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The perturbation factors in the angular-correlation function are obtained for multidomain ferromagnetic
metals, taking into account the fluctuation of the local magnetic 6elds. The perturbation can be described
by means of an equation for products of transition amplitudes, similar to the master equation, whose solution
includes, as particular cases, the results for paramagnetic relaxation and for nonfluctuating fields.

I. INTRODUCTION

'HK perturbation of angular correlations of y-y
cascades from decaying nuclei by the internal

6elds in crystals furnishes information about the local
magnetic and electric fields at the sites of the decaying
nuclei. ' This information is particularly valuable in
the case of magnetic metals, where different models
have been proposed to explain the hyperfine fields at
impurities. " Measurements can be made without
external magnetic fields, and extend throughout the
whole sample. 4 In a magnetic crystal, the domains will
be randomly oriented, and, within them, the magnetic
fields will fluctuate in time about their average value.
The angular-correlation probability at time t for each
domain will be

W(ki)kp, t)= Q Q Ag, (1)Ap, (2)G„ i ~&~&([)
~1+1 Ip2+2

)&L(2ki+1)(2kp+1)$ 'i'Fg ~&(8ipi)*F 2(8pqp), (1)

where k; indicates the (8;,p,) direction of the ith
radiation, the coeKcients A p,.(i) depend on the interac-
tion between the nuclei and the radiation, and the
interaction between the crystal and the decaying nuclei
is included in the perturbation factors

Q„NyN2()) —Q ( 1)PI+m +mug(2$ +1)(2P +1)jl/2
mamb

choosing a reference frame in one domain and averaging
over directions, for a situation with no Quctuations.
Above the Curie point, the average Geld in each domain
disappears, and the inhuence of the electronic paramag-
netic relaxation is described by choosing the Os axis of
the reference frame along the wave vector of the
first radiation. ' Studies have also been made on magnetic
hyper6ne interactions and their relaxation in europium-
iron garnets. ' Preliminary experiments have recently
been performed to investigate the sects of both the
average and the Quctuating 6eld in metals, above and
below the Curie temperature. ' It is the purpose of this
investigation to obtain the perturbation factors in the
general case and discuss the fulfillment of the emerging
restrictions.

Q. THE PERTURBATION FACTORS

We shall describe the interaction between an inter-
mediate-state nucleus and the hyper6ne magnetic field

by means of the time-dependent Hamiltonian

Sep ———giixi. H, V (/) = gii+I b—H(t), (4)

where p,N is the nuclear magneton, I the nuclear spin,
H the average magnetic field at the nucleus, with a
fixed direction in each domain, and 6H (t) the fluctuating
part, with an isotropic distribution in time. Both H
and 5H(t) are temperature-dependent. The time-
evolution operator can be written in the interaction
picture as

and A(t) is the time-evolution operator for the decaying
nuclei in their intermediate state, perturbed by the
hyperfine magnetic fields.

A special case of these equations has been used,

X(r,) =S,(t)i1,(t),

Ap(t) = exp (—iXpf/h),

Z, (&) =1—iran-' X,&(t)u(&)i1.(t)&i(&) .

(5)

(6)

*This research was supported by the National Aeronautics
and Space Administration, under Grant No. Ns6-275-62.' For a survey, see H. Frauenfelder and R. M. Steffen, in Alpha-,
peta-, and Gamma-Ray Spectroscopy, edited by K. Siegbahn
(N'orth-Holland Publishing Company, Amsterdam, 1965), Vol. 2,
p. 997.' R. E.Watson and A. J. Freem@n, Phys. Rev. 123, 2027 (1961).' D. A. Shirley and G. A. Westenbarger, Phys. Rev. 138, A170
(1965).

4This seems an advantage over NMR experiments, where
measurements correspond only to the nuclei in the domain walls.

Introducing a new reference frame with axis Os' along
H and Euler angles (n,P,O), and indicating with primes

~ E. Matthias, S. S. Rosenblum, and D. A. Shirley, Phys. Rev.
Letters 14, 46 (1965).' A. Abragam and R. V. Pound, Phys. Rev. 92, 943 (1953).' M. E. Caspari, S. Frankel, and G. T. Wood, Phys. Rev. 127,
1519 (1962).

T. Lindqvist (private communication).
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the magnetic quantum numbers referred to it, we have

sco
I
ni') = roi i,m.'

I
m'), Jnn= Van(r)dr, (12a)

where hoor. = —oiii IHI. It is possible to express the
perturbation factors in a basis defined in the new
reference frame by using rotational matrices. ' The
average with respect to all possible Euler angles can
then be calculated by taking into account the equation
for reducing the products of rotational matrices, and
their orthogonality properties. This average is

I~ rtjg— d7-

~i~I, (n i)—is r') V— ( )

X V.i*(r'), (12b)

ii ~ i~r, (n—ji(r r') V—
( )

XV. &, &'(r'). (12c)
g»'ii'2(() =g, , g, „gy,p , , ( 1)~-r —p (—])"'+"ei. &v 'I'

To obtain the ensemb]e average over the random
fluctuations 5H(t), we introduce their magnitude 6H(t)
and orientation angles I P(t),X(t)]. The perturbation
can be written as

x( 'Ix, (~) I~~')(q'Ix, (~) IP')*. (9)

In the absence of fluctuations, Ai(/) =1, and Eq. (9)
reduces to the perturbation factors for randomly
oriented (time-independent) fields. ' To obtain the time
behavior of the perturbation factors in Eq. (9), it is
necessary to find the nondiagonal products (n'

I
A. i(/)

I

m')
X&e' —Ã'Ih. i(t)

I

m' —E')* averaged with respect to
all possible values of 5H(t) at time t. Perturbation
theory leads to a time-proportional dependence, which
is not adequate to describe the correlation after long
times. Ke must find the time dependence from an
equation similar to the master equation for transition
probabilities. ' Dropping the primes, and denoting by
A„(t,t') the matrix elements of the Ai(t, t') operator,
and by U„(t) those of the time-dependent perturba-
tion, we can write

'U(/) =gpvfiH(t)Q( —1)&C i'&g, x)I &'& (13)

=G-i.~ (0)exp( —
I

~
—~'I/r:i),

G-i.~ (o) = 3(&~.)'(—1)"
(15a)

The average of the single integrals gives zero, while the
averaged double integrals can be found, for a crystal
in a stationary state, using the values

&c,i'&(p, x)c,. i i~g, x))=-;~„,,
&»(~)»(&')) =

& I
~H(0) I')exp( —

I
t t'I/r, ), —(]4b)

where r, is the correlation time of the fluctuation
correlation for 5H(t)."They lead to

A„(i+5()A„~„~*(t+At)=Q A;(3+Dr; t)

XIi.„„„*(t+at,t)I; (AA *(&) . (1. 0)

with Ace, = —OiN&ISH(0) I')"'. The double integrals are
calculated by a standard procedure. ' Changing to the
variables a=7 —t, s'=7' —t, and then to s, s"=s—s',
we obtain, for ~t)&7.„

I,et us consider the expansion of 4»A„& ~* including
terms of second order in 'U. The integrals will multiply
exponentials of the type expI ivor, (n —j)t]5~Using the
random-phase approximation, we shall replace these
exponentials by 6„;.The result is

G-~ v(0)
&I..;v) = hf2r,

1+5~~(~—j) ]'
G.io(0)

&It „,)=atr,
1—i~i, (n —l)r,

(16a,)

(16b)

A, (/+At) t)hei*(&+At, t).

=&.;&. ~~I1+(i/I)(I-+I. ~. ~*)+(i/&)'

X(&It i++&, ii)]+~, xkIi 'I- pr, (11)

' A. R. Edmonds, Angn/ar momentum in Quantlm Mechanics
(Princeton University Press, Princeton, New Jersey, 1957),
Chap. 4.

'0 W. Pauli, in Probleme der Modernen Physik, edited by P.
Debye, (Verlag S. Hirzel; Leipzig, 1928), p. 30.

Equation (10) averaged over the fluctuations can
now be obtained from (11), (15), and (16). We shall
restrict the following discussion to the case Ivor, r, I

«1.
Provided the quantity

'll ~(t) =&A„(t)A„~„ ii*(i))

varies slowly over times Dt)&r„we can let ht go to
» L. D. Landau and K. M. Lifshitz, Statistical Physics (Addison-

Wesley Publishing Company, Reading, Massachusetts, 1958),
p. 374.
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zero in the previous discussion, and get

& d&nmX

u dt

where the functions Gk(t) are called attenua, t.ion factors.
The final result includes a single exponential. It should
be noticed that, unlike the case for quadrupole perturba-
tions, both the relaxation constant A. I, and the funda-
mental frequency ~1. are independent of I. The integra]
attenuation coefBcients are given by

Gk ——rN ' Gk(t)e "'Ndt

where a= 2ser, sr,I-(I+1).For X=0, Eq. (18) reduces to
the master equation for the transition probabilities,
used to describe paramagnetic relaxation. ' In the
general case, the equation can be solved by using
methods similar to those for IV=0. Substituting in (18)

'll N(t) ='lt„„N(0)exp( —Xt), (19)
an eigenvalue equation is obtained, whose solutions are
found by comparing it with a summation expression for
6-j symbols. The eigenvectors are given by

with yk=(1+XkrN) ' Ev.en if nt«N))1, the integral
attenuation would show a "hard-core" value for A =0,
depending on the temperature through 'AI, .

III. DISCUSSION

An appreciable number of angular-correlation exper-
iments in metals have been consistently analyzed assum-
ing that the decaying impurities replace host atoms in
an otherwise undistorted lattice, and that their positions
are not affected by nuclear recoil following the first
p emission. ' ' The recovery of the electronic cloud in
metals following the nuclear change is expected to be
very short compared with both 7-z and 7&." Con-
sequently, the angular correlation will not be perturbed
by quadrupole interactions in cubic-lattice host metals,
nor by the rearrangement of the electronic cloud. The
perturbation due to hyperfine magnetic fields on
diamagnetic impurities is obtained from the Fermi
contact term in the Hamiltonian. This perturbation,
whether produced by core- or conduction-polarized
electrons, is different from zero only for s orbitals, so
that the hyperfine-interaction tensor reduces to a
scalar. " The Hamiltonian (3) is valid for these cases.
The mechanism responsible for the fluctuations is not
known, but investigations on related systems suggest
that the exchange interaction between magnetic
electrons and conduction electrons gives an important
contribution. "

The previous investigation applies, in particular, to
the angular correlation of Cd'" in Ni at room tempera-
tures. In this case, rN ——(1.22~0.01))&10 2 sec,"
g= —0.318&0.007," jII~ =65.3&1.6 ko, s and we can

~&II(0) ~/~II~ (1. Supposing that the hyperfine
magnetization is proportional to the magnetization per
unit volume in Xi, the value of r, can be found from
ferromagnetic resonance experiments to be r, =10 '
sec."Using these values, it is seen that the restrictions

"H. Frauenfelder, Phys. Rev. 82, 549 (1951}."A. Abragain, The Principles of 37Nclear Magnetism {Oxford
University Press, London, 1961},p. 199.

A. H. Mitchell, Phys. Rev. 105, 1439,(1957};K. Yosida, ibid.
106, 893 (1957)."P.S. Simms and R, M. Steven, Phys. Rev. 108, 1459 (1957)."E. Matthias, L. Bostrom, A. Maciel, M. Salomon, and
T. Lindqvist, Nucl. Phys. 40, 656 (1963}.

rr N. Bloembergen, Phys. Rev. 78, 572 (1950).

(t ) { ] )r+n+m+N (9r+ ]) It2

normalized so that g„'ll„Nt"'tt„N'"'=5„, and the
eigenvalues are

I I r-
a 1+( 1)'r+.(2I+1 I I

=——rst,dr2, r(r +1).

Using them, we can write

'tt„N(t) =Q n N'"&&„„Nt"&e ""' (22)

and find n N'"' from the value of ll, N(0), which is
given by (17) for r.«t«a '. For these times, the
contribution from nondiagonal transition amplitudes
will be negligible, so that

'it„N(0) =5„(2k+1) '. (23)
The proportionality constant cannot depend on m or E
if the special cases mentioned before are to be included.
The result is

which, substituted in (9), gives for the perturbation
factors

(Gktkr ) '4rk'4kk8NtNtGk(t) t

(25)
Gk(t) = (24+1) 'e ""p cosÃ~rt,

I I r I I
xi e kr t (24)—

&m x ~ Ilr ~ Ilr —22 x
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r,«r~, ar,&&1, and ~ipzr, ~&&1, under which Eq. (25)
is valid, are all verified. This example shows that the
perturbation under discussion is present in some
physical systems, even though the attenuation could be
undetectable if, for example, X~v~ were too small to
produce a measurable effect.

It should also be noticed that exponentially decreas-
ing attenuation coe%cients could also be obtained if
there were no Quctuations, but a certain distribution
of magnetic fields w(H) (e.g. , Gauss or Lorentz distribu-
tions) at the impurities sites. They could be calculated
from Eq. (25) by putting X&——0 and averaging over
w(H). Nevertheless, the new result, unlike Eq. (25),

should have a nonzero temperature-independent value
for t —+ ~ arising from the term with S=O.
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We derive a sufBcient condition on the exchange-interaction range in the Heisenberg ferromagnet for the
spin-wave excitations to have no energy gap. We show that there exists a class of exchange interactions which
are consistent with long-range order and no energy gap in the spin-wave spectrum in one and two dimensions.

' 'N a previous paper, ' we showed that if the exchange
~ ~ interaction in the Heisenberg ferromagnet is of
finite range, then the Goldstone theorem can be used
to prove that the spin-wave excitation energy goes to
zero in the zero-k or long-wavelength limit. The proof
involved an analysis of the moments of the function
X(ip) defined by

X(ip) =lim d(t t')e'"o 'i-
k~0

Since A(ip) is real, and

t1(ip) sgn&p& 0

for all ~, it is sufficient, for our present purposes, to
analyze the zeroth and first moments of A(ip), Mp, and
MI where

Mp —— —A(ip),
2'

dM

Mi= —Gpss(ip) .
2'

(5)

where the angular brackets denote the thermodynamic
average, and the subscripts i and j refer to the sites in
the Heisenberg model.

In this paper, we will use the more convenient
function' A(pi) defined by

h. (ip) =lim d(t —t')e'"~' 'i
k~0

If M0 is nonzero and M1 is zero, it is a simple matter to
show that there must be an excited state with zero
energy in the k ~ 0 limit which appears as an intermedi-
ate state in the commutator found in Eq. (2).

We establish the zero-k limit as was done in Ref. 1.
That is,

Mo= lim P ([S,+(t),S, (t)j)

8)
M, = lim P i ~S,+(t),S;—(t)
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~ R. V. Lange, Phys. Rev. 146, 301 (1966). Here, we sum i over all sites in a volume U centered at' A related analysis of the Goldstone theorem is found in H.
Wagner, Z. Physik 195, 273 (1966). site j and then let this volumebecomeinfinitelylarge.


