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Magneto-elastic (ME) coupling effects in the simple cubic antiferromagnet RbMnF& have been studied
by observing shifts in antiferromagnetic resonance (AFMR) frequency and changes in AFMR line shape
with the application of axial stress. Antiferromagnetic resonance in a two-sublattice antiferromagnet with a
general anisotropy and ME interaction is analyzed. Formulas for the evaluation of ME constants of a
two-sublattice cubic antiferromagnet are presented. ME constants of RbMnF3 have been determined as a
function of temperature from measurements of AFMR in single-crystal specimens under applied stress.
The spin-lattice strain coeScients in the spin Hamiltonian for 5-state Mn'+ in RbMnF3 have been deter-
mined from experimental ME constants and calculated magnetic dipolar ME constants. Large changes in
the static and dynamic response of low-anisotropy RbMnF3 can be eff'ected by the application of stress; via
ME coupling, applied stress can change both the form and magnitude of the total anisotropy. The measured
AFMR linewidth of RbMnFg at low temperatures is shown to be due to inhomogeneous strain broadening.
The intrinsic relaxation linewidth is estimated to be less than 5 Pe.

INTRODUCTION

' 'T is well known' that anisotropy plays a key role in
~ - both the static and dynamic response of an anti-
ferromagnet. In low-anisotropy antiferromagnets such
as RbMnF, (II~ is about 4 Oe at 4.2'K), applied and
inhomogeneous stresses have an especially large effect,
since they cause significant changes in the total aniso-
tropy via moderate magneto-elastic (ME) coupling. In
this work, ME coupling effects in RbMnF3 are investi-
gated by studying antiferromagnetic resonance (AFMR)
in single-crystal specimens subjected to applied stress. '

AFMR in a two-sublattice antiferromagnet with
arbitrary anisotropy and magneto-elastic (ME) coupling
subjected to applied stress has been analyzed. Applica-
tion is made to cubic RbMnF3, and formulas are pre-
sented for evaluating ME coupling constants. The ME
constants of RbMnF3 have been determined in the tem-
perature range 4.2 to 83.0'K by measuring AFMR
versus applied stress. The present technique circum-
vents the

dificult

problem of controlling sublattice mag-
netizations, which is encountered using conventional
strain-gauge techniques. Because of the multidomain
nature of cubic antiferromagnets, it is extremely di%-
cult to control the sublattice magnetization orientation
throughout a specimen with an applied field.

Large stress-dependent changes in the AFMR
resonance Geld, linewidth, and line shape have been
observed in RbMnF3. Stress-dependent ME effects are
much more accentuated in antiferromagnets than in
ferro- or ferrimagnets because of the coupling of ex-
change and anisotropy in AFMR: a stress-dependent
change in the anisotropy field 8H& shifts the AFMR
resonance field 6II (H~/II, )6II~, where II' is the

$ Work supported in part by the U. S. Air Force Once of
Scienti6c Research of the 0%ce of Aerospace Research under
Contract No. AF 49(638)-1379.' S. Foner, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , ¹wYork, 1963), Vol. I., p. 384.

'A brief report of this work has been published by D. E.
Eastman, R. J. Joenk, and D. T. Teaney, Phys. Rev. Letters 17,
3OO (1966).
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exchange Geld. In the case of a ferromagnet, II„ is
shif ted. 5H~SH~.

At low temperatures, the observed AFMR linewidth
in RbMnF3 is due to inhomogeneous strain broadening.
This occurs because of the large stress effect on AFMR
and because there is no net long-range magnetic dipo) ar
narrowing mechanism present in antiferromagnets to
couple different regions together so that they assume a
common resonance frequency. ' Thus, an inhomogeneous
internal field will fully contribute to the observed Iine-
width. Large changes in the linewidth and line shape as
a function of stress have been observed which are ex-

plained by the presence of an inhomogeneous stress.
Further evidence is furnished by the result that the
ratio DII/(dII, /dp) of the linewidth AII and stress
derivative of the resonance field, dII„/dp, is strongly
correlated for a number of diBerent experiments. From
the experimental data, an upper bound of 5 Oe can be
placed on the intrinsic relaxation linewidth.

The measured ME constants and estimated intrinsic
linewidth indicate that phonon-pumped magnon in-
stabilities4 will have very low phonon-power thresholds
of the order of 30 mW/cm' in RbMnFs. As shown by
Morgenthaler, 4 a phonon-pumped magnon instability
experiment can be used to determine the spin-wave
relaxation linewidth hH~.

Another interesting experiment which appears to be
feasible using RbMnF3 is the direct observation of stand-
ing antiferromagnetic spin-wave modes in a thin disk.
According to Orbach and Pincus, ' the spacings of the
spin-wave resonances are given by

Ace/y (td„,/y) (IIa/2H~)rr'(a/I. )sttt,

for Ho= 0, where Hz is the anisotropy field, a the lattice
constant, L the disk thickness, and nz an integer. In

'A. M. Clogston, J. Appl. Phys. 29, 334 {1958).In a ferri-
magnet, because of dipolar narrowing, an inhomogeneous internal
Geld hH; will result in a resonance linthwidth hH AHA/4M',
for b,H;&&4M„where 3f, is the saturation magnetization.

4 F. R. Morgenthaler, Phys. Rev. Letters 14, 907 (1965).' R. Orbach and P. Pincus, Phys. Rev. 113, 1213 (1959).
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general, it is dificult to resolve spin-wave resonances
since mode spacings are comparabl. e to or narrower than
linewidths. In RbMnF~, however, the application of
[001] stress induces a uniaxial [001]anisotiopy which
can result in a small anisotropy field, namely, Hz~II&,
the nuclear hyperfine 6eld.

In Sec. I, an analysis of AFMR in a two-sublattice
antiferromagnet having an arbitrary anisotropy and
applied stress is presented; application is made to cubic
RbMnF3. Experimental results are discussed in Sec. II
and the origin and temperature dependence of the ME
coupling is discussed in Sec. III.

I. ANTIFERROMAG5'ETIC RESONANCE IN
RblnF, IN THE PRESENCE OF

APPLIED STRESS

A. General Considerations

The dynamic response of a stressed two-sublattice
antiferromagnet is calculated by first determining the
equilibrium orientation of the coupled sublattices and
equilibrium strains and then applying appropriate
dynamic torque equations for the two sublattices. Both
the static and dynamic responses are conveniently
obtained using a Gibbs "free"-energy density, ' which
has the following form for cubic RbMnF3.'

+exchange+ +Zeeman+ +hypergne+ +A

++A ++mech

~M1™2Hp (Ml+M2) +N(11™1+12™2)
+El[(Q1'Q2'+c P )+(PPP.2'+. c P)]..
+Bl[(Q1 +pl )ri11+C.p ]+B2[(Q1Q2+plP2)gl2+C p ]
+B8[Q1P1911+Cp ]+B4[(Qlj92+Q2pl)'Q12+C p ]
+ 2 Cil('gll +C p )+612('gllri22+ c p )

+2c44( l»'+c p ) (1 1)

where X is the Weiss exchange-field coefficient (& equals
IIs/M, . with H~ the exchange field and 3I, the sub-
lattice magnetization), Hp is the applied field, Ml and
M2 are the sublattice magnetizations with direction
cosines Q; and p;(i=1, 2, 3), respectively; Q and p
are unit vectors parallel to Mi and M~, II~ is the
nuclear hyperfine field (II@=9.43/T Oe for Mn" in

RbMnF2 '), Il and Is are unit vectors in the nuclear-
spin directions, Eq is the first-order cubic magneto-
crystalline anisotropy constant, Bq ~ ~ ~ 84 are magneto-
elastic coupling constants; g;; are the strain coeKcients,

824; c)244)

n', = (1-2~',) +
Bx; Bx;)

with e; being the displacement vector, c~~, c~2, and c44

are the elastic constants, and c.p. denotes cyclic

'%. F. Brown, Micromagnet~cs (Interscience Publishers, Inc. ,
New York, 1963), see Chaps. 3 and 4.

'D. T. Teaney and M. J. Freiser, Phys. Rev. Letters 9, 212
(&962).

permutation of the indices 1, 2, 3. Bipolar demagnetiz-
ing field effects are neglected. in Eq. (1.1). Only single-
ion crystalline anisotropy is explicitly included in
Eq. (1.1) since it adequately describes RbMnF2, '
while both single-sublattice (Bl and B2) and coupled-
sublattice (Bs and B4) magneto-elastic energy terms are
included. ' It will be shown in Sec. III that one-ion
(crystal-field origin) and two-ion (magnetic-dip olar
origin) sources of magneto-elastic coupling are com-
parable in RbMnF2. It is assumed that ~M1~ = ~M2~
=M, (T), i.e., the parallel susceptibility is neglected.
This assumption is valid for most antiferromagnets at
low temperatures and is valid for all temperatures for
high field resonance in the spin-Qopped state.

The equilibrium orientations of Ml and M2 and
equilibrium strains at fixed field and homogeneous
applied stress a;; are found by minimizing 6 and are
given by the 12 coupled equations.

(&G/&M, )XM,=0,

(BG/rlM2) && Ms 0——,

(~G/~V*r) = QV,

(1.2a)

(1.2b)

(1.2c)

subject to the constraints M& M&=M2 M2 ——M, '. The
strains appea, r linearly in Eq. (1.2c) and are easily
obtained in terms of dp, pp, and o ... where Qp and pp

are the equilibrium values of Q and p. They contain
magnetostriction and applied stress contributions. These
strains are then substituted in Eqs. (1.2a) and (1.2b)
and Qp and pp can be determined. In the present work
magnetostrictive strains (-10 ') are neglected com-
pared to the stress-induced strains (~10 4).1P

The equations of motion at constant strain are

with

1 dMg
=Ml xH1'", (1.3)

cx'= Ro, ,

prr gp

(1.5a)

(1.5b)

' There are in general two more terms in ExMg, Bp(42 c2+P to
XQ(„)pf'„'+Bpri'$ p&q)r);;, which are volume magnetostriction
terms; these are neglected in this paper.' See Ref. 1, p. 392.

' Using the experimental ME constants of Sec. II, it is found
that the magnetostriction contribution to E& is approximately 5%.

Hl'" ———BG/c)M1

XM2+H p+II2r—I1

BE@ BEg+, (1.4)
M, Bo. Bo.

and with a similar equation for M2. The equations for
the two sublattices are linearized in the usual way and
can be reduced to a 4)&4 coupled set of equations by
using 2."y's' and x"y"s" axes for Q and P as follows:
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FIG. 1. The crystal
coordinate system x y s
and transformed coor-
dinate systems x'y's'

(R„R„R,) and x"y'Y'
(Qq, QI,Q3) shown with

and f4 in the yp
plane.

Qg

EQOI)

Rg

toio3

evaluation of crystalline anisotropy and magneto-
elastic terms in the coefficients a ~ ~ h. This is an
excellent approximation for RbMnF3, since Hg is

890 koe, Ho & IO kOe, and the total anisotropy Hg
is 4 Oe. In this approximation, terms of order
HIi(H0/Hi, ) are neglected compared to H~, Ho'//H~,
and H~. The resulting coefficients a Ir in Eq. (1.6)
then become

CIO

Here g is a 3X3 unitary matrix which transforms the
column vector 8 in the crystal coordinate system into
n' in the x'y's' system. The row vectors of (R, which are
denoted as Ri, R~, and R3, are unit vectors in the
PpXAp, 80X (PpX80), and up directions. "Similarly, the
row vectors Qi, Q2, and Qp of g are unit vectors in the
P0Xup, P0X(P0Xuo), and Pp directions. The various
unit vectors Ar, etc. are shown in Fig. 1; dp and pp
are parallel to a' and a", respectively. The linearized
equations of motion for bn'=u' —up' and 8g"=P"—Pp"
are then

a b e f &ni'

b'=

c =
&+(Po—uo) Ho,

c—(jo—uo) Hp,

M, '(R2. V V,Eg'Rr),
H—Iruo Po+Hx+uo Ho+& '( uo—V E~o

+R2 V V,EIi'R2),
A

+Hsnp Pp H~ u—p Ho+—M, '(np V~Eg'
—Ri V V Eg'Rr),

3f 'R2 V' V'pEg'Rj,
A

Hguo Pp O. 'R2 V—Vp'EIi'R2,
—IJg—M,—'Rg V' V'pEg'Rg,

~, 'R, ~.~pEa'R2,
g a gI

(1.7)

with

1 Sci2'

V ~Pi"

h be2'

fl gP
II

g
—e c' —a' 8/2"

a=A R2 V V G'g„
b=M, '(—Rp V Go+82 V, V G'R2),
c=M '(—R V~G Ri V V G —Ri)
e=3f 'R v vpG'Qi,
f=M R2 V.VPG'Q2,

g= —M Ri V,VPG'Qr,
h= —3f 'R1 V VtiG'Q2I

(1.6)
where E& equals Ez plus Ez evaluated at equi-
librium (with Pp

———dp) and 22 is a unit vector along
Ho."The relations pp VpE~p=do V EIip and VpVpEzp
=V' V E~' have been used. These result from the
symmetry Ez(n, p) =Ez(pIn) and the condition that
only terms having even powers in magnetization com-
ponents are permitted in Eg. The eigenfrequencies of
Eq. (1.6) with a h as'given'in, Eq. (1.7)"are

GO

=Hs (hr+h2)+ (np Hp)2+ {Hnp[(hi —h,)'+4h22]
'y

A+ EH(~1+k )[2(up pp) ' Hp]2)1/2 (1.8)
with

721 H21+2(np+Pp)'Ho+1M [ uo' VaEIi +R2
~ (V V,Ego—V VPEgo) R2],

h2 ——H~+ 2(rto+Po) (Ho —-2npHa)+DE [—uo
~ V.E '+R (V V E ' VVpE ') R],—(1.9)

h, =&V 'R2 [V V E~o—12(V VPEgo+VPV Ego)] Rt.

and u', b', and c' are obtained from a, b, and c by
replacing Rto by Qt;&, V by Vs, and Vs by V . In Eq.
(1.6), V —= 8/piet, (V V G) I=82G/Bn;n;, and V V G'
denotes the equilibrium value. The relation Vi V VpG0

V2 ——V2 VsV G'Vi, where Vi and V2 are arbitrary
vectors, has been used in deriving Eq. (1.6). It has
been assumed that the nuclear spins can not follow the
rapidly varying electron spins, with the result that the
hyperfine interaction contributes a uniaxial Geld II&
along the equilibrium spin direction. This assumption
must be reexamined if the AFMR frequency is near
the nuclear-magnetic-resonance (NMR) frequency or
if low-frequency Geld modulation is present.

A significant simplification in Eq. (1.6) occurs if
sublattice canting (angle &Hp/2HII) is neglected in the

If Pp)&&%0=0, any convenient direction perpendicular to no
can be selected for RI.

Equation (1.8) is valid for a two-sublattice antiferro-
magnetic with an arbitrary form of small (i.e., H~&&H~)
anisotropy for field strengths Ho&~pH@ at low tem-
peratures. It is valid for all temperatures in the spin-
Qopped state. For high-Geld spin-Qopped resonance

"M. J. Freiser, R. J. Joenk, P. E. Seiden, and D. T. Teaney, in
Conference on kIagnetism (The Institute of Physics and The
Physical Society, London, 1965), p. 432, have derived a set of
resonance equations similar to Eqs, (1.6) and (1.7) for zero stress;
however, there is a sign error (they have u'-=+a in the present
notation} which can have important consequences for AFMR at
Selds near and below the "iiop"it acid~(2H2Hgl'I2.
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(Hp'»HEHA), Eq. (1.8) becomes simply

(&01/P)2= 2Hghl,

(&02/y)2 =2H~h2,

(1.10a)

(1.10b)

where h» is held-dependent and h2 is Geld-independent.

B. High-Field Resonance

In the high-field spin-flopped limit (H02»H~HA),
the AFMR eigenfrequencies are relatively simple. From

Eqs. (1.8)—(1.10), one obtains the field-dependent and

field-independent frequencies

with

(401/p)2 =H0'+ 2H g (H~+HA &"),

(&0 /y)2 =2Hs (HER+HA&21)

(1.11a)

(1.11b)

b =By—-'8

b2 ~2 ~4)

(1.13a)

(1.13b)

are involved in the resonance frequencies. "The AFMR

frequencies can then be described using a single-sub-

lattice form of magneto-elastic coupling,

EA bi[(&21 +pl )'gll+c p ]
+b2[(&21&22+6+2)lii2+c p ], (1..14.)

with bl and b2 given by Eq. (1.13).
The eRective anisotropy fields Hz '& and H&('&

contain cubic-anisotropy and magneto-elastic terms.

The cubic-anisotropy terms, which can be obtained from

Eq. (1.12), have been evaluated previously'":

&1)cub 0H f (~ ) (1.15a)

H & ) =-H„f (,) (1.15b)

with
f1=3+&i) 1c 42pi Qii) 4204

f2 ——3—3+&;) I;2&20,2—4+&')&20",

HA = —41tl/(3M. ) .

(1.16a)

(1.16b)

The magneto-elastic-Geld terms in Hg~" and Hg&'~

"This is also true for low-field resonance; see Kq. (1.9).
' M. J. Freiser, P. K, QqideII& ppd D. T. Teaney, Phys. Re@.

Letters 10, 293 (1963),

H &'& = M -'[—80 V ZA0+ R2
. (V V EA0 —V V pEA0). R2], (1.12a)

HA&"=M. '[—80 V EA'+Rl
~ (V V,ZA0 VVPEA—0) Al] (1.12b)

where EA(=RA'""+SAME) is the total effective aniso-

tropy at Gxed strain and IIg~" and H~&" are the effec-

tive resonance anisotropy fields. In Eq. (1.12), R2 ——l,

a unit vector along Hp, and ~1= lXdtp.

For RbMnF2, using the Gibbs function of Eq. (1.1),
V' V pE&0 is proportional to V V' 8&'. Therefore, only

two linear combinations of the magneto-elastic con-

stants B~ . 84, namely,

are determined using Eqs. (1.12) and (1.14). Expressed
in terms of the applied stress o.;;, they are

HA 2b1211Mc [&r11(&201 Il')+c.p.]
—2bis12Mc [(&r22+&r22) (nor l1)+c.p ].

—2b2$44Mc [&r12(&201&202 lll2)+c.p.], (1.17)

with H&& ) ~ given by II&~ )ME with Lt; replaced by
(LXnp), =—22;. In Eq. (1.17), s;; are the elastic com-

p]iance coefficients.
The special cases of [001] and [110]applied stress

with Ho perpendicular to the applied stress are rela-

tively simple and permit evaluation of b~ a,nd b2. These
cases have been considered experimentally.

For [001] compressive stress, 0.22= —p, with p)0,
and one has

with

MR g~ 2

HA&1)MZ —H (~ 2 ) 2)

2blP2I&

M, M, (C11—C12)

(1.18a)

(1.18b)

(1.18c)

@A 2McHlo. pp +2™cH2001&202, (1.19a)

with

2 H 1 (opp l2 ) H 2(&201&202 l lt2), (1.19b)

H2= b2P/(M, C44) . (1.19c)

There is considerable algebraic complexity for Ho

in an arbitrary direction in the [110]plane. Therefore,
two ca,ses, namely, with Hp along [110]and [001], are
considered. Experimentally, these cases are convenient
since they are insensitive to slight misorientations.
Results are summarized in Table I. The normalized
stress is x'=2(H1+H2)/3HA.

The magneto-elastic constants bl and b2 [more pre-
cisely, the quantities (Hsbl)/[M, (cil—c12)] and

(HAb2)/(M, c44)] are most conveniently determined from

the field-dependent resonances by measuring Ho versus
pressure at fixed frequency. For this purpose the pres-

"In Table I, the formulas for u0 neglect spin canting. The spins
are canted toward Ho from tbe give@. directions by an angle P with
SimP =Bc/2Hg.

Here H& represents the stress-induced anisotropy field.

The stress-dependent spin direction o.o and resonance

frequencies for [001] stress are sunimarized in Table
I."The normalized stress 2:=E/El ——2H1/3HA can be
positive or negative according to the sign of b~. It is

observed that the magnetization direction 0,0 and the

AFMR frequencies, especially the field-independent

mode, are strongly dependent on the applied stress.
The AFMR is uniaxial in nature for x&1; this has

been observed in RbMnF3. Various features of the
resonances in Table I will be discussed in Sec. II.

For [110] uniaxia, l stress, 011——a22 ———&r12= —p/2,
and one has
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TABLE I. Summary of AFMR for [001j and [110japplied stress

Stress region'

I. [001) stress, Ho along (/„/2, 0)

(a)

—-'(3+cos4y) &x&1

(b)

Magnetization direction ho

(
1—x 1—x

+l2 +l)
2 (1—/22/22) 2 (1—/P/2')

(1-x)
1—

2 (1—lPl22)

(—0,0,1)

Resonance frequencies

(
CO] —4 cos4&

=Ho'+2HEHE+3HEHA(1 g)—
7 7+cos4@

—8
yzo~

k&+ 4o)

(
oo 2'l—

~

=Hoo+2azaz+3HEHA(z 1)—
602

=2IIgH~+3H gHg(x —1)

(c)

x & ——,
'- (3+cos4@) (—l2, /I, O)

(
OP].

=Hp'+2H gH~ —3H gH~ cos4p

Cd 2
=2HgH~+3H gag —x—4 (3+cos+)$

U. [110jstress, Ho along [1/K2, 1/v2, 0].

(a)

—2 &$'&1

COI

=H, +2H gH&+2IIgH&+-, Hg(H, +4H, )

(
2) 2

2aza=z+Hz»[2 *' (&—') j—o

v)
2

=Hoo+2azaz+3HEHA+2azao
kv

(b) x'& 1 (1/V2, —lv2, 0)
C02

=2H gH&+;H gH, (x' —1)

x'& —2

III. [110jstress, Ho along [001j.

(a)

(o,o,1)

(—1/vr, 1/vr, o)

("~l'
~

—
~

=Ho'+2azaz 3HEHA Hz(H, —Ho)— —
kvj

2

= 2HEHE+soazaA( g' 2)——
kv

(
oor) 2—

~

=Ho'+2azaz 2HEHA+Hz(ar—+Ho)
vi

(
COB

=2HgH~+3H gHg+2H gH2

(b)

H2&o (—1/V2, 1/V2, O)
(

N 1)—
~

=Ho'+2HEHE 2HEHA+Hz(ai Ho)— —

(
40$

=2HgH~+3H gag —2H gH2

2bIP2 Hj 2 HI+H2
~x=——x =— HI ——

3Hg 3 Hg (CgI —C)2)M,

b2p
l~ =cos@, l2= sing.

C44JIg
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f2(GHz~)

I I I
'

1 I 1

"2P -I.5 "IP "04 0 0$ IP I.5
X

2.0 2.5

Fn. 2. Zero-6eld
AFMR versus stress in
RbMnI'3 at T=20'K.
The values Hg =880
kOe, IIg=3.8 Oe, and
B~=0.47 Oe have been
used. The normalized
stress is calculated to be
x=23X'10'p.

sure derivatives

4II] 2by GII2
and

dP M~(crt —cis) dP M~c44

are evaluated in terms of dHs/dp in Table II.

Ter.x II. Determination of bI and b2.&

C. Zero-Field Resonance

At zero field, the resonance frequency is proportional
to the geometric mean of the exchange and anisotropy
fields. For RbMnF3 applied uniaxial stress can alter
the anisotropy from cubic to uniaxial in nature, thereby
causing very large AFMR frequency shifts. As an
example, zero-field resonance under [001] uniaxial
stress is considered. Then all four possible equilibrium
spin directions are equivalent and a single-domain
situation exists experimentally. The equilibrium spin
direction 0.0 and resonance frequencies are determined
using Eqs. (1.8) and (1.9) and are given by the results
Ia, Ib, and Ic in Table I with IIO set equal to zero.

The resonance frequencies, which exhibit very large
shifts, are shown in Fig. 2. Measured magneto-elastic
constants have been used. At stresses above x=1

(i.e., 400 bars), the anisotropy is uniaxial and a
single magnetic domain exists. Experimentally, stresses
of x 2.0 at 4.2'K have been applied during high-field
resonance experiments. Zero-field resonance has not
beer measured.

&&. EXPEMMENTAL RESULTS

AFMR in the spin-Qopped state in RbMnF3 has been
measured as a function of uniaxial stress and tempera-
ture at a frequency of 23 6Hz. These measurements have
veri6ed various features of the calculated AFMR modes
described in Sec, I, have determined the magneto-elastic
constants b~ and. b2 as a function of temperature, and
have demonstrated the important effect of inhomo-
geneous strains on the AFMR linewidth.

A. Syin-Floyyed Resonance with $001j
and Ll lpj Stress

Spin-Qopped AFMR with Ho perpen&. cular to an
applied [001]stress has been studied since it is relatively
simple to interpret and permits the determination of the
magneto-elastic constant br [see Eq. (1.14)].The ob-
served resonance field versus stress relations for Ho
in the [100] and [110]directions are shown in Fig. 3.
Figure 3 indicates that the induced anisotropy G.eld H&
[see Eq. (1.18c)] is positive. Thus, as the compressive
stress is increased from zero, the spins rotate toward the
[001] axis in the plane perpendicular to Hp until, at
the turning point stress x= 1 (p= 420 bars), they become
parallel to the [001] stress direction (neglecting cant-
ing). For x greater than unity, the induced uniaxial
anisotropy is greater than the intrinsic cubic anisotropy
(the spins remain parallel to [001] and the resonance
field is independent of the orientation of Hs in the [001]

(Ia)

(Ic)

(IIa)

{IIb)

(IIc)

(IIIa3

llllb)

4cos4@ dH1 Ho dHo

7+cos4@ dp HJ, dp

Hp d+0

dp Hg dp

dHp
0=

1 dHr dHs'l Ho dHo
+-'-

3 dp dp j Hs dp

dII2 Hp dIIp

dp HE dp

1 dIII dH2 Hp dHp

2 dp dp IIg dp

dH1 de Hp dEIp
+--—

2 dp dp H@ dp

1 dII& dH2 IIp d+0

2 dp dp H@ dp
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F~IG. 3. Resonance field Hs versus applied $001$ stress.
a prom measurement of IIO versus stress at fixed frequency. Experiments +&=8.9X10 Oey II~ 3'8 Oe) H& 2'22 Oep

Ia, etc. , are de6ned in Table I. erg/cm'.
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Ct'

E
Al

1.0- o . x= bl(T)/bi{4.2)
,~ = b~(T}zb&(4.2)

~ 0 0
X 0

Q

x
0
X

Oq

xo

bs —(0—.16+0.02) X10s erg/cm'

using the above-mentioned II~, M„and elastic con-
stants. The temperature dependence of b2, measured in
the above manner using two different crystals, is shown
in Fig. 4.

I f

0 l0 20

8
JPq,

l I l I l I l

30 40 50 60 70 80

plane), as shown in Fig. 3. The solid lines show the pre-
dicted results (see Ia, Ib, Ic in Table I) using the
experimentally determined Hl(P). Tile normalized
ratios of the slopes of the three straight-line segments in
Fig. 3 have the calculated values (—1):(4/3): (—2),
and the experimental agreement is excellent.

The magneto-elastic constant bl (actually HI= 2blP/
L(crt —cts)M,)}has been measured from 4.2'K to the
Noel temperature T~——83.0'K by measuring IIO versus
stress with Hs along $100), as shown in Fig. 3. The
temperature dependence of bt(T) is proportional to the
measured quantity HEHI ~ ) M, (T) fbi(T)/M, (T)) as-
suming the elastic constants and gneiss field coeScient
X are independent of temperature. In Fig. 4, the
normalized magneto-elastic constant bt(T)/bt(4. 2) is
plotted as a function of temperature for two diferent
crystals. At 4.2'K, b1 has been determined from the
measurement of IIgH1 as

bl (1.5&——0.15))& 10' erg/cm',

using M, =304 6 (theoretical), measured value'
Bg=890 kOC, and measured elastic constants which are
discussed in Sec. IID.

Spin-flopped AFMR with L110) stress permits the
determination of bl and bs. TyPical data with Hs along
L110) and $001) are shown in Fig. 5. These directions
are convenient since they are insensitive to small
misalignments of Geld and are simple to interpret. In
Fig. 5, at the turning-point stress x'=1(p=390 bars),
the slope of Hs versus x' changes with Hs along $110),
while no change is observed with Hs along $001). These
measurements are in accord with the calculated results
in Table I.

Both the magnitude and sign of b1 and b2 can be
determined using the three slopes shown in Fig. 5
and the appropriate formulas listed in Table II. Using
Fig. 5 and the formulas in Table II, one 6nds that
x'&0 for compressive stress. Thus, b2 can be directly
and most accurately determined from high-stress data
(x'&1) with Hs along 1110) (see IIb in Tables I and
II)."In this manner, bs has been determined at 4.2'K
"These data are used to determine b~ vvhile b1 is determined from

t 001) stress data. It is dificult to obtain low-stress (x'(1)
data with Ho along t'110$ at temperatures above approximately
30'K because the cubic anisotropy becomes smaH.

FIG. 4. Temperature dependence of b~ and b» TED=83.0'K.

—26,H

8400-
~

~

S200-

8000-C3

7800- r~

7600-

7400
0 400

STRESS {BARS)

r~
i(

X»ci

600:

FIG. S. Resonance 6eld H0 versus applied L110j stress. H~=8.9&10' Oe, K~=2.0 Oe. Best Gt is IIg =3.7 Oe, bI = 41.3+.15)X10' erg/cm', bs ——(0.1'l+0.02) X10s erg/cm'.

B. L1Qewldth StQdies

The AFMR linewidth and line shape are strongly
aBcctcd by inhoniogcneous stI'css. At low temperatures
the observed linewidth is due to inhomogeneous broad-
ening of the AFMR and is not an intrinsic relaxation
linewidth. These conclusions are based on a number of
AFMR stress cGects which have been observed.

First, with (110) stress and Ho along L110) (see
Fig. 5), the linewidth has been observed to decrease
abruptly from 26II 175 Oe to 2~II 75 Oe as the
stress is increased through the turning-point value
g'= I.This corrcspond. s to the observed change in stress
sensitivity ~dHo/dp~ and indicates that the observed
linewidth is due to inhomogeneous stress. Also, a sharp
edge in the line shape develops at a Geld strength corre-
sponding to the turning-point stress, thereby indicating
an intrinsic linewidth much narrower than the observed
Iinewidth.

Further evidence is given by Fig. 6, which shows the
absorption x" versus field with L001) stress as a param-
eter and with Hs along L110). A plot of the resonance
held Ho versus stress for this case is given in Fig. 3.
It is seen from Fig. 3 (and Table I) that no resonance
field greater than the resonance Geld at the turning
point, Hs=t (ol/y)' —2H8HIv)'"=8040 Oe, should be
observed. As shown in Fig. 6, a sharp edge in the line
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FIG. 6. Absorption x"
versus applied Geld vrith
$0017 stress as a param-
eter. x =23.2 0Hz.

broadened. An estimate of AIII, can be made, which
represents an upper bound, by assuming that diferent
regions of the crystal are uncorrclatcd. Then, assuming
that AH ~h~ g, Rs ls obscI'vcd ln fcrrlmagnets such Rs

yttrium iron garnet, one obtains

0 IIO AIII,~2 OC

for KMQF3 fIom thc data of Hceger 20 This Iesult is
1Q RccoI'd with thc Rbovc cstlIllatcd bound on
for RbMnF3.

shape occurs at this 6eld, with very little absorption at
higher 6elds. The line shape is symmetrical for stresses
well below and well above the turning-point stress, and
near the turning point the observed line shape can be
described by folding a symmetrical line shape about the
maximum resonance 6cld. These results strongly suggest
inhomogencous strain broadening.

A stro ng correl«io»»H/IdHo/dpi has been ob-
served for Rll measurements at low temperatures. At
higher temperatures, the observed linewidth becomes
less sensitive to stress and less correlation in

AH/~dHs/dP) was observed. At the Neel temperature
thc linewidth was unaffected by stlcss.

Further cvldcncc of lnhomogcncous bl oadcnlng ls

furnished by the observation that line shapes are
generally Gaussian at low temperatures and are
I-orentzian at high teInperatures near the Necl tem-

perature. At low temperatures, an estimate of the
inhomogeneous stress half-width Ap, assuming dp
AH/~dHs/dp~ is hp 150 bars""
t;I-. A bound on the intrinsic linewidth ADO can be esti-

mated based on the sharpness of the observed edges

in the absorption line shape at the turning-point stress.
The estimated bound is WHO&5 Oe. Heeger and
Pincus" and Heeger'0 have measured the AFMR line-

width as hH 40 Oe in KMnF3,' it should have an

inhomogeneous stress broadening comparable to
RbMnF3. They have also measured a critical rf field

(&,=0.2 Oe) for spin-wave instability at 1.8'K. The
critical rf field h, is related to the uniform precession
relaxation linewidth DIIO and spin-wave relaxation line-

width hHI, by"

P, =4ZH, [aH, /2H H»]'~',

with 2II~II~j equal to 3200 Oe. Heeger and Pincus
obtained the anomalously small spin-wave linewidth

AIII, =5& j.0 ' Oe upon assuming that the relaxation
linewidth AHO is equal to the observed linewidth

AH=40 Oe, However, it is known from the present
studies that the uniform mode is inhomogeneously

iv As arough order-of-magnitude comparison, the inhomogeneous
stress measured by Feher (Ref. 18) for Mn'+ in Mgo is 1(}0bar.
The inhomogeneous strain corresponding to 150 bar for R4MnF&
ls 6/~1.5X10

is K I'cher, Phys. Rev. 136, A145 (1964).
» A. J. Heeger and P. Pincus, Phys. Rev. Letters 10, 53 (1963),
'o A. J. Heeger, Phys. Rev. 131, 608 (1963).

D. Determination of Elastic Moduli

The elastic moduli of cubic RbMQF3 were determined
Rt 1oolrl tcIIlpcI'Rtul c using thc pulsed ultlRsonlc systcIIl

Ymr.E III. Measurement of ultrasonic velocity.

Propa-
gation

direction

$110)b

t Imgb

Nave
polarization

longitudinal,
u(It 100(

shear,
al tt00]

shear,
a,'~$010$

shear,
«ilpfoj

longitudinal,

Measured
velocity V
(cm/sec)

4.93' 105

Calculated
velocity

l~»/vol'"

(c44/po)"

2.«X 10 (.../&, ) /

((&»—~12}/2PO)'"

((~»+~12+~~44)/2po)"'

7 &22+0005 mm
b l =6.33$+0.005 mm. a=elastic polarization, po =mass density.

~ P ~

"A. B. Smith and R. U. Jones, J. Appl. Phys. 34, 1283 (1963).
~'Included were specimens prepared from crystals grovrn 4

Semielements, Inc.
gr0%'n

C. Exyerimental Methods

The measurement technique consists of measuring
microwave AFMR in single-crystal specimens which
are subjected to uniaxial stress. "Rectangular parallel-
opiped specimens with polished parallel faces and linear
dimensions of 45—65 mils werc used. "The stress was
applied to the specimens using two 2-mm silica quartz
rods with parallel endfaces which extended out through
the microwave cavity. The stress was generated using a
set of calibrated weights and a push rod extending down
to tile CRvlty, A metal )acket cIlcloslIlg tllc CRvlty (wltll
a metal bellows arrangement for the push rod) con-
tained helium gas and coupled the cavity and specimen
to a liquid-helium (or liquid-nitrogen) temperature ba, th.
The cavity resonance, at 23 GHz, was independent of
stress as the force load was supported by the metal
vacuum jacket. Direct dc detection and a very low Q
CRvlty (Q—15) wclc used.

A platinum resistance sensor and dc heater with a
feedback system were used to control temperature to

12'K
+0.2'K in the range of j.2 to 85'K. Temperatu b lcI'R ul"cs c ow

were controlled manually and were Ineasured to
+1'K using a Au-Co thermocouple and/or platinum
I'cslstRQcc scnsoI'.
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of Toxen and Tansal. " Shear and longitudinal waves
were generated at 10 and 30 MHz using ~-in. -diam
ac-cut and x-cut quartz transducers with a 10-MHz
fundamental frequency. Nonaq stopcock grease was
used to bond the transducers to the specimen. A pair
of parallel polished [100j faces spaced 7.122 mm and
a pair of [110]faces spaced 6.335 mm were prepared on
the same single-crystal specimen.

Measured ultrasonic velocities for the five acoustic
modes propagating in the [100j and [110j crystal
directions are summarized in Table III. The velocities
were determined according to

U= 21/2t,

FIG. 7.Normalized
magnetoelastic con-
stants b~ and b~
versus normalized
sublat tice magneti-
zation o.

0
I.O

0
0

.,~ = bi{ )/bi{i)
o o = bsp{cr)/by{I)

.6 .4 .2

where 3 is the acoustic path length and 2t is the observed
two-way acoustic delay time between adjacent ultra-
sonic echoes. Using the theoretical density pa=4.30
g/cm', the elastic moduli were determined from the data
in Table III in units of 10"dyn/cm' as

cia= 10.45, c~~= 3.32, c44= 3.00.

Estimated accuracies are +2, I, and l%%uo, respectively.

III. OMGIN A5'D TEMPERATURE DEPE5DENCE
OF b» AND 52

The magnetoelastic constants b» and b& have the
values listed in Table Iv at 4.2'K. The magnetic-
dipolar interaction is dependent on strain through the
interionic distance and contributes to the ME coupling.
This contribution has been calculated assuming localized
moments. This assumption should be quite good for
5-state Mn'+ ions. The magnetic-dipolar ME interac-
tion can be written in the form given by I;MME in
Eq. (1.1). The calculated contributions to 8& 84
at O'K are

DBt —
e (gPS/2ap')'Z t, ——

ABs = -', (gPS/2ap')'Z t,
68,= -', (gPS/2up')'Z p,

684————,', (gPS/2ap')'Z s,

where g is the Lande factor, P the Bohr magneton, 5
the spin quantum number (5=—,'), and ap the lattice
constant (4.24 A). The dimensionless dipole sums Zt

TAsLK IV. Origin of b» and b2.

and Z~ are
Zg ——7.69, Z2 ——127.4)

for a simple-cubic antiferromagnetic lattice.
The calculated dipolar contributions to bj and b2,

hb» ——ABg—~DBg,

hb2= 682—684,

are summarized in Table IV.
The di8'erence between measured MK constants and

calculated dipolar contributions,

bbg=bg —hb»,

bb2= b2—Ab2,

are reasonably assumed to be of single-ion crystal-
field origin. '4 The constants bbq and 8bq can be related
to a strain-dependent noncubic spin Hamiltonian H„,
as defined by Feher"

a„,=S D S
=Gtt([tt tt —s (tips+tips) jSi'+c p )

+G44[gtp(StSs+SpSt)+c. p.j,
where q;,. are the strain components and 5; is the ith
Cartesian component of the spin operator. The strain
coeScients G~» and G44 are related to bb» and bb2 at
T=O'K according to

Ggt=4up'bbt/[35(5 ——.', )j,
G44= ap'bbp/[5(5 ——,')],

for 5&1. G»» and G44 for Mn'+ in RhMnF~ are then
determined using bb» and bb2 in Table IV as

G»»=0.31 cm ', G44, ———0.073 cm '.

(a) Measured'

Origin

(c) Difference
(b) Dipolar (a) -(b)

For comparison, G»~ and 644 have been determined for
Mn'+ in Mgo by Feher" as

bI =1.4X10' erg/cm~
b2 =0.17X106

~by = —1.65X10'
b b2 =+1.10X10'

+I +3.05X10'
&by = —0.93X105

G~q=1.49 cm ', G44 ———0.315 cm—'.

a T 4.2 K

~ A. M. Toxen and S. Tansal, Phys. Rev. 137, A211 (1965).
A commercial Arenberg pulsed oscillator, preampli6er, and rf
amplifier, and a sampling oscilloscope and x-y recorder are used.

~4Anisotropic interactions such as anisotropic exchange con-
tain the factor (g—2)' and will be very small as the g factor of the
S-state Mn'+ is very nearly 2 Pg=2.0014 for Mn'+ in MgO, see
W. Low, Phys. Rev. 105, 793 (1957)g. See J. Kanamori, in
tit'agaetesm, edited by G. T. Rodo and H. Suhl (Academic Press
Inc, , New York, 1963), Vol. I, Secs. (III, 4) and (IV).
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In both cases Mn'+ is in an octahedral site, with a
4.24-A F=F distance in RbMnFs and a 4.20-A
O'—0' distance in MgO. It is interesting to observe
that the ratio Gii/Gss is —4.6 for Mn'+ in RbMnF,
and —4.7 for Mn'+ in MgO.

The dependence of 61 and 62 on the normalized sub-
lattice magnetization 0. is shown in Fig. 7. It has been
assumed that 0. varies with temperature according to a
Brillouin function for spin —,'. The temperature de-
pendence predicted by the single-ion theory of Callen
and Callen'5' is shown by the solid line. According to
Refs. 25 and 26, if b1 and b2 are of a single-ion nature,
they should vary as

Isis(I. '(0))
b(~) = =Is, s(—~),

Ii&s(I. '(0))

where I~+1~~2 is the hyperbolic Bessel function and L, '
is the inverse Langevin function. The above relation

~' K. R. Callen and H. B. Callen, Phys. Rev. 129, 578 (1963).
' E. R. Callen, A. E. Clark, B. DeSavage, and |A'. Coleman,

Phys. Rev. 130, 1735 (1963).

results from a classical spin average in the molecular
field approximation. ""A~2 is nearly equal to a' over
most of the range of |T.

According to Callen and Callen, "magnetic dipolar
ME coupling shouM vary as 0' except at very low
temperatures. It is seen from Fig. 7 that the experi-
mental b1 and b2 are not described by either the I5~2
or 0-' curves. These data support the above conclusions
that both single-ion and magnetic dipolar ME coupling
are comparable in magnitude.
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Ferrimagnetic and Antiferromagnetic Structures of QrsSst.
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An investigation of the magnetic and the nuclear structures of Cr~S6 at four different temperatures has
been carried out by means of neutron dif'fraction. It has been found that in the nuclear structure, deviations
from the idealized structure as given by Jellinek are small at all temperatures. The magnetic structure of
the antiferromagnetic phase is an antiferromagnetic screw-type spiral with its propagation vector along the
c axis. The spin structure in the ferrimagnetic state is collinear and strongly related to the antiferromagnetic
structure. Experimental results show that the transition from the antiferromagnetic to the ferrimagnetic
state is coupled to the occurrence of a noncollinear component of the moment on the 4f sites.

space group:
2 Cr in 2(a):
2 Cr in 2(c):
2 Cr in 2(b):
4 Cr in 4(f):
125 in 12(i):

I'31c (Dsg');

0,0,~1;

1 2 1.
3&8&4 &

0,0,0; 0,0,2;

8)8) ) 8)8)2
1 2~. 1 2 1 Swlthg=0

7

&)3'pi Wp" X)si 3' *»)si 3'8'k+si

g=-„y=0, s= —', .
t%'os. sponsored jointly by Reactor Centrum Nederland,

The Netherlands and Institutt for Atomenergi, Norway.
' F. Jellinek, Acta Cryst. 10, 620 (1957).

INTRODUCTION

'HE crystal structure of Cr5S6 has been deduced

by Jellinek. ' It can be considered as a NiAs-type
structure in which one of each six Cr atoms has been

removed, leading to completely ordered vacancies. The
structure as given by Jellinek is

At room temperature, the lengths of the unit-cell edges
are u=5.982 A and c=11.509A, and the cell volume
is six times that of the NiAs-type subcell.

The magnetic properties of Cr~S6 have been the sub-
ject of many studies. The compound is antiferro-
magnetic below 168 K, in the sense that there is no net
magnetic moment, ferrimagnetic between 168 and
303 Ky and paramagnetic above 303 K. Kamigaichi

' H. Haraldsen and A. Neuber, Z. Anorg. Allgem. Chem. 234,
337 (1937).

'M. Yuzuri, T. Hirone, H. Watanabe, S. Nagasaki, and S.
Maeda, J. Phys. Soc. Japan 12, 385 {1957).

T. Kamigaichi, J. Sci. Hiroshima Univ. , Ser. A 24, 371 (1960).' M. Yuzuri, Y. Kang, and Y. Goto, J. Phys. Soc. Japan 17,
Suppl. B1, 253 (1962).

6 K. Dwight, R. W. Germann, N. Menyuk, and A. Wo}d, J.
Appl. Phys. Suppl, 33, 1341 (1962).' M. Yuzuri and Y. Xakamura, J. Phys. Soc. Japan 19, 1350
(1964}.

8 C. F. van Bruggen and F. Jellinek, Colloque International sur
les derivees semi metalliques du Centre National de la Recherche
Scientiique, Orsay, 1965 (to be published).


