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Magneto-elastic (ME) coupling effects in the simple cubic antiferromagnet RbMnF; have been studied
by observing shifts in antiferromagnetic resonance (AFMR) frequency and changes in AFMR line shape
with the application of axial stress. Antiferromagnetic resonance in a two-sublattice antiferromagnet with a
general anisotropy and ME interaction is analyzed. Formulas for the evaluation of ME constants of a
two-sublattice cubic antiferromagnet are presented. ME constants of RbMnF3 have been determined as a
function of temperature from measurements of AFMR in single-crystal specimens under applied stress.
The spin-lattice strain coefficients in the spin Hamiltonian for S-state Mn?* in RbMnF3 have been deter-
mined from experimental ME constants and calculated magnetic dipolar ME constants. Large changes in
the static and dynamic response of low-anisotropy RbMnFs can be effected by the application of stress; via
ME coupling, applied stress can change both the form and magnitude of the total anisotropy. The measured
AFMR linewidth of RbMnFj at low temperatures is shown to be due to inhomogeneous strain broadening.
The intrinsic relaxation linewidth is estimated to be less than 5 Oe.

INTRODUCTION

T is well known! that anisotropy plays a key role in
both the static and dynamic response of an anti-
ferromagnet. In low-anisotropy antiferromagnets such
as RbMnF; (H, is about 4 Oe at 4.2°K), applied and
inhomogeneous stresses have an especially large effect,
since they cause significant changes in the total aniso-
tropy via moderate magneto-elastic (ME) coupling. In
this work, ME coupling effects in RbMnF; are investi-
gated by studying antiferromagnetic resonance (AFMR)
in single-crystal specimens subjected to applied stress.?
AFMR in a two-sublattice antiferromagnet with
arbitrary anisotropy and magneto-elastic (ME) coupling
subjected to applied stress has been analyzed. Applica-
tion is made to cubic RbMnF;, and formulas are pre-
sented for evaluating ME coupling constants. The ME
constants of RbMnF'; have been determined in the tem-
perature range 4.2 to 83.0°K by measuring AFMR
versus applied stress. The present technique circum-
vents the difficult problem of controlling sublattice mag-
netizations, which is encountered using conventional
strain-gauge techniques. Because of the multidomain
nature of cubic antiferromagnets, it is extremely diffi-
cult to control the sublattice magnetization orientation
throughout a specimen with an applied field.

Large stress-dependent changes in the AFMR
resonance field, linewidth, and line shape have been
observed in RbMnFs;. Stress-dependent ME effects are
much more accentuated in antiferromagnets than in
ferro- or ferrimagnets because of the coupling of ex-
change and anisotropy in AFMR: a stress-dependent
change in the anisotropy field 6H 4 shifts the AFMR
resonance field 6H,~(Hg/H,)0H,, where Hp is the

T Work supported in part by the U. S. Air Force Office of
Scientific Research of the Office of Aerospace Research under
Contract No. AF 49(638)-1379.

1S. Foner, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc., New York, 1963), Vol. I., p. 384.

2 A brief report of this work has been published by D. E.
Eastman, R. J. Joenk, and D. T. Teaney, Phys. Rev. Letters 17,
300 (1966).
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exchange field. In the case of a ferromagnet, H, is
shifted 6H,~20H 4.

At low temperatures, the observed AFMR linewidth
in RbMnF; is due to inhomogeneous strain broadening.
This occurs because of the large stress effect on AFMR
and because there is no net long-range magnetic dipolar
narrowing mechanism present in antiferromagnets to
couple different regions together so that they assume a
common resonance frequency.? Thus, an inhomogeneous
internal field will fully contribute to the observed line-
width. Large changes in the linewidth and line shape as
a function of stress have been observed which are ex-
plained by the presence of an inhomogeneous stress.
Further evidence is furnished by the result that the
ratio AH/(dH,./dp) of the linewidth AH and stress
derivative of the resonance field, dH,/dp, is strongly
correlated for a number of different experiments. From
the experimental data, an upper bound of 5 Oe can be
placed on the intrinsic relaxation linewidth.

The measured ME constants and estimated intrinsic
linewidth indicate that phonon-pumped magnon in-
stabilities? will have very low phonon-power thresholds
of the order of 30 mW/cm? in RbMnF;. As shown by
Morgenthaler,* a phonon-pumped magnon instability
experiment can be used to determine the spin-wave
relaxation linewidth AH.

Another interesting experiment which appears to be
feasible using RbMnF; is the direct observation of stand-
ing antiferromagnetic spin-wave modes in a thin disk.
According to Orbach and Pincus,® the spacings of the
spin-wave resonances are given by

A("/")’g (wres/7) (IJE/ZIIA)W2 (a/L)2m )

for Hy=0, where H 4 is the anisotropy field, a the lattice
constant, L the disk thickness, and m an integer. In

3 A. M. Clogston, J. Appl. Phys. 29, 334 (1958). In a ferri-
magnet, because of dipolar narrowing, an inhomogeneous internal
field AH; will result in a resonance linewidth AH~AH?2/4M,
for AH;<<4M,, where M, is the saturation magnetization.

4 F. R. Morgenthaler, Phys. Rev. Letters 14, 907 (1965).

8 R. Orbach and P. Pincus, Phys. Rev. 113, 1213 (1959).
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general, it is difficult to resolve spin-wave resonances
since mode spacings are comparable to or narrower than
linewidths. In RbMnF3;, however, the application of
[001] stress induces a uniaxial [001] anisotropy which
can result in a small anisotropy field, namely, H 4~H y,
the nuclear hyperfine field.

In Sec. I, an analysis of AFMR in a two-sublattice
antiferromagnet having an arbitrary anisotropy and
applied stress is presented ; application is made to cubic
RbMnF;. Experimental results are discussed in Sec. II
and the origin and temperature dependence of the ME
coupling is discussed in Sec. III.

I. ANTIFERROMAGNETIC RESONANCE IN
RbMnF; IN THE PRESENCE OF
APPLIED STRESS

A. General Considerations

The dynamic response of a stressed two-sublattice
antiferromagnet is calculated by first determining the
equilibrium orientation of the coupled sublattices and
equilibrium strains and then applying appropriate
dynamic torque equations for the two sublattices. Both
the static and dynamic responses are conveniently
obtained using a Gibbs “free”-energy density,® which
has the following form for cubic RbMnF;:

G= b:‘exchange"l"EZeemzm_*'Ehyperﬁne_{"]i‘AcubiC
FEAMP4 Emecn
=\M;-M;—Hy- (M1+My)— Hy (I1- My+15-My)
+ K[ (asfas?+c.p.)+ (B282+c.p.) ]
+ By (a2 +B2)nut-c.p. ]+ Bl (caae+B182)n12+c.p. ]
+ B[ a1Bymutc.p. ]+ Bl (aiBetasBi)netc.p. ]
$cu(ml+cp.)+ere(mumeetc.p.)
+3cu(ml4cp), (1.1)

where \ is the Weiss exchange-field coefficient (A equals
Hyp/M, with Hz the exchange field and M, the sub-
lattice magnetization), Hy is the applied field, M; and
M; are the sublattice magnetizations with direction
cosines «; and B;(1=1, 2, 3), respectively; & and 8
are unit vectors parallel to M; and M,, Hy is the
nuclear hyperfine field (Hy=9.43/T Oe for Mn?® in
RbMnF;7), I and I, are unit vectors in the nuclear-
spin directions, K; is the first-order cubic magneto-
crystalline anisotropy constant, B; - - - By are magneto-
elastic coupling constants; n.; are the strain coefficients,

ou; Ou;
Ny = (1-—%3@7)( *—) )
ox; 0x;

with #; being the displacement vector, ¢i1, ¢12, and ¢u4
are the elastic constants, and c.p. denotes cyclic

6 W. F. Brown, Micromagnetics (Interscience Publishers, Inc.,
New York, 1963), see Chaps. 3 and 4.
( "D. T. Teaney and M. J. Freiser, Phys. Rev. Letters 9, 212
1962).
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permutation of the indices 1, 2, 3. Dipolar demagnetiz-
ing field effects are neglected in Eq. (1.1). Only single-
lon crystalline anisotropy is explicitly included in
Eq. (1.1) since it adequately describes RbMnFs,”
while both single-sublattice (B and Bs) and coupled-
sublattice (Bs and B,) magneto-elastic energy terms are
included.® It will be shown in Sec. IIT that one-ion
(crystal-field origin) and two-ion (magnetic-dipolar
origin) sources of magneto-elastic coupling are com-
parable in RbMnF;. It is assumed that |M;|=|M,|
=M,(T), i.e., the parallel susceptibility is neglected.®
This assumption is valid for most antiferromagnets at
low temperatures and is valid for all temperatures for
high field resonance in the spin-flopped state.

The equilibrium orientations of M; and M, and
equilibrium strains at fixed field and homogeneous
applied stress oi; are found by minimizing G and are
given by the 12 coupled equations.

(0G/dM;) XM,=0, (1.2b)
(0G/dnij) =03, (1.2¢)

subject to the constraints M;-M;=M,-M,=M,2 The
strains appear linearly in Eq. (1.2c) and are easily
obtained in terms of &, Bo, and oi;, where & and B,
are the equilibrium values of & and 8. They contain
magnetostriction and applied stress contributions. These
strains are then substituted in Egs. (1.2a) and (1.2b)
and &, and 30 can be determined. In the present work
magnetostrictive strains (~107%) are neglected com-
pared to the stress-induced strains (~104).1
The equations of motion at constant strain are

1 dM;
———=M; x Hy°ff, (1.3)
v di
with
H = — 3G/ oM,
= —\My+Ho+Hyl;
1 aEAcub aEAME
——( + ) (1.4)
M\ da aa

and with a similar equation for Ms. The equations for
the two sublattices are linearized in the usual way and
can be reduced to a 4X4 coupled set of equations by

using #'y'%’ and &”'y"'z" axes for @ and B as follows:
(1.5a)

(1.5b)

&=@qa,
ﬁ”==@ﬁ-

8 There are in general two more terms in E4ME, Bo(a-&-+8-B)
XY eymii+Bo'é: B Yy, which are volume magnetostriction
terms; these are neglected in this paper.

9 See Ref. 1, p. 392.

10 Using the experimental ME constants of Sec. II, it is found
that the magnetostriction contribution to K is approximately 5%,.
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Fic. 1. The crystal
coordinate system x y 2z
and transformed coor-
dmate _ systems x'y's CE ) @ Rs
(R]_,Rg,Ra) and x” 'y

(01,0:,05) shown with
& and By in the yz
plane.
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Here 9 is a 3X3 unitary matrix which transforms the
column vector & in the crystal coordinate system into
@' in the 2y’z’ system. The row vectors of ®, which are
denoted as Rl, R,, and R;, are unit vectors in the
BoX &, o X (ﬂoXao), and & directions.™ Snmlarly, the
oW vectors Ql, 01, and Qs of Q are unit vectors in the
BoX &, oX(BgX&o), and B, directions. The varlous
unit vectors RI, etc. are shown in Fig. 1; &, and ﬁo
are parallel to 2’ and 3", respectlvely The linearized

equations of motion for 6/ =&’ —4,’ and 83" =§"— By
are then
Sy a b e f day’
1|dc’ c —a g b ||dayd
; 86111 = _h f al bl 5‘31” ’ (1'6)
552// g —e cI __al 6ﬂ2/,
with

a=MR,V, VG- Ry,
b=M;1(— Ry VoG Ry Vo, VG- Ry),
c=M;1(—R; - VoG'— RV, V.G Ry),
e=M;1Ry V, VGO,

f=M R, V, V4G 0,

g= — MR, VanG"-Ql,
h=—M;R; -V VGO s,

and o, ¥, and ¢’ are obtained from @, b, and ¢ by
replacmg R(z) by Oy Ve by Vg, and Vg by V.. In Eq.
(1.6), Vo=0/08, (VaVaG)ij=0G/daia;, and V,V,G°
denotes the equilibrium value. The relation V;:V,VG°
Vo=V, VgV,G°V,, where Vi and V, are arbitrary
vectors, has been used in deriving Eq. (1.6). It has
been assumed that the nuclear spins can not follow the
rapidly varying electron spins, with the result that the
hyperfine interaction contributes a uniaxial field Hy
along the equilibrium spin direction. This assumption
must be reexamined if the AFMR frequency is near
the nuclear-magnetic-resonance (NMR) frequency or
if low-frequency field modulation is present.

A significant simplification in Eq. (1.6) occurs if
sublattice canting (angle S Ho/2Hg) is neglected in the

1T BeXéo=0, any convenient direction perpendicular to &
can be selected for Ry.
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evaluation of crystalline anisotropy and magneto-
elastic terms in the coefficients a -++ 4. This is an
excellent approximation for RbMnF;, since Hpg is
~890 kOe, Ho < 10 kOe, and the total anisotropy H4
is ~4 Oe. In this approximation, terms of order
Hu(Ho/Hg) are neglected compared to Hg, H*/Hz,
and H 4. The resulting coefficients ¢ - - - % in Eq. (1.6)
then become

a=M;(Ry VoV EsRy),
b= —H pdy- 60+HN+070'H0+Ms_1(*&0' VaAEAD
+ Ry VoV Es Ry),
¢=+HpA Bo— Hy— o Ho+ M (&0 Vo E4°
—R;- Vo VlEs Ry),
=M Ry Vo VEL Ry, (1.7)
J=Hzgdy- Bo— MRy Vo VsEL Ry,
g=—Hzg— MR-V, V3E4 Ry,
h=M;1R, -V, VsE4 R,
d=—a,
=b+ (Bo— o) - Ho,
¢'=c— (Bo—ao)-Hy,

where E4° equals £ plus E4M® evaluated at equi-
librium (with Bo= —d) and R; is a unit vector along
H,.22 The relations fo- VsEA'=@&¢ VoE4° and VVE4°
=V,V,E4* have been used. These result from the
symmetry E4(e,8)=Ea(B,¢) and the condition that
only terms having even powers in magnetization com-
ponents are permitted in E4. The eigenfrequencies of
Eq. (1.6) with a - - - % as'given in Eq. (1.7)%are

(Li) = H g (hi+ho)+ (&0 Ho)* = { H [ (hs— ho)?+-4hs¥]
v ]

+H g (hitha)[ (Go— Bo) - Ho )12, (1.8)
with .

hi=Hy+3(80+B0) - Ho+M [ — &y Vo ES'+R,
(VoVaEs'—V,VE4) - Ry],

hy=Hy~+3 (80+Bo) - (Ho—280H 5)+M [~ &
Vo EO4 Ry (Vo Vo EA'— Vo VE4)-Ri], (1.9)

=M Ry [ Vo Vo Eg'— 3 (Vo VEs'+VsVaE 4% ] Ry

Equation (1.8) is valid for a two-sublattice antiferro-
magnetic with an arbitrary form of small (i.e., H 4<<H )
anisotropy for field strengths HyS1yHr at low tem-
peratures. It is valid for all temperatures in the spin-
flopped state. For high-field spin-flopped resonance

2 M. J. Freiser, R. J. Joenk, P. E. Seiden, and D. T. Teaney, in
Conference on M agnetism (The Institute of Physics and The
Physical Society, London, 1965), p. 432, have derived a set of
resonance equations similar to Eqs (1 6) and (1.7) for zero stress;
however, there is a sign error (they have a/=-a in the present
notatlon) which can have important consequences for AFMR at
fields near and below the “flop” field~~(2H gH 4)'/2.
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(HZ>HgH 1), Eq. (1.8) becomes simply
(wi/v)?=2Hgh, (1.10a)
(ws/v)?*=2Hgh:, (1.10b)

where % is field-dependent and ks is field-independent.

B. High-Field Resonance

In the high-field spin-flopped limit (H¢>>HgHa),
the AFMR eigenfrequencies are relatively simple. From
Eqs. (1.8)-(1.10), one obtains the field-dependent and
field-independent frequencies

(wi/7)*=He~+2Hg(Hy+Ha®),
(wo/v)?=2Hg(Hy+H4®),

(1.11a)

(1.11b)
with

Ha®=M;"[—& VoEs'+Re
(VaVoEs— Vo VEL)-Ry], (1.12a)

Hi@=M{—a&" VoEL+ Ry
(VaVaEa"— Vo VgE4) - Ri], (1.12b)

where E4(=Es""+EsMF) is the total effective aniso-
tropy at fixed strain and Ha® and Ha® are the effec-
tive resonance anisotropy fields. In Eq. (1.12), Re=1,
a unit vector along Hy, and Ry=1X&,.

For RbMnF;, using the Gibbs function of Eq. (1.1),
V,VsE4° is proportional to V,V.E4". Therefore, only
two linear combinations of the magneto-elastic con-
stants By - -+ Bs, namely,

b1=B1—%Ba 5
bo=Bs— B,

are involved in the resonance frequencies.”* The AFMR
frequencies can then be described using a single-sub-
lattice form of magneto-elastic coupling,

Ea=bi[ (a2+B)nutc.p.]
+ b (e tBiB2)metcp.], (1.14)

with b; and b, given by Eq. (1.13).

The effective anisotropy fields H4® and H4®
contain cubic-anisotropy and magneto-elastic terms.
The cubic-anisotropy terms, which can be obtained from
Eq. (1.12), have been evaluated previously™:

(1.13a)
(1.13b)

H o Wed =31 4 f1(a), (1.15a)
H 4 @owb =31 4 fo(a) (1.15b)

with
f1=3% (i Lo — 2 (i @it (1.16a)
f2=3—3% () WPar— 4L poit,  (1.16b)

H,=—4K;/(3M,).
The magneto-elastic-field terms in Ha ® and H4®
12 This is also true for low-field resonance; see Eq. (1.9).

1 M. J. Freiser, P. E. Seiden, and D. T. Teaney, Phys. Rev.
Letters 10, 293 (1963).
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are determined using Eqs. (1.12) and (1.14). Expressed
in terms of the applied stress a5 they are

HyOME= —2hs51:M 011 (a0~ I)+c.p.]
- 2b1312Ms—1|: (022+0'33) (01012‘“ l12) -+ C.p-]
—2bysasM W o12(ao100e— lils)+c.p.], (1.17)

with Ho®ME given by H,®M® with I; replaced by
(IXé&o)i=n;. In Eq. (1.17), s; are the elastic com-
pliance coefhicients.

The special cases of [001] and [110] applied stress
with H, perpendicular to the applied stress are rela-
tively simple and permit evaluation of b; and bs. These
cases have been considered experimentally.

For [0017] compressive stress, oz=—p, with p>0,
and one has

EAME=Kay, (1.18a)
H4OME=H (00~ 1), (1.18b)
with
2K 2b1p
|=——= (1.18c)

M, Ms(Cu—Cm) )

Here H; represents the stress-induced anisotropy field.
The stress-dependent spin direction &y and resonance
frequencies for [001] stress are summarized in Table
1.15 The normalized stress x=K/K=2H:/3H 4 can be
positive or negative according to the sign of by It is
observed that the magnetization direction @ and the
AFMR frequencies, especially the field-independent
mode, are strongly dependent on the applied stress.
The AFMR is uniaxial in nature for #>1; this has
been observed in RbMnF; Various features of the
resonances in Table I will be discussed in Sec. II.

For [110] uniaxial stress, on=o2=—012=—7/2,
and one has

EAME=%MSH1(X032+%M31120(010502, (1193)
HA(D ME= — %Hl (01032_ l32) - Hz(()l()laoz— lllz) y (119‘))

with
Hy=bop/ (M csd) . (1.19¢)

There is considerable algebraic complexity for H,
in an arbitrary direction in the [110] plane. Therefore,
two cases, namely, with H, along [110] and [001], are
considered. Experimentally, these cases are convenient
since they are insensitive to slight misorientations.
Results are summarized in Table I. The normalized
stress is «'=2(H,+Hs)/3Ha.

The magneto-elastic constants b, and bs [more pre-
cisely, the quantities (Hgby)/[M.(cu1—c12)] and
(H gbs)/ (M sc4s) ] are most conveniently determined from
the field-dependent resonances by measuring H, versus
pressure at fixed frequency. For this purpose the pres-

15 In Table I, the formulas for &o neglect spin canting. The spins
are canted toward H, from the given directions by an angle y with
sing = Ho/2HE.
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TaBLE I. Summary of AFMR for [001] and [110] applied stress.
Stress region® Magnetization direction &o Resonance frequencies
1. [001] stress, Ho along (/1,/5,0).
1—% 1—x wr\? —4 cosdop
(a) Fly , =l y — | =He+2HgHN+3HsgH A1 —2)—
2(1—5h%2) 2(1—1:2.%) 1% 74cosde
—1(@3+cosdep) <x<1 (1—x) ws\ 2 642 cosde 2—2 cosde
1— — | =2HgHNy+3HgH 4 %
2(1—10%%2) k% 74cosde 74cosde
—8
+a2f ————
74cosde
wi\?
(b) — )| =H@+2HgHN+3HgH 4(x—1)
Y
x>1 (—=0,0,1)
ws\ 2
——) =2HgHNy+3HgH 4(x—1)
Y
w1 2
(c) — )| =H@+2HgH y—3H gH 4 cosd¢
Y
x< —1(3+cosde) (—=15,11,0)

I1I. [110] stress, Hq along [1/v2, 1/VZ, 0].

2-a'\12 24a'\ 12
® (5)" %)
6 6
—2<a'<1
1—a\12
)
(b) ' >1 a/vz, —1v2,0)
(©
¥ <=2 (0,0,1)

III. [110] stress, H, along [001].

2
(‘f-z) =2H g Hy+3H gH Al —x—1 (3+cosdg) ]

w1\?
(-) =+ 2H gHy-+2H gl a3 H g (Hy+-4H5)

PN
3

2
—~> =2HgHNn+HpHa[2—3"— (+')2]

PN
JE

2
) = H02+2HEHN+3HEHA+2HEH3
2
=2HgHy+3HsH 4(x'—1)

=H@+2HpHN—3H gH 4— H g (H1— Hy)

= 2HE11N+%HEHA(—x'—2)

2
) =H@+2HgHN—3HpH Ao+ Hp(H1+Hs)

w1
(a) -
Y
Hy>0 (—1/v2,1/V2, 0)
w2\ 2
(—— =2HgHn+3HgH 4+2HEgH,
Y
w1 2
(b) —_ =Ho2+ZIIEHN'—%HEHA-I—HE(Hl'-Hg)
Y
H:<0 (—1/v2,1/¥2,0)
w2\ ?
(—-—) =2HpHN~+3HpH a—2HpH>
Y
2 H, 2H\+H, 2b1p bzp
[ — =— , Hiy=—————, Hy= , li=cos¢, ly=sing.
3Hy 3 Hau (en—c12)Ms caM s
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12(GHz?)

Tloo Fic. 2. Zero-field
AFMR versus stress in
RbMnF; at T'=20°K.
The values Hgp=880
kOe, H4=3.8 Oe, and
Hy=0.47 Oe have been
used. The normalized
stress is calculated to be

1 \ 1 1 L1 I x=2.3X1073 ».
~20 -5 -0 -05 l; 05 10 15 20 25
sure derivatives
dHy 261 dH, by
—=—— and —= ~
dj) Mg((ln_ 612) dP M cqs

are evaluated in terms of dH,/dp in Table IL.

C. Zero-Field Resonance

At zero field, the resonance frequency is proportional
to the geometric mean of the exchange and anisotropy
fields. For RbMnF; applied uniaxial stress can alter
the anisotropy from cubic to uniaxial in nature, thereby
causing very large AFMR frequency shifts. As an
example, zero-field resonance under [001] uniaxial
stress is considered. Then all four possible equilibrium
spin directions are equivalent and a single-domain
situation exists experimentally. The equilibrium spin
direction & and resonance frequencies are determined
using Eqgs. (1.8) and (1.9) and are given by the results
Ia, Ib, and Ic in Table I with H, set equal to zero.

The resonance frequencies, which exhibit very large
shifts, are shown in Fig. 2. Measured magneto-elastic
constants have been used. At stresses above x=1

TaBre II. Determination of by and b,.®

4:COS4¢ dH1 }Io dHo
(Ta) —_———
T+cosd¢p dp Hg dp
dH, Hy dH,
(Ib) —_————
dp Hp dp
dH,
(Ic) O0=—
dp
1/dH, dH, Ho dH,
(ITa) - ———+4———-)=——~H
3\ dp dp Hg dp
dH, Ho dH,
(IIb) =
dp Hg dp
1 dI:I] dH2 Hu dHo
(Ilc) )=
2\ dp dp Hyg dp
1/dH, dH, Ho dH,
(I11a) -{—t— =
2\dp dp Hg dp
1/dH, dH, H, dH,
(I11b) - )=
2\dp dp Hg dp

» From measurement of Ho versus stress at fixed frequency. Experiments
Ia, etc., are defined in Table I.
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(i.e., ~400 bars), the anisotropy is uniaxial and a
single magnetic domain exists. Experimentally, stresses
of ¥~~2.0 at 4.2°K have been applied during high-field
resonance experiments. Zero-field resonance has not
been measured.

II. EXPERIMENTAL RESULTS

AFMR in the spin-flopped state in RboMnF; has been
measured as a function of uniaxial stress and tempera-
tureat a frequency of 23 GHz. These measurements have
verified various features of the calculated AFMR modes
described in Sec. I, have determined the magneto-elastic
constants b; and b as a function of temperature, and
have demonstrated the important effect of inhomo-
geneous strains on the AFMR linewidth.

A. Spin-Flopped Resonance with [001]
and [110] Stress

Spin-flopped AFMR with H, perpendicular to an
applied [ 001] stress has been studied since it is relatively
simple to interpret and permits the determination of the
magneto-elastic constant b; [see Eq. (1.14)]. The ob-
served resonance field versus stress relations for H,
in the [100] and [110] directions are shown in Fig. 3.
Figure 3 indicates that the induced anisotropy field H;
[see Eq. (1.18¢)] is positive. Thus, as the compressive
stress is increased from zero, the spins rotate toward the
[001] axis in the plane perpendicular to H, until, at
the turning point stress 4= 1 (p=420 bars), they become
parallel to the [001] stress direction (neglecting cant-
ing). For « greater than unity, the induced uniaxial
anisotropy is greater than the intrinsic cubic anisotropy
(the spins remain parallel to [001] and the resonance
field is independent of the orientation of Hyin the [001]

8400
8200
__ 8000
'3
e
o
s of
7800
78001~ 1-g20k ‘ 7]
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Fre. 3. Resonance field H, versus applied [001] stress.
Hy=89X105 Oc, Hs=3.8 Oe, Hy=222 Oc, by=1.5%10°
erg/cm?,
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F1e. 4. Temperature dependence of b; and bs; Tx=283.0°K.

plane), as shown in Fig. 3. The solid lines show the pre-
dicted results (see Ia, Ib, Ic in Table I) using the
experimentally determined Hi(p). The normalized
ratios of the slopes of the three straight-line segments in
Fig. 3 have the calculated values (—1):(4/3):(—2),
and the experimental agreement is excellent.

The magneto-elastic constant b, {actually Hi=2b1p/
[(c11—c12)M ]} has been measured from 4.2°K to the
Néel temperature Ty =283.0°K by measuring H, versus
stress with Hy along [100], as shown in Fig. 3. The
temperature dependence of 4;(7T) is proportional to the
measured quantity HgHy o< \M(T)-[6:(T)/M(T)] as-
suming the elastic constants and Weiss field coefficient
A are independent of temperature. In Fig. 4, the
normalized magneto-elastic constant :(7)/b1(4.2) is
plotted as a function of temperature for two different
crystals. At 4.2°K, b; has been determined from the
measurement of HgH; as

b= (1.540.15) X108 erg/cm?,

using M,=304 G (theoretical), measured value®
H =890 kOe, and measured elastic constants which are
discussed in Sec. IID.

Spin-flopped AFMR with [1107] stress permits the
determination of &; and b,. Typical data with H, along
[110] and [001] are shown in Fig. 5. These directions
are convenient since they are insensitive to small
misalignments of field and are simple to interpret. In
Fig. 5, at the turning-point stress 2'=1(p=390 bars),
the slope of H, versus &’ changes with H, along [110],
while no change is observed with Hy along [001]. These
measurements are in accord with the calculated results
in Table I.

Both the magnitude and sign of b; and b, can be
determined using the three slopes shown in Fig. 5
and the appropriate formulas listed in Table II. Using
Fig. 5 and the formulas in Table II, one finds that
%' >0 for compressive stress. Thus, b, can be directly
and most accurately determined from high-stress data
(2'>1) with Hy along [110] (see IIb in Tables I and
II).'8 In this manner, b, has been determined at 4.2°K

16 These data are used to determine b, while b, is determined from
[0017] stress data. It is difficult to obtain low-stress (x’<1)

data with Ho along [110] at temperatures above approximately
30°K because the cubic anisotropy becomes small.
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as
bs=(0.164-0.02) X 10 erg/cm3

using the above-mentioned Hg, M, and elastic con-
stants. The temperature dependence of b, measured in
the above manner using two different crystals, is shown
in Fig. 4.

B. Linewidth Studies

The AFMR linewidth and line shape are strongly
affected by inhomogeneous stress. At low temperatures
the observed linewidth is due to inhomogeneous broad-
ening of the AFMR and is not an intrinsic relaxation
linewidth. These conclusions are based on a number of
AFMR stress effects which have been observed.

First, with (110) stress and H, along [110] (see
Fig. 5), the linewidth has been observed to decrease
abruptly from 2AH~175 Oe to 2AH~T75 Qe as the
stress is increased through the turning-point value
4’=1. This corresponds to the observed change in stress
sensitivity |dHo/dp| and indicates that the observed
linewidth is due to inhomogeneous stress. Also, a sharp
edge in the line shape develops at a field strength corre-
sponding to the turning-point stress, thereby indicating
an intrinsic linewidth much narrower than the observed
linewidth.

Further evidence is given by Fig. 6, which shows the
absorption &’ versus field with [001] stress as a param-
eter and with Hy along [1107]. A plot of the resonance
field Hy versus stress for this case is given in Fig. 3.
It is seen from Fig. 3 (and Table I) that no resonance
field greater than the resonance field at the turning
point, Ho=[ (w/v)*—2HgHx]"2=8040 Oe, should be
observed. As shown in Fig. 6, a sharp edge in the line
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F16. 5. Resonance field H, versus applied [110] stress. Hg
=8.9X105 Oe, Hy=2.0 Oe. Best fit is H4=3.7 Oe, b; = (1.3=.15)
X108 erg/cm?, by = (0.172-0.02) X 10¢ erg/cms.
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shape occurs at this field, with very little absorption at
higher fields. The line shape is symmetrical for stresses
well below and well above the turning-point stress, and
near the turning point the observed line shape can be
described by folding a symmetrical line shape about the
maximum resonance field. These results strongly suggest
inhomogeneous strain broadening.

A strong correlation in AH/|dHo/dp| has been ob-
served for all measurements at low temperatures. At
higher temperatures, the observed linewidth becomes
less sensitive to stress and less correlation in
AH/|dH,/dp| was observed. At the Néel temperature
the linewidth was unaffected by stress.

Further evidence of inhomogeneous broadening is
furnished by the observation that line shapes are
generally Gaussian at low temperatures and are
Lorentzian at high temperatures near the Néel tem-
perature. At low temperatures, an estimate of the
inhomogeneous stress half-width Ap, assuming Ap~
AH/|dH/dp|, is Ap~150 bars 1718
k A bound on the intrinsic linewidth AH, can be esti-
mated based on the sharpness of the observed edges
in the absorption line shape at the turning-point stress.
The estimated bound is AH,SS5 Oe. Heeger and
Pincus® and Heeger® have measured the AFMR line-
width as AH~40 Oe in KMnFj3; it should have an
inhomogeneous stress broadening comparable to
RbMnF;. They have also measured a critical rf field
(h,=0.2 Oe) for spin-wave instability at 1.8°K. The
critical rf field %, is related to the uniform precession
relaxation linewidth AH, and spin-wave relaxation line-
width AH;, by

hio=4AH [AH/2H gH 412,

with 2HgzH 41 equal to 3200 Oe. Heeger and Pincus
obtained the anomalously small spin-wave linewidth
AH,=5X10"% Oe upon assuming that the relaxation
linewidth AH, is equal to the observed linewidth
AH=40 Oe. However, it is known from the present
studies that the uniform mode is inhomogeneously

17 As arough order-of-magnitude comparison, the inhomogeneous
stress measured by Feher (Ref. 18) for Mn?*in MgO is ~100 bar.
The inhomogeneous strain corresponding to 150 bar for RbMnFs
is Ap~1.5X10"%.

18 E. Feher, Phys. Rev. 136, A145 (1964).

1 A, . Heeger and P. Pincus, Phys. Rev. Letters 10, 53 (1963).

2 A. J. Heeger, Phys. Rev. 131, 608 (1963).
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broadened. An estimate of AH} can be made, which
represents an upper bound, by assuming that different
regions of the crystal are uncorrelated. Then, assuming
that AH@~AH,, as is observed in ferrimagnets such as
yttrium iron garnet, one obtains

AH~AH,~2 Q¢

for KMnF; from the data of Heeger.?® This result is
in accord with the above estimated bound on AH,
for RbMnF;.

C. Experimental Methods

The measurement technique consists of measuring
microwave AFMR in single-crystal specimens which
are subjected to uniaxial stress.” Rectangular parallel-
opiped specimens with polished parallel faces and linear
dimensions of 45-65 mils were used.?? The stress was
applied to the specimens using two 2-mm silica quartz
rods with parallel endfaces which extended out through
the microwave cavity. The stress was generated using a
set of calibrated weights and a push rod extending down
to the cavity. A metal jacket enclosing the cavity (with
a metal bellows arrangement for the push rod) con-
tained helium gas and coupled the cavity and specimen
to a liquid-helium (or liquid-nitrogen) temperature bath.
The cavity resonance, at 23 GHz, was independent of
stress as the force load was supported by the metal
vacuum jacket. Direct dc detection and a very low Q
cavity (Q0~15) were used.

A platinum resistance sensor and dc heater with a
feedback system were used to control temperature to
=40.2°K in the range of 12 to 85°K. Temperatures below
12°K were controlled manually and were measured to
#+1°K using a Au-Co thermocouple and/or platinum
resistance sensor.

D. Determination of Elastic Moduli

The elastic moduli of cubic RbMnF; were determined
at room temperature using the pulsed ultrasonic system

TasiE III. Measurement of ultrasonic velocity.

Propa- Measured
gation Wave velocity V Calculated
direction polarization  (cm/sec) velocity

[100]* longitudinal, 4.93X105  (c11/po)'2
ul|[100]

(1007 shear, 2.64X10°  (cas/po)?
u 1 [100]

[1107° shear, 2.64X10°5  (csa/po)t/2
u(|[010]

(1107 shear, 2.88X105  ((c11—c12)/2p0)M2
u||[110]

[1107>  longitudinal, 4.91X10°  ((cu1+cra+2c44)/2p0)172
ul[[110]

a]=7.1220.005 mm.
b]=6,335-0.005 mm. u=elastic polarization, po =mass density.

2 A, B. Smith and R. V. Jones, J. Appl. Phys. 34, 1283 (1963).
2 Included were specimens prepared from crystals grown by
Semielements, Inc.
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of Toxen and Tansal.?? Shear and longitudinal waves
were generated at 10 and 30 MHz using $-in.-diam
ac-cut and zx-cut quartz transducers with a 10-MHz
fundamental frequency. Nonaq stopcock grease was
used to bond the transducers to the specimen. A pair
of parallel polished [100] faces spaced 7.122 mm and
a pair of [1107] faces spaced 6.335 mm were prepared on
the same single-crystal specimen.

Measured ultrasonic velocities for the five acoustic
modes propagating in the [100] and [110] crystal
directions are summarized in Table ITI. The velocities
were determined according to

V=212,

where /is the acoustic path length and 2¢is the observed
two-way acoustic delay time between adjacent ultra-
sonic echoes. Using the theoretical density po=4.30
g/cm?, the elastic moduli were determined from the data
in Table III in units of 10" dyn/cm? as

c11= 10.45 y C12= 3.32 , 644=3.00.

Estimated accuracies are %2, 7, and 19, respectively.

III. ORIGIN AND TEMPERATURE DEPENDENCE
OF b; AND b,

The magnetoelastic constants b; and b, have the
values listed in Table IV at 4.2°K. The magnetic-
dipolar interaction is dependent on strain through the
interionic distance and contributes to the ME coupling.
This contribution has been calculated assuming localized
moments. This assumption should be quite good for
S-state Mn?** ions. The magnetic-dipolar ME interac-
tion can be written in the form given by E4M® in
Eqg. (1.1). The calculated contributions to By --- B,
at 0°K are

AB1= ——i—(gBS/ZaO3)221,
ABy=75(g8S/2a¢’)Z1,
ABa=i(gﬁS/Zao‘"‘)222 s

AB4= - il2_ (gﬁ5/2003)222 ,

where g is the Landé factor, 8 the Bohr magneton, .S
the spin quantum number (S=32), and a, the lattice
constant (4.24 A). The dimensionless dipole sums Z;

TaBLE IV. Origin of b; and b,.

Origin
(c) Difference

(a)—(b)

8b1=-43.05X 106
8ba=—0.93 X108

(a) Measureds

b;=1.4X108 erg/cm?
b=0.17 X108

(b) Dipolar

Aby=—1.65X108
Aby=-+1.10X108

s T =4.2°K.

2 A. M. Toxen and S. Tansal, Phys. Rev. 137, A211 (1965).
A commercial Arenberg pulsed oscillator, preamplifier, and rf
amplifier, and a sampling oscilloscope and x-y recorder are used.
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and Z, are

Z1= 769 ) 22’-: 127‘4:,

for a simple-cubic antiferromagnetic lattice.

The calculated dipolar contributions to 4; and b,

Abl= ABl—' %ABa ,
Ab2= ABz_ AB4 y

are summarized in Table IV.

The difference between measured ME constants and
calculated dipolar contributions,

5bl= b1— Ab1 s
51)2: bz"' Abg y
are reasonably assumed to be of single-ion crystal-
field origin.* The constants 6b; and 6bs can be related
to a strain-dependent noncubic spin Hamiltonian Hy,
as defined by Feher,!8
H,,=8-D-S
=Gu{[n1—3 (n22+ns5) JS2+c.p.}
+G44[7712(5152+5251)+C.p.] y
where 7;; are the strain components and S; is the sth
Cartesian component of the spin operator. The strain
coefficients Gi11 and Gu4 are related to 8b, and 6b, at
T=0°K according to
Gu=4as*b1/[35(S—%)],
Gu=ai’dby/[S(S—3)],

for S>1. Gi1 and Gy for Mn?t in RbMnF; are then
determined using 65, and 8b, in Table IV as

G11=0.31 cm™, Gg,=—0.073 cm™.

For comparison, G1; and G4 have been determined for
Mn?** in MgO by Feher'® as

G11= 1.49 cm™! , Gy=—0.315 cm™!.

# Anisotropic interactions such as anisotropic exchange con-
tain the factor (g—2)% and will be very small as the g factor of the
S-state Mn*t is very nearly 2 [¢=2.0014 for Mn?* in MgO, see
W. Low, Phys. Rev. 105, 793 (1957)]. See J. Kanamori, in
Magnetism, edited by G. T. Rodo and H. Suhl (Academic Press
Inc., New York, 1963), Vol. I, Secs. (III, 4) and (IV).
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In both cases Mn?*t is in an octahedral site, with a
4.24-A F—F- distance in RbMnF; and a 4.20-A
02-0% distance in MgO. It is interesting to observe
that the ratio Gi11/Ga is —4.6 for Mn?t in RbMnF;
and —4.7 for Mn?*+ in MgO.

The dependence of b; and b, on the normalized sub-
lattice magnetization ¢ is shown in Fig. 7. It has been
assumed that ¢ varies with temperature according to a
Brillouin function for spin §. The temperature de-
pendence predicted by the single-ion theory of Callen
and Callen?? is shown by the solid line. According to
Refs. 25 and 26, if b, and b, are of a single-ion nature,
they should vary as

IRLLSR LAY
1L (o))

where ;12 is the hyperbolic Bessel function and L™
is the inverse Langevin function. The above relation

25 . R. Callen and H. B. Callen, Phys. Rev. 129, 578 (1963).
26 . R. Callen, A. E. Clark, B. DeSavage, and W. Coleman,
Phys. Rev. 130, 1735 (1963).
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results from a classical spin average in the molecular
field approximation.25:26 Ty, is nearly equal to ¢ over
most of the range of o.

According to Callen and Callen,?” magnetic dipolar
ME coupling should vary as o® except at very low
temperatures. It is seen from Fig. 7 that the experi-
mental b; and b, are not described by either the 75,2
or o2 curves. These data support the above conclusions
that both single-ion and magnetic dipolar ME coupling
are comparable in magnitude.
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Ferrimagnetic and Antiferromagnetic Structures of Cr;S;}

B. van Laar
Reactor Centrum Nederland, Petten, The Netherlands
(Received 14 October 1966)

An investigation of the magnetic and the nuclear structures of Cr;Sg at four different temperatures has
been carried out by means of neutron diffraction. It has been found that in the nuclear structure, deviations
from the idealized structure as given by Jellinek are small at all temperatures. The magnetic structure of
the antiferromagnetic phase is an antiferromagnetic screw-type spiral with its propagation vector along the
¢ axis. The spin structure in the ferrimagnetic state is collinear and strongly related to the antiferromagnetic
structure. Experimental results show that the transition from the antiferromagnetic to the ferrimagnetic
state is coupled to the occurrence of a noncollinear component of the moment on the 4f sites.

INTRODUCTION

HE crystal structure of CrsSe has been deduced

by Jellinek.! It can be considered as a NiAs-type

structure in which one of each six Cr atoms has been

removed, leading to completely ordered vacancies. The
structure as given by Jellinek is

space group: P31¢ (Dsa?);

2Crin 2(2):0,0,3;

2Crin 2(c): 3,2.%;

2 Cr in 2(b): 0,0,0; 0,0,3;

4 Crin 4(f) %1%:2; %";3%7%_2 Wlth z-_—O;

125 in 12(3): %,9,3; §,5— 9,2; ¥— %,%,3; ¥,%,5+2;
x—yay7%+z) iyy_— 00,%+Z,

with =%,9=0,2=§.

t Work sponsored jointly by Reactor Centrum Nederland,
The Netherlands and Institutt for Atomenergi, Norway.
1F. Jellinek, Acta Cryst. 10, 620 (1957).

At room temperature, the lengths of the unit-cell edges
are ¢=5.982 A and ¢=11.509 A, and the cell volume
is six times that of the NiAs-type subcell.

The magnetic properties of CrsSs have been the sub-
ject of many studies.?=® The compound is antiferro-
magnetic below 168°K, in the sense that there is no net
magnetic moment, ferrimagnetic between 168 and
303°K, and paramagnetic above 303°K. Kamigaichi4

2 H. Haraldsen and A. Neuber, Z. Anorg. Allgem. Chem. 234,
337 (1937).
8 M. Yuzuri, T. Hirone, H. Watanabe, S. Nagasaki, and S.
Maeda, J. Phys. Soc. Japan 12, 385 (1957).
4 T. Kamigaichi, J. Sci. Hiroshima Univ., Ser. A 24, 371 (1960).
8 M. Yuzuri, Y. Kang, and Y. Goto, J. Phys. Soc. Japan 17,
Suppl. B1, 253 (1962).
6 K. Dwight, R. W. Germann, N. Menyuk, and A. Wold, J.
Appl. Phys. Suppl. 33, 1341 (1962).
( 7 l\g) Yuzuri and Y. Nakamura, J. Phys. Soc. Japan 19, 1350
1964).
8 C. F. van Bruggen and F. Jellinek, Colloque International sur
les dérivées semi métalliques du Centre National de la Recherche
Scientifique, Orsay, 1965 (to be published).



