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Structure of Binary Liquid Mixtures. I*
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An exact solution of the Percus-Yevick equation for the correlation functions C;;(r) appropriate to a
binary mixture has been given by Lebowitz. We show that the Fourier transforms C;; (K) lead directly to the
structure factors S;;(K), the latter being functions of a total packing parameter 7, the ratio of the hard-
sphere diameters and the concentration parameter x describing the relative amount of each component in the
mixture. An expression for the compressibility is also given. The results are applied to a discussion of x-ray

scattering from mixtures.

I. INTRODUCTION

N a recent paper Ashcroft and Lekner' demonstrated

that the structure factor S(K) for a real single-
component liquid (in fact, a liquid metal) could be well
represented in the region up to and including the
principal diffraction peak by -the solution?? of the
Percus-Yevick equation for a system of rigid non-
attracting spheres. Further discussion on the apparent
success of this elementary model has recently been
given by Verlet In view of the over-all agreement
obtained and the wide applicability of the Percus-
Yevick (PY) equation, it is natural to attempt an
extension to binary systems for which solutions for the
three correlation functions are already known.® De-
fining g:;(r) to be the radial distribution function for the
two-component mixtures, the PY equation may be
written [cf. Eq. (8) in Ref. 5]

gw(r> (e—Bd’i:f(T)—— 1) =e_ﬁ¢ii(T)Cij(r) s (1)

where the C;;(r) are the direct correlation functions,
and ¢4;(r) are the pair potentials.

The solutions to (1) for the special case of hard-
sphere interactions between the components has been
given in detail by Lebowitz.® We repeat these briefly
in Sec. II: We also derive the structure factors® S;;(K)
and proceed to their evaluation for a general packing
fraction 7, for arbitrary ratio of hard-sphere diameters
o1 and o2 and for any relative concentration. In Sec. III,
the results are applied to the evaluation of typical x-ray
scattering factors for some selected mixtures. We also
consider the effects of impurities on both the scattering
factors and the compressibility.’
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through the Materials Science Center at Cornell University,
Ithaca, New York.
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II. STRUCTURE FACTORS

We adopt the following definitions and conventions.
First, we arbitrarily choose the component 2 of the
mixture to possess the larger hard-sphere diameter o,
We define a to be the hard-sphere ratio

(0<a<).

Second, if there are Ny hard spheres of diameter ¢; and
N, with diameter g, (in the volume V), we define x to
be the concentration of larger spheres, that is,

a=0'1/0'2,

N2 ne /2

r=—"—m"= =

_N1+Nz—1’l1+’ﬂ2 n

’

where the small #;’s represent the respective number
densities, # being the total number density. In the
notation of I, we set 5 equal to the total packing
fraction for the mixture:

volume occupied by hard spheres

n= =771+772,

total volume

where ;= (7/6)n;08, i=1, 2. It follows that

9= (;ﬁ)ﬂ— @

The variables #, @, and x completely specify the
system, and the coefficients in the various correlation
functions listed below can be expressed solely in terms
of them. For the Fourier transforms we require a wave-
number space variable: We choose y=Kuos, all other
K-space variables being scaled to this (e.g., Koi=ay,
etc.).

The solutions of Eq. (1) given by Lebowitz for the
mixture of hard spheres are

—Cu()=a1+byr+dr,
—Cas(r) = ag+bor+dr,
—Cu(=a,
— ay+[bR--4dR*+dRY)r,
3(oa—0)<r<}(o2to1), (3)

r<oi
r<o2

r<%(o9—a1)
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where R=r—%(02—01), and A=3%(o2—01). The coeffi-
cients a;, b;, b, and d are simple but lengthy functions
of 9, @, and x, and their definitions are relegated to
Appendix A. From Egs. (3), we can immediately write
down the Fourier transforms —#:Ci1(y), —#n2Caa(y),
and (m112)'?C15(y) required in the definition of the
structure factors. The details are set out in Appendix B.

If we define B
Si=Si(y)—1, 4
where
Sij (k)= (NN (3 etk Gni=tmD)y— (NN ;)20

then the definition of the direct correlation function
gives immediately
w81 () =Cu(y)+Su(y) ~
+1’L21/21’L1_1/2512 (y)clz(y) ’
7 2n5712815(9) = C1a(3) +S11 (9)Crz (2’)
Fn2 212815 (y) Caa (3)
Vg 128y (y) = Cm(y)+"11/2%z_1/2§~12(3’)cll )
+.S22 (y)Clz (3’) ,
niSua(3) = Can(3)+ 1 n52Ss(3)Cra ()
+Sz2(y)C22(y), (5)

since C21 = C12.
By use of (4), the solutions for the structure factors
S:;(y) can be found from (6) and are
Su(y) = {1=mCu(y)—nmCi2(y)/[1—n:Co(3) 1} 2,
Saa(y) = {1—=nsCas(y) —n11:C122(y)/[1—n:Ca () 1} 2,
S12(y) = (nm2) PCr2(9){[1—m:Cus(y)]
X[1=nsCor(y) ]—nm:C1(3)} 7,  (6)

which may be compared with the corresponding
expression for a single-component system

S(y)={1—nC(y}.

The quantities S;;(0) are easily derived from the C;;(0),
and application of the Ornstein-Zernike fluctuation
argument gives the following expression for the iso-
thermal compressibility?

S11(0)S22(0)— S122(0)

(1—2)S22(0)+ 511 (0) — 2[ (1 — %) 251 (0) (’7)

nkTXT=

or in terms of the C;;(0),

wkTXp={1— (1—x)*1C11(0)— 2*1nC2,(0)
—2x(1—x)nC12(0)}_1 s (8)

7 This follows quickly from writing the S;;(0) in terms of the
fluctuations in the number of particles from the mean, i.e.,
(N:N;)128:;(0) =(N:N;)—(N:;){N;). See, for example, F. ]J.
Pearson and G. S. Rushbrooke, Proc. Roy. Soc. (Edinburgh) A64,
305 (1957), and J. G. Kirkwood and F. P. Buff, J. Chem. Phys.
19, 774 (1951). We also point out that Eq. (8) follows directly from
Lebowitz’s equation (13) (Ref. 5).
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where # is the concentration of the larger component.
We note in passing that Eqs. (4)-(8) are quite general
and independent of the PY and hard-sphere approxi-
mations.

In terms of the parameters », #, and «, the isothermal
compressibility may be written

nkTXp= (1—n)*{ (14-29)2— A}, O

[

F1c. 1. Structure factors S;;(y) for the combinations n=0.45,
=0.9, and #=0.8, where 5 is the total packing fraction, x the
concentration of the larger species, and « the ratio of hard-sphere
diameters. The momentum-space variable y is the wave number
times the larger hard-sphere diameter.

3 T T T

F16. 2. Structure factors S;;(y) for the combinations 5=0.45»
@=0.9, and #=0.6, where 5 is the total packing fraction, » the
concentration of the larger species, and e the ratio of hard-sphere
diameters. The momentum-space variable y is the wave number
times the larger hard-sphere diameter.
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Fic. 3. Structure factors S;;(y) for the combinations 7=0.45,
a=0.9, and x=0.4, where 7 is the total packing fraction, x the
concentration of the larger species, and « the ratio of hard-sphere
diameters. The momentum-space variable y is the wave number
times the larger hard-sphere diameter.

3

Fic. 4. Structure factors S;;(y) for the combinations n=0.45,
a=0.9, and x=0.2, where 7 is the total packing fraction, x the
concentration of the larger species, and « the ratio of hard-sphere
diameters. The momentum-space variable y is the wave number
times the larger hard-sphere diameter. Note in Figs. 1-4 the re-
versal in role of the behavior of the (11) and (22) structure factors
as the concentration variable executes its full range.
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Fi6. 5. Structure factors S;;(y) for the combinations
1=0.45, «=0.7, and £=0.8.

7 =.45

2 S22

F16. 6. Structure factors S;;(y) for the combinations
1=0.45, @=0.7, and x=0.6.

and for typical values of 7~0.45, 20.6, x~0.7, A is
usually considerably smaller than (1427)% For a pure
single-component liquid, A=0. In the limit « — 1, it is
easy to see from Eqs. (3) and Appendices A and B that
the three correlation functions C;;(r) become identical.
The sum

S=xSn(y)+2Lx(1—2)]"2S12(y)+ (1—2)Su(y)

is independent of the concentration #, as required, and
reduces to
S={1-nC(»)}™,

(which is also a general result).

III. RESULTS AND DISCUSSION

It is a straightforward matter to compute the Si;(¥)
for any combination of 7, @, and x. For purposes of
illustration we have chosen »=0.45, the value of the
packing fraction close to that observed in the classical
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F16. 7. Structure factors S;;(y) for the combinations
7=0.45, «=0.7, and x=0.4.

hard-sphere phase transition® in a pure liquid. We
expect that as for single-component liquids, physically
interesting values of # will occur in the neighborhood
of n=0.45.

The curves of Figs. 1-8 show the three structure
factors S11(y), S22(y), and Si2(y) and the hard-sphere
ratio and concentration are given the values indicated
on the diagrams. For low values of concentration (of
the larger species) we find as expected that Ssa(y)~1,
while S11(y) has the general features of S(y) for a pure
liquid. At the same low concentration, however, the
cross-structure factor departs appreciably from zero,
especially at low y. An interesting aspect of the curves
is the positioning of the principal peaks. For moderate
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T16. 8. Structure factors S;;(y) for the combinations
1=045, &=0.7, and x=0.2.

concentrations, they seem to bear no simple numerical
relationship to the hard-sphere ratio as might have
been anticipated. It is apparent, however, that the
peak of Se2(y) lies closer to y=0 than the peak of S11(y),
with the peak of Sis(y) occurring midway between
them. When the hard-sphere diameters are considerably
different (¢ <0.5) the modifications to the structure
factor for the majority component are particularly
severe. We find that the important parameter in
gauging the effectiveness of the large component is, of
course, o%x. Figures 9-12 show .S;;(y) for low concen-
trations of a large second component («=0.5). We have
used curves of this kind to evaluate the effect of small
amounts of a second component in the x-ray scattered

3 T T T T T
7 =.45
x =.14
a =05
2k .
S
Spp I Fic. 9. Structure factors
Sii(y) for low concentrations
Sy of a second component whose
1+ diameter is twice that of the
host. Again 79=0.45 and
the concentration parameter
x=0.14.
S22
0 ] L L o~ 1Y —t
5 10 \/5 20 25 30
Si2
—
|

8 T, Wainwright and B. Alder, Nuovo Cimento Suppl. 9, 116 (1958).
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of a second component whose -
diameter is twice that of the
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the concentration parameter
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intensities from liquids. To obtain the intensity we
require

T o 6S22(y) fo () + 2L (1—2) J/2S12(y) f1(9) f2(3)
+(1=2)Su() f2(®),

where f;(y) are the atomic scattering factors appropriate
to the two components. As the changes in the liquid
structure are pronounced at low v, it is sufficient to
demonstrate the effects by using the long-wavelength
form of the scattering functions f;(y). We have taken
the f:(y) to be equal to the Fourier transform of a
uniform distribution of total charge Z; spread over a
radius chosen to give approximately the correct long-
wavelength variation. It is apparent from Figs. 13
and 14 that even small concentrations of a second

(10)

component can appreciably distort the structure factor
of the pure-host liquid. The major effect occurs at
small y, although there is a noticeable shift in the
height of the principal diffraction peak.

IV. CONCLUSION

We have shown that the three structure factors of a
binary mixture derived from the solution of the PY
equation can be expressed in closed form in terms of
simple functions. For a given mixture, the S;;(y) are
controlled by the three parameters 7, %, and a. It is a
straightforward matter to evaluate quantities depending
on various weights of the S;;(y), and we have given by
way of example the intensity function for x-ray scat-
tering. From the formulas given in Appendices A and B

3 T T T T T
n =045
x = 006
2k a =05 _
Sii
Fic. 11. Structure factors
S:j(y) for low concentrations
of a second component whose
diameter is twice that of the =Sy S22
host. Again 5=045 and
the concentration parameter
x=0.06.
0 ] 1 o~ Yy
7 ’ \/5 ” ” i
.
Siz
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Fre. 12. Structure factors
Si;(y) for low concentrations
of a second component whose
diameter is twice that of the
host. Again =045 and
the concentration parameter
2=0.02. Note that even at the
lowest concentration}(2%,) the
additional component has a
pronounced effect.

e & 1

Fic. 13. The dashed curve is the
structure for a pure single-component
system with packing fraction n=0.45.
The full curve I is the intensity (in
arbitrary units) calculated according
to Eq. (10) using Z,=88, Z,=280,
- «=0.5, and x=0.01. The dotted curve
is obtained from I by assuming it to
be a pure liquid and simply dividing
by the atomic scattering factor ap-
propriate to Z;. The result, compared
with S, is thereby an indication of the
discrepancy expected when an as-
~"| sumed pure sample of liquid Hg has
an impurity level of 19, of HgO
(which we take to be twice as large
as Hg).

obk====== | y 1 |
5 10 15 20 25 30
i i I T 1
Fic. 14. The dashed curve is the
structure for a pure single-component
3 7% 045 -1 system with packing fraction =0.45.

The full curve I is the intensity (in
‘@a=05 arbitrary units) calculated according
to Eq. (10) using Z,=88, Z;=380,
a=0.5, and x=0.02. The dotted curve
is obtained from I by assuming it
to be a pure liquid and simply di-
viding by the atomic scattering
factor appropriate to Zi. The result,
compared with S, is thereby an
indication of the discrepancy expected
when an assumed pure sample of
liquid Hg has an impurity level of
29%, of HgO (which we take to be
twice as large as Hg). It is apparent
that the presence of a second com-
ponent in an otherwise pure system
causes a rise in the intensity at low-
momentum transfers.
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and from Eq. (10), it is clear that the intensity for x-ray
(or neutron scattering) from mixtures is easily derived
from the knowledge of », #, and a. A further application
is in the field of transport properties of binary liquid
alloys which we hope to present shortly.

Finally, the detailed application of these results is
hampered by the paucity of empirical information on
the values of » and & appropriate to real binary liquids.
As already mentioned, pure liquids (a=1) just above
their melting points exhibit packing fractions 5 close
to 0.45. This is the value of 5 at which the hard-sphere
phase transition is observed in the molecular dynamics
calculations of Wainright and Alder.® It would, there-
fore, be of great interest to determine the packing
fraction at which the analogous liquid-solid transition
occurs in binary hard-sphere mixtures. Further, Eq. (9)
with a=0 gives accurate values of X7 for the pure-
liquid alkali metals. The knowledge of compressibility
data in binary liquids combined with information on
the hard-sphere transition in the mixture would deter-
mine both 7 and « unambiguously. These data would
lead to definitive predictions for both x-ray and neutron
scattering intensities, which would presumably be
accurate for momentum transfers up to and including
the principal diffraction peaks.
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APPENDIX A: THE CORRELATION
FUNCTIONS Cy;(r)

The coefficient a;, b;, etc. [Eq. (3)] given by
Lebowitz® may be written as follows:

STRUCTURE OF BINARY LIQUID MIXTURES. I
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)
ai=—_(Bp"),
3171

l¢]
as=a""—(Bp"), (A1)
e

where (8p’) is the reduced function

(Bp") = { (n1+c?na) (140412 — 3nme(1—)?
X[14mta(l+n2) 1} (1—n)3.

In terms of the functions

gu=[1+3n)+3n(e—1)]1—9)2,

gaz=[(1+%n)+%m<§—~ 1) Ja=ar,

and
31—«
g1a= [(1+%n)+— —-—(m—nz)] (1—n)2,
2 14«
we find
Br=0o1b1= —6[n1g112+%’72(1 +a)2ag122], (AZ)
Ba=03by=— 6 naga®+1ma (14+a)?g1¥], (A3)
ob=—3(14a) e 2ngutnge gz, (A4)
and finally
yi=odd= [md1+a377 202] , (AS)

where the a; are given above.

APPENDIX B: THE FOURIER
TRANSFORMS Cj;(y)

Writing y,=Ko1=ay, we find from (3)

24n, B1
—mCnly)= - a1(sinay—ay cosay)+—[ 2ay sinay— (a2y?—2) cosay—2]

o’y oy

Y
+—£[ (4oPy’—24ay) sinay— (aty*— 12a%y?+24) cosay+ 24]} . (B1)
oty

To obtain —#yCz(y), we simply replace n1 by 13, ay by 9, B1 by B3, and v1 by a~%y;. The Fourier transform of

C12(r) is more complicated and is written

nx2(1—x)12 sinyy— y\ cosyx
l

— 11212 2C12(y) =3(1—a)? ar

2 2(1— x)lﬂasrsiny)‘

o+ (1—x)d »n

Y
[ (32— 6) cosyrt (y—6ys) sinyr+-6]+
Y1 ¥

COSY\ |
¥t

+

Y1

1

+_._

T

Y1
——2[ (4y:*—24y1) cosyst (yit—12y.2+24) sinylj}
1

¥ v+ (1—x)a? L Vit B[ 2y1 cosyrt (y1°—2) siny1]

. Yiz .
B12[ 2y1 siny1— (922~ 2) cosyr—2]4+—L (3y:*—6) siny1— (y*— 6y1) cosy1]

Y1
+~—2[ (4y*—4y1) siny;— (y1*—12y24-24) cosy1+ 24]}

N ¥i?

y 12 2a

a siny;—y1 cosy; 1—a 1—cosy, cosyi+yisiny1—1 1—a siny,
[ COSY + . )+ siny,\( -+ > }] .
Qa

a1 Y1
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Here we require the additional definitions

N. W. ASHCROFT AND D. C.
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n=Kr=3y(l—a),

1—a
Y12=4Ndo*= 2’)’1( >;

and

a

Bra=o01b=— 301(1 —01) (a_2711g11+772g22)g12 .
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Resonance Scattering and the Electrical and Thermal Resistivities
Associated with Extended Defects in Crystals
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The general failure of theory to account for the observed electrical and thermal resistivities associated
with dislocations is reviewed in the light of the resonance scattering previously shown to be a characteristic
property of linear defects in crystals. Expressions for the scattering width and density of states near a
resonance are obtained, and the magnitude of the resonance scattering is shown to be consistent with the
observed electrical resistivity of dislocations in a number of metals. Observed stacking-fault electrical
resistivities are consistent with the absence of resonance scattering ; such scattering is not expected to occur
for plane defects. The resonance-scattering mechanism is shown to be capable of accounting for the magni-
tude of the dislocation thermal resistivity in ionic crystals, and also, possibly, for the much smaller effect in
metals. The observed temperature dependence of the thermal resistivity in ionic crystals is rather difficult to
explain in terms of resonance scattering, although it would probably be expecting too much for the simple
treatment given here to deal adequately with this point. The generally encouraging results would appear
to justify the expenditure of more effort, both experimentally and theoretically, on these problems.

I. INTRODUCTION

ESONANCE scattering of electrons and phonons

has been shown! to be a characteristic property of
linear defects in crystals. In this paper, we attempt to
investigate the role of these phenomena in determining
the electrical and thermal resistivities associated with
dislocations.

Previous theories have severely underestimated these
resistivities, and the situation is briefly reviewed in
Sec. IT; the existence of resonance scattering opens all
these theories to a rather more definite criticism than
appears to have been previously leveled, and we may
feel reasonably confident in suggesting that this me-
chanism provides a basic reason for the failure of the
theory to date.

The remainder of this paper is devoted to the more
positive procedure of showing how resonance scattering
fits in with the currently available experimental data
on the electrical and thermal resistivities associated with
line and plane defects. Thus, in Sec. III, we develop
simple expressions for the resistivities, in a form con-
venient for such an analysis, and in Sec. IV develop
expressions for the dislocation scattering width near a

* Present address: School of Mathematics and Physics,

Macquarie University, New South Wales, Australia.
1R. A. Brown, Phys. Rev. 156, 889 (1967).

resonance, and in particular obtain the phase shifts
to be used in the resistivity formulas of Sec. III. The
density of states near a resonance is considered in Sec.
IV B. The relation of the experimental data to the exist-
ence of resonance scattering is discussed in Sec. V.

Analysis of the electrical-resistivity data is particu-
larly encouraging in that resonance scattering is indi-
cated to occur, for the two types of defect, in just the
way predicted by the theory!; that is to say, it appears
to be both necessary and sufficient to explain the data
on dislocations, at least for those cases where these data
appear most reliable, but is not necessary to explain
stacking-fault resistivities. The need for more accurate
experimental work on a greater number of metals is
evident, and it is hoped that the results of the present
analysis are sufficiently promising to encourage such
measurements.

The situation with the dislocation thermal resistivity
is not quite so happy. On the one hand, the magnitude
of the observed resistivity in the alkali halides is such
as to be consistent with resonance scattering, and also
the apparent absence of resonances in the low-tempera-
ture phonon scattering from metals? is not an insur-
mountable difficulty, at least at the present shallow level
of investigation. On the other hand, it seems impossible,

2 See Ref. 27, however.



