one-tenth of the total width of the acoustic
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TAsl.E III. Thermal resistivity of dislocations.

Crystal cm' sec ' T„sinngo {T„)
deg K Expt. ' Klemens

KCl
NaCl
NaCl
NaF
LiF
LiF
LiF
CaF,b

CU

265X10 '
2.76X10-» ~
4.40X 10-'
0.93X10 "co
1.67X10 "o)
2.61X10 '3 o)
4.75X10 '
8.75X10~' oP
097X10 '4

7
9
9

12
20
20
20
18
20

0.6 0.008
0.8 0.01
1,0 0.01
0.3 0.008
0.8 0.01
1.3 0.01
0.9 0.01
2.3 0.04
0.1 0.03

Deduced by inserting the experimental relaxation time in Eq. (5,3).
b There is some uncertainty (Ref. 32) in the estimate of dislocation

density for CaF2.

energy band. This fact provides a prima facie link. with
resonance scattering, since we can suppose the wide
difference in the magnitude of the scattering which
appears to exist between, metals and ionic crystals to
be due to the phonon resonances in metals falling, for
some reason, fairly well into the subbands, and thus
not influencing the energies of interest, while the op-
posite is supposed for ionic crystals. One cannot be at
all definite without performing the presumably complex
calculations necessary to actually estimate the positions
of the resonances for different crystals, but at least the
suggestion appears plausible. This argument would
explain the reasonable success of the perturbation-based
approaches for metals, and its failure for ionic crystals;
its weakness lies in the complex frequency dependence,
Eq. (4.28), associated with the resonance scattering.
However, there does appear to be some evidence""
for a different frequency dependence of the scattering
in ionic crystals to that predicted by Klemens, ' and
perhaps one should not rule out resonance scattering on
these grounds without some sort of detailed curve-
Qtting analysis. ""

Before devoting a great deal of effort to the subject
of temperature dependence, it is of obvious relevance to
inquire whether the mugmtlde of the resonance scat-
tering is compatible with the observations on ionic
crystals. To decide this we use a treatment similar to
that of Sec. VA.

Thus, with the phonon scattering width r(k3, k~)

being given in terms of the relaxation time t, by
r=k/Pek. t, and in terms of our zero-order phase shift,
by v=4k* ' sin'gp, we have

(5.3)

where we have used the Debye approximation, or =vk.
Using Eq. (5.3) and putting co=k+T„/k, kz being
Boltzmann's constant, we- have evaluated" sin'qp at the
temperature T~ corresporlding to the peak of the conduc-
tivity curve in the annealed crystal. We have used the
experimental data on ionic crystals from Refs. 31 and
32, and have included 6gures for copper44 for compari-
son. The results are shown in Table III, together with
the corresponding values according to the theory of
Klemens"; it is clear that the resonance scattering
(sin'qo l) is considerably stronger than that given by
Klemens, and is of the right order of magnitude to be a
possible explanation of the experimental observations
on ionic crystals. Although the question of tempera-
ture dependence, remains a problem, the promise,
magnitude wise, of the resonance mechanism would seem
to justify the expenditure of some eBort on a more de-
tailed treatment of this problem.

There appear to be no quantitative data pertaining
to the effects of internal-surface imperfections on the
thermal conductivity, but there is some indication that
dislocation scattering decreases when dislocation wall
formation occurs."This is consistent with our theory,
which does not expect resonance scattering from surface
defects, although it can also be explained on the basis
of other theories. 4~
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