
VARIATION OF HELICOMAGNETIC TURN ANGLE IN Dy

becomes orthorhombic, nor in the PM region, where a
increases linearly and b decreases. If the plot of a versus
T below T, is extrapolated back to TN (see Fig. 1), a
linear increase in a is predicted over the HM region.
This increase approximates the experimental jump that
occurs at the HM-FM transition. (The same may also
be true for the decrease in b over the same regions, but
the experimental scatter below T, is too severe to permit

much more than guesswork. ) The above is suggestive
that, in the HM region, there are missing basal strains
somehow stored in the lattice, perhaps as torsional
strains, and that these are released at the HM-FM
transition. There are a number of conceivable configura-
tions such strains might take, the most interesting
possibility being a macroscopic twist about the c axis
of a single crystal.
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The theory of the correlations and critical scattering of two- and three-dimensional nearest-neighbor Ising
models is discussed critically. A distinction is drawn between x(T), the true inverse range of exponential
decay of the correlations, and ft:& (T), the e6ective range determined from the low-angle scattering intensity.
Ten to eleven terms of appropriate high-temperature series exapnsions for ~ and g1 are determined for the
square and simple cubic lattices, and shorter series are given for the triangular, fcc, and bcc lattices. For
the former lattices, the complete correlation expansions are obtained to the same order. It is shown that g
and ft1 vary as (T—To)& when T ~ T„with v=1 for dimensionality d=2, but v=0.6430+0.0025~9/14
for d =3. 'rhe asymptotic decay of correlation at T=T, is found to be 1/rs '+&, where n is related to the ex-
ponent y of the divergence of the susceptibility by (2—p) v=p, Numerical values are q= 4. for d=2 and
g =0,056~0.008~1/18 for d =3.The relative scattering intensity y as a function of wave number h is given
to high accuracy for all T ~& T, by

a -"((x,a) y+' Za'( )k3'~'
X(&,T)=-

r, E(&,a)~+Pa~X~(l )g

where (i) a is the lattice spacing, (ii) Ea'= d)21 —
q 'P exp(tk r)] (ka)', the sum being over the qnearest-

neighbor lattice sites, (iii) r1(T) is a slowly-varying decreasing function near T„(iv)$=1+~gp', and (v) tt (T)
is slowly varying with a magnitude at T, of 0.03 for d=2 and of 0.06 to 0,09 for d=3. Explicit formulas
are given for z&, r&, and p as functions of T. The correlations and the scattering are isotropic near T,. The
critical scattering isotherm is curved for low k according to g ' k 't and it intersects the isotherms for
T&T.. Correspondingly, g(k, T) exhibits a maximum for axed k, at a temperature above T, ; for 8=2 the
maxima are very well marked, but for d =3 they are smaller and occur closer to T,. The theory is compared
favorably with recent neutron-scattering experiments on pure beta-brass.

1. INTRODUCTION
' 'N the vicinity of and just above the critical point of
~ - gas-liquid phase separation in a simple Quid one ob-
serves a striking increase in light scattering at low
angles long known as the phenomenon of critical
oPatescence Similar c.riticat scattering is observed with
light and x rays at upper and lower critical points for
phase separation of binary Quid mixtures. The analogous
phenomenon of the critical magnetic scattering of
neutrons at a ferromagnetic critical (or Curie) point
was first reported thirteen years ago. More recently,

*To whom requests for reprints should be sent,

critical scattering has also been observed at ceti-
ferromagnetic critical points (or Neel points). With x
rays and neutrons one may equally well observe critical
scattering in binary metallic alloys at points of order-
disorder transformation. '

Following the original suggestion of Smoluchowski, it
is recognized in all these cases that the greatly en-
hanced scattering is due to the rapid increase in the
spatial range of the inhomogeneity Quctuations occuring

'A useful review and survey of the background theory has
been given by A. Munster, in Fllcteation Phenomena in Solids,
edited by R. E. Burgess (Academic Press Inc. , New York, 1965),
Chap. 6.



M. E. FISHER AND R. J. BPRI ORB

within the medium as the critical point is approached.
In single-component Quids the density Quctuations are
the relevant quantity; for binary Quids and alloys
composition Quctuations are principally responsible;
while for ferromagnets and antiferromagnets the Quctua-

tions of magnetization and sublattice magnetization,

respectively, are the undeIlying cause of the scattering.
The essential theoretical point in each case is that the
scattering is proportional to the Founer transform of an

applopriatc cquihbrlum pair corrclatlon fUnction

(assuming that "multiple scattering" may be neglected
or corrected for and that the static approximation is

valid) so that a theoretical study of critical scattering
reduces to an analysis of the appropriate correlation

functions in the critical region. '
The first, and still fundamental, theoretical treat-

ment is thc famous w'ork of Oi ns'tcln and ZcI'nike

(O.Z.).' This rests mainly on a crucial assumption con-

cerning the 6nite range of the so-called dhrect correlu60e

flmciioss, from which immediately follows the familiar

prediction that the (net) correlation function at the

critical point should decay asymptotically with distance

as 1/r (r —+m). Many authors have sought to rederive

the Ornstein-Zernike theory and to justify this under-

lying assumption. In recent years, however, it has been

suggested that the O.Z. assumption may be incorrect
and that the decay should rather be of the form 1/r'+&

with g&0.
The various derivations of the Ornstein-Zernike

theory and the newer general theories have been re-

viewed critically quite recently. ' The aim of the re-

searches here reported was to calculate the correlation

functions and thence the critical scattering as accurately

as possible for spcci6c many-body models. Until a
rigorous genera1 theory is found, this seems to be the

best method of judging the validity of the Ornstein-

Zernike and other approximate theories and, in as far as

the models chosen are reasonably realistic, it also yields

numerical predictions which may be usefully compared

with experimental data in a variety of fields.

A rigorous mathematical treatment of one such model

system has been presented by Uhlenbeck, Kac, and

Hemmer4 for the one-dimensional Van der %aals Quid

in which the particles interact through forces of essen-

tially in6nite range. Their results are, in fact, in accord

with the Ornstein-Zernikc predictions. As has been

argued previously, however, the critical-point behavior

of most real systems is crucially dependent on the unite

or relatively short-range character of the underlying

interactions. ' 5 Consequently, the Van der Kaals
models, although of general theoretical interest, are

L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam

17, '$3 (1914);Z. Physik j.9, 134 (1918);27, 761 (1926).
' M. E. Fisher, J. Math. Phys. 5, 944 (1964).
4 M. Kac, G. E. Uhlenbeck. , and P. C. Hemmer. J. Math. Phys.

4, 216 (1963);G. E. Uhlenbeck, P. C. Hemmer, and M. Kac,i'.
4, 229 (1963);5, 60 (1964).

'M. E. Pisher, in Lecllres irs Theoretical Physscs (University

of Colorado Press, Boulder& Coty', gg, 1965), Vol. VII C.

not appropriate guides to the validity of the Ornstein-
Zernike theory, in applications to real systems.

Essentially the only rigorous results for any model
with short-range forces are various formulas obtained

by Onsager and Kaufman" for the correlation func-
tions of the two-dimensional square-lattice Ising model
with nearest-neighbor interactions. As will be explained
below they obtained, in particular, an explicit expres-
sion for the pair correlation function af, the critical
point which can be used to show that the Ornstein-
Zernike theory and various other treatments cannot be
correct in two dimensions. ' "Unfortunately, however,
the available rigorous results do not extend to the com-
plete scattering function of the plane Ising model, and
no rigorous explicit formulas are known for the more
interesting three-dimensional Ising lattices.

In the present paper wc aim at the evaluation of the
correlations and complete scattering functions for two-
and three-dimensional Ising nlodcls ln zcI'o magnetic
6eM for temperatures at and above critical. Our analysis
is based on the extrapolation of extensive series ex-

pansions for the pair correlation functions and enables
us to conclude with conMcnce that the Ornstein-Zernike
theory is also incorrect in three dimensions. (Fairly
simple explicit approximation formulas are obtained. )
H, however, account is taken of the "nonclassical"
behavior of the equation of state near the critical
point, ' ' the deviations from the Ornstein-Zernike pre-
dictions at smaB scattering angles turn out to bc fairly
small numerically since the parameter q appears to have
a value of about 0.056—1/18. At larger scattering

angles, however, which are not discussed in the simple

O.Z. theory, "structural" deviations occur whose magni-

tude may now be rea]istically assessed.

For convenience the Ising model is discussed below

mainly in "magnetic language, " the analysis applying
both to ferromagnetic and antiferromagnetic interac-
tions. As is well known, however, the Ising model is also

equivalent to a lattice gas" and hence describes gas-

liquid critical phenomena in single-component Quids.

Furthermore the Ising model may equally be regarded
as a model of a two-component Quid or a binary alloy. "
Indeed it has often been felt that it should provide

quite a realistic model of a binary alloy undergoing

an order-disorder transition. Gratifyingly, recent accu-
rate neutron scattering experiments on pure P-brass sug-

gest an even closer correspondence with the properties
of the three-dimensional Ising model than has been
SUspected ~2

~ L. Onsager, Phys. Rev. 65, 117 (1944).
~ B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).
8 M. E. Fisher, Physica 25, 521 (1959).
9 F. H. Stillinger and H. L. Frisch, Physica 27, 751 (1961).
' M. E. Fisher, Physica 28, 172 (1962).
"See, for example, the reviews Ref. 5, Ref. 13, and C. Bomb,

Advan. Phys. 9, 149 (1960)."J.Als-Nielsen and O. Dietrich, Phys. Rev. 153, 706 (196l);
O. Dietrich and J. Ais-Nielsen, ibid 153, 711 (1967); J. Ais.-

Nielsen and O. Dietrich, ibid. 153, 717 (1967).



156 CRI TI CAL —POINT SCATTERING AN D CORRELATIONS

The layout of the paper is as follows: In the next
section the Ising model and its relevant properties are
defined explicitly and the relation to the lattice gas and
binary alloy models is sketched briefly for complete-
ness. Various formal relations, definitions of moments
and ranges of correlation, etc. are presented in Sec. 3.
The standard approximate theories, mean field theory
and the Elliott-Marshall-Bethe approximation, are re-
viewed in Sec. 4 in order to bring out clearly the differ-
ence between the "true" and "effective" ranges of
correlation. The important exact results known for the
plane Ising models are presented and analyzed in Sec. 5
to reveal the defects of the classical theories. The more
general forms for the scattering that must be expected
are described and discussed in Sec. 6 (which may be
read as a summary of the general theoretical conclu-
sions). The formulation of the high-temperature ex-
pansions and the techniques used to derive appropriately
many terms are presented in Sec. 7. The resulting ex-
pansions, etc. are collected in the Appendices. Section 8
is devoted to numerical analysis of the series to obtain
accurate estimates of the exponent q and the related
exponent v for the divergence of the range of correlation
as T—T, vanishes. These results are summarized in
Sec. 8.4. Explicit formulas for the evaluation of the
eQ'ective and true correlation ranges are derived in
Sec. 9. More detailed aspects of the correlation func-
tions and the scattering are analyzed in Sec. 10. Finally
in Sec. 11 the calculations are summarized, tested, and
their consequences reviewed and compared brieQy with
the experiments on P-brass. "The reader uninterested in
the details of the theory or calculations should skim
through the definitions in Secs. 2 and 3, consult Sec. 6
and read Sec. 11, especially the concluding Secs. 11.5
and 11.6. A glossary of the principal symbols employed
and their definitions is included (Appendix E) for ease
of cross reference.

Preliminary reports of some of our work have been
presented before. ' " "The present paper largely super-
cedes an earlier tentative analysis" (which suggested
rather larger deviations from the ornstein-Zernikepre-
dictions in three dimensions). A following paper will be
devoted to the Heisenberg model which should be a
more realistic model for magnetic systems. In the future,
it is hoped to discuss the Ising model at temperatures
below the critical point and in general magnetic fields.

2. NOTATION

In this section we specify the model, namely the
Ising model of a magnetic system, sketch its connection

~3 M. E. Fisher, in Critical Phenomena, edited by M. S. Green
and j'. V. Sengers (National Bureau of Standards, Washington,
D. C., 1966)."R.J. Burford, (a) in International Conference on Statistical
Mechanics and Thermodynamics, Aachen, 1964 (unpublished);
(b) Ph.D. thesis, University of London, 1966 (unpublished),
available for loan or copying.

'5 M. E. Fisher, in Proceedings of the International Coriference on
Magnetism, Eottingham, 1964 (The Institute of Physics and The
Physical Society, London, 1965).

to the lattice gas and binary alloy models, and intro-
duce the notation. "

square d =2, q= 4,
triangular d= 2, q= 6,
sc

bcc

fcc

3

d=3)
d=3)

q=6,
q=8,

Sp= 8

vo ——(3' '/2)a',
80=@3

p

p (4/33/2)aa

2—i/2g3

For the three cubic lattices the edge length of the cubic
cell is

a'= (q/2d) "'a.
The fundamental nearest-neighbor Fourier transform

(or lattice generating function) is defined by

j(k)=qj(k)=g e'"'

= q/1 —(1/2d)k'a'+O(k4a4) j, (2.1)

where the "momentum transfer" or wave vector k
ranges over the appropriate Brillouin zone f—(w/a) &~ k„
k„, k, &~(ir/a) for the simple cubic latticej. Because of
the all-pervading nature of the lattice structure it is use-
ful to define an effective wave vector E(k) by

E'(k) = 2dL1 —g(k)$/a'
=k'(1+0(k'a') } (2.2)

so that E becomes equal to k as k -+ 0 (low angles).

2.2 Ising Model

The Hamiltonian of the spin- —, Ising model in a field
H is

1V

X=—P J(rg)s;s; —ysP P s, , (2.3)

where the spin variables s;=25,' take the values ~1
and the first sum runs over all pairs of spins. The param-
eters J(r) are the exchange integrals defined to be posi-
tive for ferromagnetic interactions but negative for
antiferromagnetic interactions. In the nearest-neighbor
model, which we shall consider, J(S)=J, but J(r)=0
if x is not a nearest-neighbor vector. The magnetic
moment per spin of 2gtis (in standard notation) is de-
noted by ns. A convenient temperature variable is

v = tanh(J/ksT) . (2.4)

2.1 Lattice

Let i=1, 2, 3, E label the sites of a regular
d-dimensional space lattice in which the position vector
of the ith site is r, and the volume per site is vp. Each
site (away from the edge) has a coordination number q
and a set of equivalent nearest-neighbor lattice vectors
6 of length u. When convenient, the lattice will be re-
garded as wrapped on a torus so as to have no free
edges. For the standard lattices we have
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As T falls from ~ to 0, the variable e runs from 0 to l
for a ferromagnet but 0 to —1 for an antiferromagnet.

The reduced spin pair correlation function may be
de6ned generally by

F()=D ".)-(")'7/D")-(")'7, (2 &)

where so denotes a typical spin (assuming translational
invariance), s, denotes the spin at relative separation

r, and the angular brackets indicate the thermodynamic
expectation value in an infinite system. For T &» T, and
B=O„one has, by symmetry and the absence of long-

range order, (so)—=0 so that the correlation function
reduces to

ence with the nearest-neighbor Ising model is obtained if

o (r)=+~,
=—4J
=0

r=0
t'= 8
otherwise. (2.13)

On identifying an "up" spin s,=+1 with a vacant site
and a "down" spin s;= —1 with an occupied site, the
density p of the gas is seen to be related to the mag-
netization M of the magnet through

p/p ..= [I—(M/m)7=-', (I—(so)), (2.14)

where p „„=1/oo The. restriction to zero field and T)T,
thus coilesponds to

(2.6)r(r)=(sos, ), (II=0, T&~T,). p= gpmax= pc) (2.15)

The fluctuation theorem for the susceptibility per spin i.e., to the critical isochore. The isothermal compressi-
states that bility E~ is related to susceptibility via

Xr= (aM/BII) o m(8(so)——/BII) r
= (m'/ksT)r, [(~or )—(~o)'7

so that in zero field above T, we have

4vop'Kr (xi/m——'), (2.16)

(2 ~) while the pair correlation function or radial distribution
function g, (r) is related to the spin correlations by

p»G(r) =p"[go(1)—17=F(r). (2.1&)

(ksT/m')&r ——Xo= I+P I"(r) . (2.8)

If ra,diation of wavelength P is scattered through an

angle |I with change of wave number k so that for d= 3,
IkI =k=(4n. /X) sin —', 8, the diffuse magnetic scattering

intensity (in the static approximation) is given by
pG(k) =p P ooe'"'G(r) = f'(k) . (2.18)

The Ructuation relation (2.8) then reduces to the
standard conlpl cssibili'ty 111'tcgl al rclatlorl wi'tll J dl'

replaced by g, oo as is natural for a lattice gas. Similarly
the Fourier transforms are related by

I(k)/I, (1 )=2(k) =1yf (k),

f(k) = Q e'"'(sos, ),
r&0

(2 9)

(2.10)

Consequently (2.9) becomes the usual expression for
the scattering in terms of the pair density correlations.
Other useful relations between the lattice gas and Ising
magnet have been tabulated in Ref. 13.

/X ideal (2.11)

Finally, we remark that from the Hamiltonian (2.3)
it is evident that the configurational energy U per spin

in zero GeM satlsGes

and Io(k) is the scattering from an ideal assembly of

noninteracting spins. The result (2.9) indicates that

X(k,T) is the function of principal theoretical interest.

By virtue of (2.8) we have the important relation for

zero-angle scattering, namely,

lim x(k) =%(0)=&o= (ksT/m')&r
k~0

2.4 Binary Alloy

For a binary alloy model one represents one species,
say 3, by up spins and the other, say 8, by down spins.
The fractiona, l composition variables are then

= l[1+( o)7 =-:[1—( o)7 (2 19)

and so the restriction to zero magnetic field corresponds
to the symmetrical corn.position x~ ——x~= ~. If the
energies for neighboring AA, AB, and 88 pairs are
e~~, e~~, and e~~ correspondence with the Ising model
is obtained by setting

U= ——,'qI(coro), (2.12)
o= GAB o(6AA+ oAR) =I~—(2.20)

where sq denotes a near neighbor of s0.

2.3 Lattice Gas

In the lattice-gas model the particles occupy the sites

of the lattice and interact through a pair potential

oo(r) (defined only for the lattice vectors). Correspond-

Note that a tendency to ordering on alternate sub-
lattices corresponds to ~&0 and hence to antiferro-
ma, gnetism. The short-range ordering may be described

by specifying the fi'Rc tiolls $AA (r), CAB (r) = xoA (1),
and x&s(r) of pairs of atoms occupying sites separated

by a vector r. These probabilities may be expressed in
terms of a single order parameter which may be chosen
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equal to the spin pair correlation function F(r). Thus
one 6nds

xz&(r) =xx'[1+(x /xx) F(r)],
x~e(r) =x~xv[1 —F(r)],
xee(r) =xe'[1+ (xg/xe)F(r)].

(2.21)

The diffuse scattering from a crystal will then be given

by the previous expression (2.9), where Io(k) is now the
scattering intensity corresponding to a completely
randomly mixed crystal. ' (For the scattering to be
observable the scattering powers of 2 and 8 atoms
must, of course, be different. )

We may notice that the basic lattice transform (2.2)
for a loose-packed lattice satisfies

y(k —ko) = —y(k) . (3.6)

3.2 Moments

The spherical moments of the correlation functions
may be defined formally by

Consequently, if X(k,v) depends on k only through a
dependence on j(k) (as is found to be true in a fairly
good approximation and might even be true generally
in two dimensions) then X must be a function of vy(k)
and v' alone.

3. FORMAL RELATIONS

3.1 Antiferromagnetic Symmetry
p (v) = 2 (r/a)'F(r v)

rgo
(3.7)

For simple antiferromagnetic ordering to be possi-
ble under nearest-neighbor interactions, it is necessary
for the lattice to be decomposable into two equivalent
sublattices such that all the nearest-neighbor sites of a
given site lie on the opposite sublattice. For such
"loose-packed lattices" (which contain no polygons of
odd order), the scattering function has a fundamental

symmetry which may be established as follows. The
Hamiltonian (2.3) in zero field is invariant under the
transformation J~ —J (or v —+ —v) and {s; ) —+

{—s, ), where {s, } denotes the set of spins on the
"odd" sublattice. Correspondingly the spin pair cor-
relation functions transform as

F(r,v) = (sos, ) -+ (—) '& F(r, —v), (3.1)

where o.(r) is an odd or even integer according to the
(relative) parity of the site r. By introducing the super-
lattice wave vector ko where, using standard cubic
(or square) cell coordinates,

For suKciently high temperatures (in fact for T)T,),
the correlations will be bounded by an exponentially
decaying function (see below) so the moments will
exist for all t. Evidently by (2.8) one has

I+po(v) =xo(v),

and from (2.9) and (2.10)

(3.8)

pr, , i(v)=Z;(x/a)~(y/a)'(e/a)"F(r, v) (3.10)

for integral f, g, and k and with a similar definition for
the square lattice.

3.3 Inverse Scattering and "Direct" Correlations

x(k,v) = xo(v) —(1/2d) p2(v) k'a'+0(k'a') . (3.9)

To study the angular symmetry of the correlations (see
Sec. 10.1) one may also define Cartesian moments
on the simple cubic lattice by

or
kpa'= (-', x,—',v &-', 7r) (bcc),

we may write

Then by (2.9)
( )s(r) e

—iso. r

x(k —v) =1++ e'"'e'"'F(k v)

k,a= (v.,x) (square), k,a= (v. ,v. ,m.) (sc)

(3.2)

(3.3)
(3.11)

with

Since the scattering intensity at low angles becomes
indefinitely large near the critical point, it is useful both
experimentally and theoretically to examine the in-
verse scattering intensity which may be written

1/x(k) = 1—H(k),

=x(k+ko, v) . (3.4)

This result may be rewritten as

R„„„(k—k„T)=Rp„,.(k; T), (3.5)

which shows that the zero-field scattering from an Ising
antiferromagnet measured with respect to the super-
lattice wave vector ko is identical with the corresponding
low-angle (k 0) scattering from the ferromagnet at the
same temperature. (A similar result is valid for the
Heisenberg model in the limit of infinite spin but does
not hold for finite spin. )

II(k) = F(k)/[1 —I'(k)]. (3.12)

This latter function H(k) is the Fourier transform of a
function" H(r) which in lattice-gas terms is equal to
pvo&(r), where C(r) is the direct correlatiorl, functiori as
first defined by Ornstein and Zernike through the
relation' '

1+pG(k) = 1/[1—pC(k)]. (3.13)

For temperatures above T, we expect to have ex-

"The usefulness of this function in the magnetic case has been
pointed out by P. G. DeGennes, J. Phys. Chem. Solids 6, 43
(1958).
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panslolls of the form

1/2(k, v) =X,—'(1+h.p(v)k'a'
—A4(v) k4a'+A p(v) k'a' — ) (3.14)

3.4 Effective Correlation Range

The coefficient h. p in (3.14) determines a temperature-
dependent length A = 1/~i through

or, equivalently
g2 il-2a2 or (g a) 2 1/g (3.20)

This length and the corresponding inverse range param-
eter ~i(T) will be referred to as the efjective range
(or inverse range) of correlation. The significance of this
terminology is seen by the standard approximate
argument' ' in which (3.14) is truncated after the
quadratic term and the corresponding approximation
for X(k) is Fourier inverted with the conclusion tha, t
I'(r) decays to leading asymptotic order as exp( —~ir).
[Note that in (3.20) we assume that Ap is positive as
will be the case for ferromagnetic interactions which we
are principally considering. For antiferromagnetic
coupling p2 and hence A~ will be negative. In that case,
however, interest centers on scattering near the super-
lattice vector kp and we may use (3.5).]

Unless the inverse scattering intensity at T= T, varies
less rapidly than (ka)' (which seems highly improbable
a priori and even less probable a posteriori), the coeK-
cient A&(T) should diverge to infinity as T ~ T, at least
as fast as the susceptibility Xp(T). Consequently,
~i(T) will approach zero as T-+ T, implying that the
range of correlation becomes infinite. In fact we may
write

1/2 (k,v) = [X,(v)]
—'+Lp(v) k'a'

L4(v—)k'a4+Lp(v) k'a' —(3.15)

X4= L4Xp= c4p4/(24Xp) Ap (3.17)

where c4——-', for d= 2 and c4———,
' for d= 3. It might be re-

marked that correct to order (ka)' the spherical average

of the inverse scattering intensity is the same as the

inverse of the spherically averaged scattering intensity

(which is what would normally be observed directly);
the leading term of the difference is proportional to

[(A,') —X,P](ka) s.

There seems little doubt that it will prove possible to
construct a rigorous mathematical proof that the ex-

pansions (3.14) and (3.15) are convergent for small

enough (ka)' at suKciently high temperatures, in view

of the strictly finite range of the interactions. " The
Orristein Zermike hyp-othesis, however, is equivalent to
the assertion. that the expaesiori (3.15) remains valid

right Np to and at the critical point in the sense of having

a finite radius of convergence (or, at least, of being

asymptotic so that the first terms represent the func-

tion accurately for small ka). If this is accepted then at
T= T. we have

X(k,v,) =A/(ka)', (k —+ 0) (3.18)

where &=1/L, (v,) is finite. We will show thatthis.
hypothesis is untenable on the grounds that the
coeKcient Lp(v) diverges to infinity as T-+ T, while

the scattering at T= T, (which will, of course, be finite

for k/0) does not have the form (3.18) but rather

X(lr,v,)=D/(ka)' —
& (k ~ 0) (3.19)

A

wjth a nonzero exponent rt (and a finite amplitude D).

» Comparable results have been obtained for the correlation
functions of a continuum gas in the region of convergence of the
virial expansion: See D. Ruelle, Ann. Phys. (N. Y.) 25, 109 (1963);
R.ev. Mod. Phys. 36, 580 (1964); O. Penrose, J. Math. Phys. 4,
1312 (1963);4, 1488 (1963);J. Ginibre, ib~. 6, 238 (1965);6, 252

(1965); 6, 1432 {1965).

valid at a fixed temperature for sufficiently small

(ka)'. From (3.9) we see that

~2(v) =L2(")Xo(') =»(v)/2dXp(v)

The higher coefficients A.4, I.4, etc. will depend also on
the direction e of the wave vector k=ke. For many
purposes, however, only the spherical average of

[R(k)] ' is of interest so thati14, Ap, . . . may be replaced

by their spherical averages, X4 ——(A4), etc. ; specifically

"o(T) L1 (T./T)] ', (T T.+) (3.21)

where the exponent y is defined more generally by

lim lnXp(T)/iii[1 —(T /T)] (3.22)
T +Tc+

and similarly

where vi may be defined in an analogous way to (3.22).
Evidently the Ornstein-Zernike hypothesis requires the
finiteness of Lp(T) at T=T, and hence that 2v=y.
Ke shall, however, show that 2v exceeds y which is
consistent with it) 0 in (3.19).

[It should perhaps be stressed in writing (3.21),
(3.23), and similar formulas that the presence of further,
higher-order terms is arrays understood. The form of
these terms, their magnitude and range of numerical
significance can, however, only be gauged from more
detailed calculations such as we shall present. ]

3.5 True Correlation Range

The effective range parameter ~l, which essentially
determines only the second moment of the correlations
and hence only the slope of an inverse scattering plot
with k' at k=o, must be distinguished from the true
(irlverse) ralge of correlation z= ~,(T) defined as follows":

r..(T)= —lim sup(1/r) ln~ I'(re) ~, (3.24)

where e is a unit vector. The existence of a nonzero
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«.(T) (which should be susceptible of rigorous proof, 'r

see below) shows that the decay of the correlations as
r —+ in the direction e is dominated by the exponential
factor exp/ —«.rg.

From the general theory of the Fourier-Laplace
transform, the value of I~., is determined by the position
of the singularities, k (e,T) of f'(ke) or x(ke) which lie
nearest the real axis in the complex k plane. Speci6cally
we must have

4. APPROXIMATE THEOMES

It is useful to survey briefly some of the fundamental
approximate theories of scattering on an Ising model
since, in the erst place, this will reveal explicitly certain
general features which apply also to the exact results
and, secondly, it will form a basis for assessing the value
of the more accurate calculations.

4.1 Mean Field Theory

«.(T)= (Im(k. (e; T)) ~. (3.25) The general result of mean field theory" is

1—8(ke) =0, (3.26)

By (3.11),the nearest singularities are either (a) zeros of 1-&»)'
x(k) =-

1—(1/~.TU'(k)(1 —&~o)')
(4.1)

or (b) singularities (i.e., nonanalytical points) of the
direct correlation transform II(ke) itself. In the former
case which seems almost certain to hold at suFiciently
high temperatures'" and, by continuity, for all T
exceedirlg T., the nearest singularities are poles of
R(ke). It seems safe to assume that these poles are
simple from which it follows (as in the standard
Ornstein-Zernike argument) that the true asymptotic
decay law is' "

~
I'(re)

~
=By exp) —«,rj/rl" '»'+ (r~~). (3.27)

As argued previously, ' '" this result should hold for all
Pxed temperatures above T,. The distance for which the
asymptotic law sets in, however, must depend on the
position (and nature) of the more distant singularities
of x(ke). If, as we will show, these singularities close Np
on, the nearest singularity when T~ T, then (3.2/)
loses its validity for finite r and the Qrnstein-Zernike
arguments break down.

It witt be demonstrated (Sec. 10.1) that the scattering
becomes isotropic near T, so that «,(T) becomes inde-
pendent of e and it is sufhcient to consider one speci6c
direction or the spherically averaged value a. In as far as
A2 ~~ in (3.13) when T~ T, and the higher terms of
the expansion are not overwhelmingly important, , the
nearest zeros of (3.26) will be approximated by

k.o, +v'(A«) '"=av-«la, (T~ T.). (328)

Consequently, as T-+ T, we may expect «1(T) to
approximate «(T) ol' at least become proportional to lt.
Thus if we write, in analogy «(3.23),

«{T)-L(T/T.)—13" (T~ T +) (3»)
we expect the equahty of the exponents s g and v. Our
calculations will in fact bear out these conclusions. One
may note that the argulnent also indicates the approach
to spherical symmetry near T, since A2 is independent of
e= k/k. Away from T., however, «1 and «will certainly
difter and, moreover, the difference increases with T
and soon becomes very large (as will be seen explicitly).

where &»}=M/m is the reduced magnetization per spin
and where 3'(k) is the transform of the exchange integral
S(r). In zero 6etd al ove T. we have &»)=0»d {4.1)
may be derived, as will be shown, by expanding the
direct correlation function, Eq (311), in powers of
(1/4T) and retamlng only the zeroth- and first-order
terms (A s.imilar, but not equivalent, approximation for
a gas is obtained by retaining only the fjrst virial co
eKcient in the expansion of the direct correlation func-
tion. ) For nearest-neighbor interactions
Eq. (4.1) reduces to

X{k)= 1/L1 —(Pi& Tb(k) j. (4.2)

As k ~ 0 this reploduces the standard ( uric-gneiss law

Xo(T)= L1—(T./T)3-' (4.3)

kT,=qg, {4.4)

corresponding to an exponent y=i in Eq. (3.21). By
rewriting (4.2) in terms of the effective wsve vector
Z(k), de6ned in (2.2), we obtain

2(k, T) = rl-'t «12+K'(k) j-l, (4 5)
which closely resembles the familiar Ornstein-Zernike
approximation and indeed is equivalent to it near T,.
In this case, the effective correlation range parameter is

«le= (2d)"'L(T/T, )—1j"' (4.6)
so that the exponent vl in (3.21) has the classical value
—', (= ~ly) independent of dimensionality. The "effective
range of direct interaction" rl(T) is given by

{rl/~) = (2d) '"(T./T)"', {4.&)

and is evidently slowly varying near T,.

4.2 True Correlation Range

By solving Eq. (3.26), it is also possible to calculate
the true range of correlation appropriate to the approxi-
mation (4.2). For simplicity consider the decay of

'8 See, for example, R. Brout, Phase Transi A'Ons (W. A.
Benjamin, Inc., New York, j.965).
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cot-relation along a,n axis of the square (d=2) and

simple cubic (d=3) lattices and introduce the decay

factor

Whenever these relations apply &I/s —+1 Rs T~ T,
(and hence I =vt).

oI,=exp( —s,a) . (4 g) 4.3 E&ott-MarshaB-Bethe Alpproximation

&d = 1—[2dt+ dsr j t +dr, (4.10)

OII IIlakIIlg tile substltutlon h =sK III (4.2), tlIC cqllR-

tion determining the poles of X(h) becomes simply

1—(T,/T)(2d) '[2(d—1)+oI.+to. 'j=o (49)

with solution

Elliott and Marshall" adapted the Bethe-Pcicrls
cluster approximation to treat the "propagation of
order" from site to site of the lattice along the lines
originally conceived by Zernike. "In a certain approxi-
mation they derived a linear difference equation for the
correlations whose solution they constructed. In zero
field their result may be written

r = (T/T, ) 1. — (4.11)

(4.12)

Thus the true range of correlation is given by

s.II= ln(1+ (2d) '"r"'[1+-,'dr]"'+

dr�

}
= (2d) "s[(TIT.)—11"'

X (1+(d/2)"'r"'+0(r) } (4 13)

x(k,e) =-—
1+(C—1)"—Cs~(k)

which is again of the pr«isc form (4.5) but with

tanh(J/hT, ) =e,=1/(q —1)

(4.19)

eI = exp( fs,a) . — (4.18)

Thc valllcs 0'f the factor f fol' vartous syrnInc'tllc dlrcc-

tions in the standard lattices are given in Appendix A.

and the correlations on this approximation will decay

as in (3.27). Comparison with (4.6) shows that ~I/lt ap-

proaches unity as T~ T, as was anticipated in the pre-

vious section. In particular the exponents p and p, are

identical. On the other hand as T becomes large, st(T)
varies as (2d) It'(T/T, )"'whereas r(T) increases only as

ln2d(T/T, ). Since (4.2) is asymptotically correct when

T &~, th—is high-temperature behavior of st(T) and

a(T) is an exact property of the Ising modeL

It is equally straightforward to evaluate the true

correlation range along a major diagonal (a=y=s) of

the simple cubic or square lattices. One finds

a= 8"' 1 n(1 +2"'r I"[1 +-,r j"'+r} (414)

= (2d)'"L(TIT.)—1j"'
X (1+2 "'r"'+0(1.)} (4 15)

Evidently g and lt'„g&@g become equal as T~ T~ con"

lrming the asymptotic symmetry of the correlations

he critical point It ls slgnl

the correction, terms in the expressions (4.13) and (4.15)

for ~ vary Rs (T—T,)tt' rather than linearly with T,
as might have been expected. For large T onc 6nds that

~ * -g'~~g, which demonstrates the anisotropic decay

of the correlations away from T,.
More generally one easily sees that zlgezemg gge

soatteriIIg has the form (4.5) the effective and true cor-

relation range parameters f(:y and I(: must be related by

(stu) '= 1/Il. s'(Ka), (4.16)

where, for appropriate directions e,

~s'=1/(st'&)'=f'/(~+~ ' 2) =f'~/(1 ~)'—(41&)

with

(")'=(2d/V)(1- ) -'Ll-( /. .)j,
(rt/&)'= (V/2d) e/(1 —e') . (4.22)

These formulas can be derived directly from the high-
temperature expansion (see below) if all closed circuits
of 'till'cc 01 IIlolc lIIlcs Rle ignored (Rs RpploplIRtc oil
a Bethe lattice or inftnite Cayley tree"). Consequently
X(lr, 'v) bccoIIlcs tllc gcIIcl R'tIIIg fullctloll 'fol I andom
walks on the lattice which make no immediate re-
versals. This restricted random walk problem has been
solved generally. " This derivation proves that the
Bethe RpproxIIlla'tloll ls always collect 'to order 1/T at
high temperatures and is correct to order 1/T' for
loose-packed lattices (without triangles).

Near T, one 6nds

(xru)'=d(q —2)'(q —1) 'in[a/(q —2)]
&&[(T/T.)-1j(1+0()} (423)

( / )'= [(0—1)/2d(q —2)$(1—0( )}, (4.24)

which are equivalent to the mean 6eld results although
numerically somewhat diferent. Notice the correction
terms for (III')' are linear in 7.

As for the mean 6eld approximation one may again
calculate cxpllcltly thc O'N8 l ange of col relation fol

'9 R. J. Elliott and %.Marshall, Rev. Mod. Phys. 30, 75 (1958)."F.Zernike, Physica 7, 565 (1940).One might also cite various
related and more or less equivalent, if more complicated, approxi-
mations developed by J. M. Cowley, Phys. Rev. 77, 669 (1950);
120, 1648 (1960); 138, A1384 (1965};D. O. Christy and G. L.
Hall, ibid. 132, 1959 (1963};P. C. Clapp and S. C. Moss, ibid. 142,
418 (1966); and other authors.

"One must not, however, measure "distance" on the Bethe
lattice (or Cayley tree) by the contour length along its branches
(as suggested misleadingly in Ref. 10) but rather by mapping the
Bethe lattice into a regular space lattice (of the same coordination
number) with the systematic neglect of all overlaps."C. Bomb and M. E. Fisher, Proc. Cambridge Phil. Soe. 54, 48
(1958).



symmetric directions from (4.16) to (4.18) with essen-

tially equivalent results. In particular, the correction
terms to ~ near T, vary as v'~' rather than as v.

5.1 Plane Lattice Correlation Functions

The exact critical temperatures of the square and
triangular nearest-neighbor Ising lattices are given by

e,= tanh(J/knT. ) =%2—1, square
= 2—v3, triangular . (5.1)

Onsager and Kaufman' showed how the correlation
functions of the square lattice in zero field could be ex-
pressed as determinants of order proportional to the
coordinates x aiid y, and formed with elements which
can be expressed as elliptic integrals in the appropriate
temperature variables. Montroll, Potts, and Kard23
simph6ed the calculations and Stephenson' extended
them to the triangular lattice. Near the critical point
one 6nds generally7 8

r(r, T) = r.(r)+E(r)L(T/&. )—Ij»
I
(7'/&. )—lI

+. (5 2)

so that the temperature derivative of I'(r, T) for all
r is logarithmically divergent as T —+ T,. Qn the square
lattice the first few critical-point values are

I', (a,o) =—',W2 0.707107,

F,(a,a) = (2/s. ) 0.636620,

F.(2a,o) = 1—(4/rr')~0. 594715,

F,(2a,a) = (4/s') V2 0.573159,
I',(2a,2a) = 16/3s' 0.540380.

(5 3)

Numerical values for the triangular lattice and further
values for the square lattice have been tabulated by
SteplMIlson. ContI'aI'y to what might at 61'st be ex-
pected, the amplitudes E(r) of the singular term increase
with 1. Thus

E(~0)=E =(2/~) ln(1+2»') 0.5611OO,

E(u,a) =2'"El, (5.4)

E(2u, o) = (4/s. )2"'El, E(2a, a) = 2E, .
However, the higher-order terms, of the general form
(2'—T.)"+ (ln.

I
T—7, I

)"e, e= 0, 1, 2, , also become
more important as r increases.

The correlations along the diagonal (lu, la) at the

~8R. B. Potts and J. C. Ward, Progr. Theoret. Phys. (Kyoto)
13, 38 (1955); E. %'. Montroll, R. B. Potts, and J. C. Ward, J.
Math. Phys. 4, 308 (19631."J.Stephenson, J. Math. Phys. 5, 1009 (1964); see also K.
Kano, Progr. Theoret. Phys. (Kyoto) 35, 1 (1966).

S. EXA.CT RESULTS

In this section we survey the available exact results
on the Ising-model correlation functions and indicate
their signi6cance.

critical point can be expressed as a single l&&l de-
terminant" with elements of the simple form c;,.
=1/s. (i j—+,') -T.hisdeterminantwasevaluatedexactly
by Onsager and Kaufman' "and yields

r(f.)r(f)I'.(la, la) =g-1 I (f——,')r(f+-,')
(5 5)

Ds ———,
' exp( —;—Cp —P Lt (2ffs+1)—Ij/(m+1)4"+')

=0.645002, (5.7)

in which CE is Euler's constant and 1 (s) is the Riemann
zeta function. The variation of the correlations along a
rom is similar24'5 except that the amplitude has an
extra factor of magnitude about 2'~' which means that
the decay is essentiaBy spherically symmetric, i.e.,

with
I'.(r) =D(o/r)"', (» )

D= 2'~'D ~0 703380 (5 9)

Comparison with the exact values in (5.3) shows that
even at the nearest sites to the origin (5.8) is accurate to
1.5% or better. (See also Sec. 10.2 below. ) Stephenson"
has verified (5.8) numerically on the triangular lattice
with the conclusion that a~0.66865.

By taking the Fourier transform of (5.8), we find"
for small ka

where
x(k,e,)=D/

I
ka

I
"', (5.10)

D=2'f4 sin(m/8)LI'(-')]'D 1.07499D. (5.11)

This shows that the Ornstein-Zernike conclusion (3.18)
ls false and that (3.19) holds wltll all expollellt

(5.12)
I

On this basis we must expect a similar breakdown of

2' Onsager and Kaufman published a calculation of the correla-
tion functions along a rom which expressed I'(O, la} as the sum of
two determinants. They evaluated these determinantsapproxi-
ngafefy at T„obtaining a result of the form (5.31 for the dominant
term (after correction of some misprints) ~ Onsager, however,
showed (private communication) that (5.5) was exact for the
diagonal correlations. The only published derivation of this result,
however, is by Stephenson (Ref. 24). It might be mentioned that
Potts and %'ard (Ref. 23) obtained a rigorous expression for the
row correlations as a single determinant but since its elements are
not quite as simple even at l„it has not been expressed in more
explicit form or completely analyzed for large r. Undoubtedly,
however, the asymptotic behavior along the rows is similar to
(5.6) as indicated by the calculations of Onsager and Kaufman.
{Seealso the papers cited below in Ref. 30, especially Wu.}"For example, by the techniques of B.R. A. Nijboer and P. W.
DeÃette fPhysica 23, 309 {1957)j or by approximating the
Fourier sum by an integral which is justified for small k

where F(s) is the gamma function. A straightforward
asymptotic analysis then yields'

I', (la, la) =Det—"'(1—,', I '+0(l—')),
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the Ornstein-Zernike hypothesis in three dimensions
with an exponent probably satisfying i~& iI&0 (on the
grounds that deviations from "classical" critical-point
theories seem to be smaller in three than in two
dimensions").

Z„„=Tr(V }. (5.13)

Similarly the correlation function for a spin at 0= (0,0)
and one at r= (la, ja), i.e., at a spacing of t columns at j

)

F„(r)= (sppsii) =Z Tr{spV's,V™'), (5.14)

where so and s; are spin matrices for the rows 0 and j.
(Note by translational invariance 0 is a typical site. )

The 2" eigenvalues X of V may be labeled conveniently

by a bmd index t=o, 1 m and an internal index

Since V is real and may be chosen symmetric it can be
expanded in terms of its eigenvectors

l t,u& and their

conjugates (row) vectors (t,ul. On substitution in (5.13)
and (5.14) and tak. ing the trace in the diagonal repre-

sentation we find

I'„„,(r) = [P(t,ul spV's,
l t, u&X ', ,„][+X", „$ '. (5.15)

If ) 0, ~
——30——X, is the largest eigenvalue and is non-

degenerate, as is always the case for 2 & T„we may
take the limit m ~~ by retaining only the 6rst term
in the sums over (t,u). Expressing V' in terms of the

eigenvectors then yields

I'..(r) = 2 &0lsolt', u'&«', u'ls l0&(I«,- /~o)'. (5 16)

Now the eigenvectors are of odd or even parity under

spin inversion according to the parity of t. Since the

spin matrices are of odd parity the matrix elements in

(5.16) thus vanish if t' is even (but they should not
vanish otherwise).

In the limit e —+~ the lattice becomes infinite in both

"K. 'N. Lassettre and J. P. Howe, J. Chem. Phys. 9, 747 (j.941);
J. Ashkin and K. E. Lamb, Jr., Phys, Rev, 64, I59 (1943).

5.2 True Correlation Range

Onsager's original paper' contained an exact evalua-
tion of the true correlation range a, although this was

not, perhaps, very explicit. ' ' The result is stated be-
low in Eqs. (5.22) to (5.25). To demonstrate it, the spin
pair correlation functions must be expressed in terms of
the fundamental matrix V of order 2")&2", which adds
an extra column of u sites to a lattice of u rows (and
finite length). "" In terms of V the partition function
of a finite lattice of m columns with periodic boundary
conditions is

W, ,(p)dp=

p(P (t,u) (p+dp

Finally we obtain the limiting result

I"(r) = (~oo~it&= 2
t odd

W i, (p) cJ'i(p)e i'd p, (5.20)

where the lower limit $, of the tth integral is determined
through (5.17) and (5.18) by the largest eigenvalue in
the tth band; in particular exp( —$i)='Ai, i/Xp where
Xi i ——X ~( ) is the second largest eigenvalue, and for
T& T, we have $i($p(fp

Now let us allow r to become large in the direction of
the x axis, i.e., let l ~~, and examine the decay of the
correlation. Unless Wi, ,(p) vanishes identically for an
interval of p around p= &i, the decay will be dominated

by a factor exp( —Pit). Consequently, by de6nition (3.24)
the true range of correlation is given generally by

z,a= )i(T)= —lim ln(lii, i/Xp) . (5.21)

It is evident that this result is really quite inde-
pendent of the lattice structure or the dimensionality if
the matrix V is defined appropriately. A more general
discussion of the result and its relation to other formu-
lations is being prepared for separate publication. "

Since Onsager has calculated the spectrum exactly
for the plane square lattice, we obtain immediately the
explicit result

x.a = ln coth(J/h T)—2 (J/h T), (T& T.) (5.22)

which can also be written

pp, = exp( —K,a) =p(1+v)/(1 —p) .
Near the critical point ~ —+ 1 and we have

(5.23)

z,a= F[(T/T, ) 1)(1 br+0(r P) 'J—, (5—.24)
where

F= 2 in(1+v2)~1.762747,

b= 1—2 '~' ln(1+%2) 0.688387. (5.25)

Consequently we see that for the square lattice the
eppponeut v has the value unity in contrast to the classical

"H. Kaufman„Phys. Rev. 76, 1232 (1949).
&' M. E. Fisher (unpublished).

dimensions and the eigenvalues Xt,„within the bands
t=1, (u —1) close up to form continua ' "If we set

X(„/Xp ——exp[—F (t,u) j, (5.17)

we may dehne spectral densities and weights by the
asymptotic formulas

/n
g, (p)dp=number of values u

for which p ~& P„(t,u) (p+dp; (5.18)
and
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value —.,'. The nonzero value of ~ above T. ensures the
existence of the moments (3.7) and (3.10).

which evidently has an inverse square root singularity
at p= $. The higher densities gs, gs, etc. are essentially
convolution powers of gi and are less singular at the

edge.
If it is now assumed that the weight function Wi, ;(p)

approaches a positive limit Wi, ,(0) as p —+ $ then it
follows easily from (5.20) that the decay will be asymp-
totically of the form Be "'/r'/s, as anticipated in

(3.27).' "This would indicate that the I'ourier trans-
forms I'(k) and hence x(k) have simple poles at z = +iz
just as on the Ornstein-Zernike theory. However, the
other band edges will also give rise to singularities at
k//=+3iz, k~= +Siz, etc and th. ese will close up to the

origin as T—& T, in contrast to the classical expecta-
tions. [The necessity of some such behavior follows

indeed from (S.10).]
Near T, the expression (5.27) reduces to

where x= p/$. Thus as T~ T, and j—i 0, g, (p) and the
higher-order densities become functions only of (p/Ka).
If the weights W~, ,(p) remain slowly varying, or show a
similar behavior, we may conclude that I'(r, T) will be-

come asymptotically a function only of fear and, similarly,

g(k, T) will approach a function of k/a only. With this
assumption and the rigorous result (5.8) we may write,
using more general notation, ' "

I'(r, T)=D(a//r)" '+"e ""[1+Q(zr)],
T —+ T„~r fixed

(5.29)

where the function Q(x) must satisfy

5.3 Details of Decay

From Onsager's calculation one finds easily that the
"band edges" of the eigenvalue spectrum are given

generally by

P, (T) =t&(T) =tz,a, /=0, 1, 2, 3 . (5.26)

Since $(T) ~ 0 as T —& T, we see that all the "band
edges" close up as T approaches T, and, indeed, coalesce
at T= T,!Above T„however, it follows from (5.20) and

the general theory of the Laplace transform that the
details of the asymptotic decay will depend only on the
behavior of gi(p) and Wi, ,(p) as p~ f+ Wit.hout

difhculty one finds from Onsager's results

g, (P) = (1/2sr) [sinh-', (P—
&) sinh-', (P+ j)] '/' sinhP

y [cosh'-'( —sinh'-'p] —'/' (5.27)

5.4 Anisotropy of Correlatsolj.

In as far as the results (5.30b) and (5.31) indicate that
x(k, T) has a simple pole we might hope that the
generalized mean Geld approximation (4.5) would be
fairly accurate above T, if the appropriate value of aq'

were substituted from (4.17) and (4.18). Thus we may
expect 1/x for the square lattice to have a factor

[1+As'(z)Es(k)], (5.32)

where, by (4.17) and the exact result (5.23) for a„
/i s (z) is glvell by

/1s'(, ) =e(1—es)/(1 2, ,s)s

= z+4zs+ +2512vs (5.33)

6761i/s+18004„'o+47525e'iP (5 34)

which, of course, diverges at T, as (T T,) '. It wii—l be
seen later (Sec. 8.3) that /'s'(e) agrees with the true
expansion coefficient &s(r/) [defined in (3.14)] correct to
order es so that, in fact, (5.32) will be a surprisingly
accurate approximation to the total function gs/g(k)!
Clearly, however, sn view of the cntj.cal-point result
(5.10), it ealssot be exact, and indeed the remaining
factors must also be singular at T= T,.

If, as seems very probable, the expression (5.32) is
really a factor of 1/x, the true range of correlation in an
arbitrary direction e= (cosz/, sin8) follows from (3.25)
and (3.26) as the root of

where

1—!7B(e)j(iz.e) =0,

qB(v) =2dAs'/(1+2', ')

= r/(1 r/s) (1+e—)-s, s

(5.35)

(5.36)

(5.37)

which is nonsingular at T= T,. This result may be re-
written, extending the analysis to diGerent interactions

Clearly this is correct at T=T. and as regards the
dominant factors above T,.

The complete analysis of the weight functions
W&,,(p,T) required to')ustify these conclusions is not
easy but has been substantially accomplished recently
in important work by Kadanoff and independently by
Wu and by Ryazanov. "In particular it has been shown

(a) that for T fixed above T, the asymptotic decay law
(3.27) is valid, and (b) the form (5.29) is correct with,
in fact,

D[1+Q(p)] 21/8&—i/2&-1/4 (+~~) (5 31)

confirming (5.30b).

Q(x) -+ 0 as x —+ 0,

1+Q(x) x &is @+& as x —+~.
(5.30a)

(5.30b)

Kadano&, Nuovo Cimento 44, 276 (f966); G.
Ryazanov, Zh. ZirsPerim. i Teor Fiz. 49, it34 (i96gl IEoghsh
transl. : Soviet Phys. —JETP 22, 789 ($966)j; I I' QTII Phy„
Rev. 149, 380 (1966).
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J, and J„for horizontal and vertical bonds, "as

cosh(2J, /kT) cosh(2J„/kT)
—sinh(2J, /kT) cosh(s since')

—sinh(2J„/kT) cosh(s cost)) =0, (5.38)

which was first presented by Onsager on the basis of a
"tentative" (and unpublished) calculation. '

For the principal diagonal t) =tr/4 one finds in place
of (5.23)

x(k T) =X(k/s)/s' &—(T~ T,) (6.1)

where the reduced scattering function X(y) is related
generally to the function Q(x) by

which states that near the critical point the scattering
depends essentially on only the range parameter s(T),
i.e., on only one temperature-dependent length. ' Tak-
ing the Fourier transform of (5.29) for T near T. (and
hence small tt) yields for low k

(ps;, ——2tt/(1 —s'), (5.39)

which by an analysis of the Toeplitz determinant re-
ferred to above is found to be exact. Thus even if the
formula (5.35) is not completely correct it must be
quite accurate for all directions even very close to T,."
One easily sees from (5.35) that s, becomes independent
of direction near T, as in the approximate theories.

By related arguments (see also Sec. 7.2) one may
surmise that for the triangular lattice in a direction nor-
mal to the bonds one has

tp„= 2tt/(1 —n) ',
while along the bonds of the honeycomb lattice

(5.40)

sa =2[1—(s/tt, )] as T —+ T. ,

and hence the amplitude

(5.42)

tp, = 2s'/(1 —u') . (5.41)

In both cases the equation cp(s) = 1 yields the rigorously
known critical points as it shouM. Furthermore the ex-
ponent v is unity as expected for all plane Ising lattices.
For the triangular lattice we obtain

X(y) =D(a"/sp) (e '/x" '+&)I 1+()(x)]e' &d'x. (6.2)

X(y)=D/y' p as y~~, (6.4)

where, generally,

D/D=2' & sin(-', s.t))[r(1——,'t))]'(a'/tIp), for d= 2

= 4tr cos(stm. t)) F(1—t))(a '/sp), for 0= 3 (6.5)

[see also Eq. (5.11)].
Letting k —+ 0 in (6.1) or integrating (5.29) directly

yields the susceptibility as

Xp(T) =Xp/s' &. (6.6)

Now if, as established for the square lattice, we have

It follows that, parallel with the expansion (3.14), we
have

1/X(y)=Xp '&1+~y'+o(y'))» y o, (63)
where Xp ——X(0), while, as a consequence of (3.19)
or (5.10),

Il = 1.9028538 (5.43)
s(T) =PL(TIT.)—1]", (T~ T.) (6.7)

The effective reduced second moment for the tri-
angular lattice following from (5.40) and (4.17) is

it follows that

xp(T) =(:/[(TIT.)—1]', (6.8)

-' &s( s)=ps(1 s)'/(1 —4s+s'—)' (5.44) where the exponent y is related to i and ti by
= p+6s'+

+2962p +12735s'+53800tt'+ (5 45)

6. FORM OF CRITICAL SCATTERING

In this section the conclusions following from the re-
sults for the plane square Ising lattice will be summar-
ized and various approximate formulas embodying the
most important features of the critical scattering will be
advanced.

6.1 General Results

The principal conclusion about the square lattice
correlation functions is the scaling relation (5.29)

v= (2 n)'— (6.9)

This important relation replaces the generalized
Ornstein-Zernike relation y = 2v. The susceptibility
amplitude in (6.8) is

C=Xp/I' & (6.10)

For the plane square lattice, the exact values g=~
and t =1 yield y=7/4, s a result first discovered by
numerical studies" and since confirmed in detail
numerically for all plane lattices. ' "One should note
that the exponent relation. (6.9) does not depend on the
existence of the amplitude Ii but follows merely from
the existence of y and p defined as in (3.22).

"Equation (5.23} becomes co =v, (1+@„)j(I—v„).
"For J /J„ there seems to be a difhculty when 0-&0 or

8 &~/2 since the Toeplitz determinant indicates that cod;«
= Psinh(2J, /A2')sinh(2J„/k2')]''s which is noh s solution of (5.38)
when 8 =~/4.

"C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) A240,
214 (1957); J. Math. Phys. 2, 63 (1961).

'4 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961).
"M. F. Sykes and M. E. Fisher, Physica 28, 919 (1962);

28, 939 (&962).
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(z/a )'=F'/Fg' ——62. (6.13)

Similarly it is straightforward to see that the general
correlation function moments (3.7) behave as

~ (T') =~ /L(&/2'. )—1j""" (I'~ T.) (6.14)

Although the form of these results can only be re-
garded as fully established for the plane square lat-
tice' ' "we expect conhdently that they will be valid
also for other lattices in two or three dimensions. Our
numerical calculations will lend support to this assump-
tion by their internal consistency and their similarity
to the rigorously known results. Our main approach will
be to estimate the critical behavior of h.»(T) and p»(T)
as accurately as possible and hence to estimate v.
The susceptibility and the exponent y are known
accurately from previous work" "and so the critical-
point decay exponent g can be found from (6.9). We
will also calculate the true correlation range ~ and hence
A~' to verify the proportionality to ~j and A.2, respec-
tively, and the identity (6.12). Separate estimation of
the critical-point values of the correlation functions
(Sec. 10.2) will also support (5.29).

6.2 Simyle Ayyroximants for the Scattering

It is appropriate at this stage to consider various
approximate analytical expressions for the scattering
intensity which embody some or all of the main features
of the exact results and which serve as interpolation
formulas for regions where exact results are not
available.

Firstly it is instructive to examine the consequences
of neglecting the function Q(x) in the result (5.29).
By (5.30b) this will lead to an incorrect form of decay
in second asymptotic order away from T, and this should
yield an overestimate of I'(r, T) for large r in two di-
mensions but an underestimate in three. Neglecting
Q(x) we frnd in two dimensions

x(k T) DFy [K/(K'+ k') "2j/Fy (0)u' »(K'+k')' -»"-
(6.15)

where Fr(s) is the Legendre function. At the critical
point when x —+ 0 this becomes exact. Away from the
critical point the approximation has a branch point at
k= &i~ of order —(1——',g) rather than a simple pole.

Comparison of (6.3) and (3.14) yields

A2(T) = 1/(ega)'= 62/(~a)', (T +r—,) . (6.11)

It follows that the true and effective correlation ranges
become pl opoI'tlonal when T~ Tg Rs RIltlclpRted
originally. Thus

(6.12)

and the corresponding amplitudes are related by

which also has branch points at k=&ix rather than
poles. At T= T, this again reduces to the correct form.
For small q the formula Inay be simplified to

x($,7)~D /g»(g +k )»I2
X(1+-',g(2 —»t)k'/(K'+k')+ } (6.20)

D'/D = (1—»I)/cos-', »rg. (6.21)

This is exactly equivalent to (6.19) for small k'; further-
more the factor in braces is monotonic and never ex-
ceeds D/D' which is always fairly close to unity when
g is small.

For the susceptibility amplitude we obtain the
RppI'Oxln1RtloIl

C C'=4»rr(2 g)(a'/e»)D/F' »—
, (d= 3). (6.2—2)

At this stage we do not know the appropriate values of
the parameters D and Ii and so cannot test for the im-
portance of Q(x) as before. We may anticipate our later
results, however (see Tables VI and IX below), by
stating that the estimates we will 6nd for the right-
hand side of (6.22) are only 13 to 14/z lower (i.e., in the
direction now expected) than the best estimates of C.
Consequently Q(x) is of less importance in three
dlIQenslons.

The relatively small variation of the correction factor
in (6.20) suggests the following rough interpolation

%hen k ~ 0 we need the results

Z, „(1)=1,
Fr „(0)=»r '~' sin(-,'ng)I'(1 —2~ri)/I"(-,' —g)

=.2-/(1 —~){1+0(")). (6 16)

LIn fact for small ri, Fq „(x) varies almost linearly with
x and is quite analytic in the range 0 to 1.j

This leads to the approximate relation

C=C'=2xr(2 —q)(a'/v. ) D/F' », -(d= 2) (6.17)

for the susceptibility amplitude. Evaluation of the
right-hand side for the square lattice, using (5.9) and
(5.25) yields C'=1.50620 whereas the best numeri-
cal estimates'4" of the true behavior of the suscepti-
bility give

C~0.96272, (square lattice) (6.18)

which is about 36 jo lower (see Table IX below). This
large discrepancy indicates the importance of Q(x) for
the square lattice. (Notice the diiference is in the ex-
pected direction. ) The corresponding ratio C/C' for the
triangular lattice is found to be identical to within
0.01% which is the probable limit of precision of the
numerical estimates.

In three dimensions neglect of Q(x) yields

D sinL(1 —g) tan '(k/a) j
x (lr,T), (6.19)

cos(-,'m. q)ku' »(z'+k')&' »"
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formula which embodies the pllncipal differences from
the Ornstein-Zernike mean field prediction (4.5):

&(k T) (1/r12
—

&)[~12+PE2(k)] '+«'@, (6.23)

for the square lattice

0.0294,

$,~1.000108 (square lattice}.
(6.31)

6.3 A Better Ayyroximant

To improve the approximants and allow for simple

poles in X we may include a factor of the form (5.32)
by writing

[1+$2A2a2E2 (k)j«2
g(k, T)=xo(T)—

1+PA a'E'(k)
(6.27)

where p and P may be functions of T. We suppose that
accurate cxplcssloIls fol X2(T) and A2(T) or A2 (T) Rlc

available. If f is chosen so that

p(T)A2(T) =A2'(T) as T~~, (6.28)

the scattering function will have simple poles at
k =+i~ corresponding correctly to the true range of

correlation. As before the effective and true correla-

tloli 1Rngcs alc related lical' T~ by {6.13) wltli 62~lpg

=f(T,). The exact behavior for small k' above T. will

be reproduced if p(T) is now chosen so that

where for given ~I(T) the length ri(T), the "effective
interaction range, " is now de6ned via

X2(T) = 1/(rishi) 2-&, (6.24)

so that (6.23) is exact at k=0. By setting

(6.25)

the approximation will also be correct at 6xed T to
first order in k'. The variable E'(k) is used to take
account of the lattice structure and to increase accuracy
at higher values of k. Near T„ the inverse ranges Iti

and g become proportional in accord with (6.13) and

P 2/P2 —g ~P

The behavior of (6.23) at T= T, is correct in form but as
seen above, the amplitude will in general be in error
although in three dimensions the deviation probably
does not exceed about 15%. Furthermore, the singu-

larity of (6.23) is always a branch point rather than a
pole as required when T&T,. Despite these defects

(6.23) should be a useful first approximation both for
the Ising model and for fitting experimental data.

%e will find, furthermore, as already mentioned, that
h.2'—A.2=0(v2) so that $2=0(n2) for large T/T, . Conse-

quently, P(T) must be small over its whole range and the
departure of p from unity is always negligible for most
practical purposes. This con6rms the dominance of the
exact pole terms in the scattering from the square
lattice except rather close to T, or, more specifically,
except when pk/K k/352 is of order unity or greater.
For the triangular lattice the best estimate of the sus-

ceptibility amplitude C yields values of @, and ll,
identical to (631).

It transpires that p(T) is also rather small for the
three-dimensional lattices (tt,(0.1, see Secs. 11.3 and
11.4) and is certainly always less than unity. Conse-
qlic11tly 'tile bl RIlcll po111ts kp ~+i(K/Q) Rl'1slllg f10111tlic
numerator of (6.27) are at least three times further from
the real k axis than the zeros of the denominator, as is
required generally. In fact these rather mild branch
points mimic the effect of the presumably infinite se-

quence of singularities of the exact x(k) at ke=+3i~,
k= +Sic, ~ -, which are probably all weaker than poles
(see Sec. 5.3). Like the true singularities the branch
points kp' close up on the poles as T—& T, in order to
yield the appropriate behavior at T,.

More elaborate approximation formulas than (6.27)
are not justi6able without further detailed information
about the correlations: This point is taken up brieQy
in Sec. 11.3. The remainder of the paper is chiefly con-

cerned with obtaining accurate values of the exponents
and other parameters needed for the approximation
formulas and examining the numerical consequences.

"j. HIGH-TEMPERATURE EXPANSIONS

7'.1 Formulation

High-temperature expansions of the Ising-model
correlation functions in zero held may be obtained in
the standard way by writing the single-bond Boltzmann
factor exp[(J/kT)s, s;j as cosh(J/kT)[1+vs~s;) and

expanding all products. "The result is

(7.1)

{6.29)

Evidently the form of the scattering at T, will be

correct while the amplitude will be approximated by

D~ CP 2—2(P 2/P )~ QP2—
2(y /P I/2)2 (6 30)

where p, =P(T,). Thus the critical value of P can be
chosen [possibly at some sacrifice of (6.28) near T,]
so that the correct value of D is given by the approximant.

By using the values (6.18), (5.11},and (5.25) we find

g~(r) =cocfllclcnt of S lli g„(r) X)

and ln graphical terms

q„(r; X)= number of configurations of n lines on
a lattice of XQN s1tes with periodic
boundary conditions, in which (a) each
bond of the lattice is used at most
once, and (b) an even number of lines

meet at each site other than the sites
0 and r where an odd number meet.

{7.2)

(7.3)
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This graphical prescription means essentially that one
must have a self-avoiding chain of bonds (lines) run-

ning from site 0 to site r together with zero, one, or
more polygons which may be quite separate or may
touch the chain or one another at one or more vertices
(although they must not have any lines in common).
Some configurations, e.g., a theta graph, " can be de-
composed into a chain and polygon in more than one
way but must only be counted once.

Since it takes at least three bonds to close a polygon
(or four on a loose-packed lattice) the first three
(or four) coefficients will be given simply by the dis-
tributions on the lattice of random walks which make
no immediate reversals. "The result may be written
compactly in terms of the Fourier transforms q„(k)
for which

I"(k,T)= P v"q„(k).
n=l

(7 4)

Xp(T) =1+ps——1+P m„&Piv",
n-0

(7.7)

the coefficient m„"& is the coefficient of E in

m &'&(X)=total number of configurations of m

lines with only two odd vertices, one
being at the origin. (7.g)

Consequently nz„& & is made up of the total number c„
of e-step self-avoiding chains plus contributions from
shorter chains with polygons. Similarly, the second mo-
ment is given by

ps(v)= P m. &'&v"

n=o
(7.9)

'6 ln the terminology of Sykes Lsee M. F. Sykes, J. W. Essam,
B. R. Heap, and B. J. Hiley, J. Math. Phys. 7, 1557 (1966)g a
theta graph has the topology of the letter 6.

&ow the powers [qj(k)]~ clearly generate the trans-
forms of the unrestricted random walks. Thus by sub-
tracting the immediate reversals and the triangular
closure, we quite easily find

x = 1+qjv+ (q'j' q)v'—
+[A"'—(2q —1)qj—6ps]v'+0(v'), (7.5)

where ps is the number of triangles per site of the
lattice. "Inversion of this series yields

1/x(k) =1—H(k) =1—qj(k)v
+qv' —[~(k)+6ppl"+o(") (7 6)

from which the statements of Sec. 4 regarding the de-
gree of validity of the mean field and Bethe approxima-
tions may be checked directly. Notice that composite
configurations of a chain and polygon can arise only in
order n=l+3 (or, +4), where i is the length of the short-
est chain from 0 to r.

The expansions for the correlation moments (3.7)
follow inunediately from (7.1) to (7.3). In particular, in

where (R„') is the mean square size of the rith-order dis-
tribution. The second moment is easier to calculate than
the whole distribution since a detailed breakdown of
configurations is unnecessary (see below).

7'.2 Range of Correlation

An expansion for the true range of correlation it(T)
may be found by analyzing the expression (5.21) for the
decay factor. "Here only the result in graphical terms is
presented. For simplicity, we consider only directions
e corresponding to a lattice axis, say the x axis. 9'e sup-
pose, in the first instance, that the lattice is made up
of (L+1) layers normal to e, each layer having A
sites and being connected with periodic boundary condi-
tions. A chain of L lines parallel to e will just reach from
the origin in the zeroth layer to the corresponding site in
the Lth layer. Kith m additional bonds in the chain the
site reached in the last layer may be displaced from
that corresponding to 0. In either case, however, we
may assign periodic or skew-periodic boundary condi-
tions by iden. tifying the end-points of the chain. (which
thus becomes closed) and thence all other similarly
related points in the zeroth and Lth layers. Kith this
convention for "periodic boundary conditions" we
de6ne

tv„(L; E)=number of configurations of L+is
lines on a lattice of X sites (L)m
and E&Le~ ') in which (a) each
lattice bond is used at most once, (b)
an even number of lines meet at each
site, and (c) a chain of bonds reaches
around the lattice in the direction e
and passes through the origin;

and, formally setting L= 1,

tv„= coefficient of XP in tv„(L= 1;S) . (7.12)

(The special boundary conditions imposed are needed
to ensure the correctness of this definition. ) Then we
have for the range of correlation

cp =exp( —a,a)=v P w„v".
n=o

(7.13)

To illustrate the use of this expansion (and inciden-
tally to provide a check on the prescription) we calculate
the leading terms of cv for the square lattice. Clearly
tvp(L; N) = tvp= 1.With one extra bond we may insert a
"kink" in the chain, i.e., a step parallel to the positive
or negative y axis. Since this may be inserted in 1.

where m„&'& is equal to the total number of chains, and
chain plus polygon configurations, in which each chain
is weighted by the square of its (reduced) end-to-end
distance; formally

m~"'=P(r/a)'q„(r)=(R„')m &'1 (710)
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places we have

w)(L; Ã) =2L (7.14a)

With I=2 extra bonds, there might be two separated
unit kinks, or a double kink of two consecutive positive
or negative y bonds; consequently

cc (I;27)=4(2)+21. (7.14b)
FIG. 2. Configurations contributing to the range of correlation

series for the simple cubic lattice in order 7.

Combining these results in (7.12) and (7.13) and dis-
tinguishing the interactions along the two axes yields

~,=v,ki+2vv+2vw'+2vu'+ ' ' ' 31 (7 15)

which illustrates that terms due to the separated kinks
drop out.

More interesting behavior occurs in the fourth-
order term. The di6'erent combinations of simple kinks
yield the contribution

16 4
SI

2
4

+4L(L 1)+2L t—o v„4. (7.16a)

However, one may also construct a "hook" by using a
retrograde x step as illustrated in Fig. 1. Evidently
this contributes

21. to (7.16b)

Finally it is possible to have a separated square which

must not have a line in common with the now straight
chain. This yields the extra contribution

(S—2I.) to v, 'vv'. (7.16c)

On applying (7.12) these last two terms cancel pre-
cisely and we are left with only the term 2~„4 from

(7.16a). In 6fth order a similar cancellation of the
terms in v, 'e„' takes place between three types of
hook and a chain with a unit kink and a separated
square. In total we reproduce just the expansion of the
rigorous result (5.23) generalized to two interactions. "

For the simple cubic lattice we see similarly that the
leading terms due to kinks are

wo= 1, w~=4, w2= 12, w3= 36, (7.17)

which correspond simply to the first few self-avoiding

walks in one of the square layers. In fourth order the

FIG. 1. A "hook" of four extra bonds
arising in the graphical expansion of the
true range of correlation on the square
lattice.

Similarly for m=3 the possibilities are (i) three sepa-
rated unit kinks, (ii) a double kink and a separated unit
kink, or (iii) a treble kink, so that

cc (I-; 74)= 4( 2)+4I(I—1)+21.. (724c)

corresponding contribution is m4~') = 100. The hook now
makes a contribution of A@4&"'=12since it may be bent,
whereas the chain and separated square yield only
@4~"')———4. In total therefore z4 ——108.

In higher order the complications ramify. The
"in-layer" self-avoiding walk terms may be obtained
from known work. '" The hooks and other retrograde
configurations may be classified according to the number
of retrograde steps and may be enumerated by pro-
jection onto a layer. Most then reduce to lower-order
self-avoiding walks decorated with two or more "dots."
However, the possibilities of multiple lines and inter-
sections in the projected configurations must, not be
overlooked. Interference between separated retrograde
configurations and kinks must be carefully examined
since they yield a nonvanishing net contribution unlike
sets of separated kinks alone. Configurations with
separated polygons have to be studied mainly by con-
sidering the various space types, e.g., on the simple cubic
the Rat, bent, and twisted hexagons. Special care must
be taken not to overlook or overcount configurations
such as those in Fig. 2 which can be decomposed into
a chain and polygon in various different ways. The com-
pleteness of the enumeration of possibilities can be
checked by reproducing the exact square lattice ex-
pansion to higher order. Full details of the necessary
conhgurations and their weights have been given else-
where. ' " The final result for the simple cubic lattice is

~.=v+4v'+12v'+36v4+108v'+356v'
+1204v'+4420v'+16124v'+ . (7.18)

Its behavior will be analyzed in Sec. 8.1.
The corresponding expansions may be obtained for

the bcc and fcc lattices but owing to the increased
complexity these have only been carried to the first
few terms (see also later discussions).

7.3 Enumeration and Counting Problem

In the remainder of this section we explain in more
detail the techniques used to calculate the erst e
terms of the second-moment series p2(v) and hence
of A2(v) for the square (x=11), triangular (v=8),
simple cubic (v=10), bcc (v=8), and fcc (v=6) lat-
tices and to calculate the complete set of correlation
functions to order n=11 on the square lattice and to
order m= 10 on the simple cubic. The resulting series are

~& M. E. Fisher and M. F. Sykes, Phys. Rev. 114, 45 (1959).
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m„&'& = 2 P(R'(Q„))(Q„), (7.20)

where 2V(Q„) denotes the square of the distance be-
tween the odd vertices of 0„ in a particular embedding
(using units of a lattice spacing) and the angular brack-
ets denote an average over all embeddings. The factor
2 arises from the choice of origin on either of the odd
vertices.

From this expression it is clear that the task of cal-
culating m„"& may be split into three parts: (i) the
enumeration of all the required graphs Q„; (ii) the de-
termination of the corresponding lattice constants
(Q„); (iii) the calculation of the mean square sizes
(z'(Q„)).

As regards (i) the graphs Q„are also needed for the
calculation of the susceptibility Xs= i+tie. Since the
latter series are known to high order" it might be
thought that a list of the required Q„would be already
available. However, the existing series were obtained
with the aid of a counting theorem proved by Sykes"
which, by means of a recurrence relation, bypasses the
need for a complete graphical breakdown. However,
since the susceptibility coeScients verify

a =m„&'&=+(Q ), (7.21)

a useful check on steps (i) and (ii) is provided by the
known coefBcients. '8

It may be remarked that the counting theorem is not
readily generalized to the calculation of m„&') since the
information on the separation of the odd vertices must
now be carried through. The symbolic methods of
analysis used in proving the theorem may, however, be
applied to those graphs 0„in which the two odd vertices

"M. F. Sykes, J. Math. Phys. 2& 52 (1961).

tabulated fully in Appendix B.The reader uninterested
in the technical details of the enumeration and count-
ing problem should proceed directly to Sec. 8 where the
various series are analyzed.

We consider firstly the evaluation of the second-
moment series (7.9) and start by expressing the co-
e%cients more concisely in graphical terms. Now a
weak embedding of an abstract linear graph T„ofe lines
(connected or otherwise) in a lattice 2 is defined by the
conditions (a) that each line of the graph lies on a dis-
tinct bond of 2 and (b) that each vertex of the graph
lies on a distinct site of Z. Let K(Y„;2,N) be the num-
ber of such distinct weak embeddings of Y„ in a lattice
2 of E&e" sites with periodic boundary conditions.
Then the (weak) lattice cortstartt of Y„ in 2 is defined by"

(Y„)=coeKcient of N in K(T„;2,N). (7.19)

If now Q„denotes a graph of rt lines (connected or
otherwise) with precisely two vertices of odd degree
we have from (7.2), (7.3), and (7.10)

Fio. 3. Two graphs which may be decomposed into a longest
chain and polygons in 8 =2 distinct ways.

are on a common line since the mean square size is then
trivial.

To proceed further we classify the graphs 0„ into
simple chains C„, and composite graphs of chains and
one, two, polygons which we write C&Q+I"m, C&O+I'm

Q+I", where the total number of lines is e. The
graphs CiO+I' include (a) a chain and a (completely)
separated polygon written as Ci, I', (b) a chain with a
polygon touching at one vertex, and (c) a chain with
a polygon touching at two or more vertices subject to
the restriction that such graphs, which can be decom-
posed in more than one way, must always be regarded
as formed from the largest possible chain and the
smallest possible polygon. The composite graphs of
type C&Q+I' Q+I', etc. are defined similarly. However,
there is still the possibility that some composite graphs
may be formed in a number of distinct ways (as illus-
trated in Fig. 3). Such rather highly connected graphs
must be classihed separately and will be denoted by

„while 5( „) will denote the number of their allowed
decompositions. With this notation we have

-,'~„&»=(z'(C.))(c„)+ p (z'(C, O+z,))(c,o+z )
l+m=n

+ P (&'(CiO+& 0+I' ))(CiO+I' 0+I' )+
l+m+m'=n

—ZB(=.)—1j(~'(=-))(=.), (7 22)

where the last term corrects for overcounting in the
earlier summations.

The first term in (7.22) is numerically the largest and
may be obtained from studies on the lattice "excluded
volume problem. "" Specihcally the number of self-
avoiding walks c„=2(C„) is known to high order. ""
Fisher and Hiley" calculated the mean square sizes
(R'(C„)) by a recursion method to order 8 and 10 on the
simple cubic and square lattices. Martin calculated
with an electronic computer the distribution c (x) of
self-avoiding walks which terminate on a given plane
for the simple cubic to order 10 and the bcc and fcc
lattices to orders 8 and 7, respectively. Martin also
obtained the complete distributions for the square and
triangular lattices to orders 12 and 9, respectively. The

"M. E. Fisher and B.J. Hiley, J. Chem. Phys. 34, 1253 (1961)."J.L. Martin, Proc. Cambridge Phil. Soc. 58, 92 (1962).
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corresponding square-size series were published (and
analyzed) by Domb. " More recently Domb, Gillis,

and Wilmers4' have computed the complete distribu-
tions of self-avoiding walks on the square lattice to
order 18 and on the simple cubic to order 13. These
latter data are ample for our present purposes, but for
the bcc and fcc lattices we have ourselves programmed
a computer to obtain the complete distributions (and ad-

ditional data, see below) to orders 9 and 6, respectively.

(b) (c)

FIG. 4. Various overlapping configurations of a square,
P4, and a five-chain, C5, on the square lattice.

7.4 Analysis of Comyosite Graphs

The composite graph C~Q+P first enters at, order

n=l+3, or l+4 on. a loose-packed lattice. From the

de6nition of the lattice constant of a separated graph
one fmds that to calculate (CiO+P ) one need only

examine "disallowed graphs,
" C~*P', formed by

superimposing a Ci and P with one or more multiple

hnes (such overlapping configurations not contributing
directly to the Ising-model series). By further noticing
that the two odd vertices must belong to the same

connected component, we see that

(z2(c,o+ p„))(c,o+ p„)
= —(E'(C(*P„))(Ci*P„). (7.23)

In applying this expression, however, we must bear in

mind the restriction (c) on the definition of the graphs

C~Q+P when C~ and P touch at two or more points.
Such configurations will be overcounted when (l.23)
is eventually summed over t and m, and must be sub-

tracted. Thus in fifth order the graph 8&, a square with

diagonal, may be formed either from a triangle and

a two-chain (in two ways as discussed above) or from a
square and a unit chain, which combination must be
removed from the corresponding reduction formula.

To calculate the lattice constants of overlapping or
multiple-line graphs C~*P' we use both the method of

direct counting of possibilities, which needs no further

explanation, and the following method which employs

data obtained with the aid of a computer. To illustrate

what is involved consider the most numerous case (on a
loose-packed lattice) of a square P4 and a chain C„4.
The number of squares passing through a given bond is

8p4/q, where p4=(P4) Hence, in fir.st order there will

be (e 4)8p4/q ov—erlapping configurations. However, in

some of these, two or more bonds of the chain will coin-

cide with the square and, clearly, these cases will be
overcounted. Most frequently the double bonds will lie

consecutively along the chain as illustrated in Figs.
4(a) and (b). The occurrence of such cases may be de-

termined once the relative orientations of successive

pairs of bonds along the chain are known. On the square
and simple cubic lattices we need only distinguish the
junction types (i) "straight on, " and (ii) "bent. "

' C. Domb, J. Chem. Phys. 38, 2957 (1963}.Domb extended
the values for the square lattice to n=16."C. Domb, J. Gillis, and G. Wilmers, Proc. Phys. Soc. (I.ondon)
85, 625 (1965).

If j& is the number of bent junctions in a particular
embedding of C„4, we must have in second order

$(n 4)—(8p4/q) j&—$ overlapping configura, tions. Finally
cases of two or more momconsecutive overlaps, such as
illustrated in Fig. 4(c) must be subtracted separately.
Notice, however, that three or more consecutive over-

laps Ore correctly accounted for by the second-order

expression.
The method may be extended to arbitrary polygons

and lattices by defining weights p, (P ) equal to the
number of polygons P which pass through a pair of
consecutive bonds forming an ith type of junction. If
J,(ct)=P j, is the total numbers of junctions of the
ith type in all embeddings of C~, the second-order cor-
rection is generally —P; p,(P„)J,(Ci). Once again con-

figurations with eonconsecutive overlaps must be cor-
rected for separately. However, these are generally
much fewer in number and cannot, in any case, arise

until relatively high order.
The weights p;(P ) may be ascertained fairly easily

by examining the various "space types" of embedding
of P . The numbers J,(c~), on. the other hand, are con-

veniently found by programming a computer to gener-

ate all self-avoiding walks and recording the numbers of
the various types of junction and, for the complete
correlation distributions, the end-to-end distances and

vectors. An outline of the program, which is not entirely
straightforward if an unreasonable amount of computing
time is not to be used, has been presented elsewhere. "
The complete distributions with junction counts have

been obtained for the square simple cubic, bcc and fcc
lattices to order 7, 6, 6, and 5, respectively. These are
sufficient to yield the appropriate data for the correla-
tion functions to orders 11, 10, 10, and 8, respectively. "

The analysis of the composite configuration CI,Q+P'~

Q+P with two polygons is similar but appreciably
more involved. Indeed the complications increase so
rapidly that without an extension of technique it would

be difEicult to count correctly configurations of a chain
with three or more polygons. This sets a limit of m(~12
on the loose packed lattices and m~&9 on a general
lattice. So far, however, these limits have not quite
been attained, principally because of the difhculties

already arising in high order with two polygons or one

polygon and a relatively long chain.
We have mainly considered the second-moment series

but it is clear that the same general techniques apply
to the derivation of the complete correlation function



156 CRITICAL —POINT SCATTERING AND CORRELATIONS

distribution if full account is kept of the separation
vectors of the odd vertices in all con6gurations.

The second-moment expansions and, for convenience,
the zeroth-moment or susceptibility expansions (to
comparable order) are listed in Table XV of Appendix B.
The complete correlation expansion coefficients q (r)
for the square and simple cubic lattices are given in
Tables XVI and XVII of Appendix B while the fourth-
and sixth-moment expansions for these lattices are pre-
sented in Table XVIII. The detailed configurational
data for the second-moment series are available'4 but
are not given here in the interests of space economy.

8. ANALYSIS OF SERIES

In this section we study the high-temperature series
expansions in powers of v whose derivation was explained
in the previous section. In the analysis we use the exact
critical points (5.1) for the plane lattices and the
estimates

1/4. 5840 0.218150, (simple cubic)

1/6.4032 0.156172, (bcc)

1/9.8260 0.101771, (fcc) (8.1)

for the three cubic lattices. The estimates for the sc
and bcc are those of Sykes, Domb, and Fisher"";
they di6er bv less than 5 parts in 105 from the estimates
of Baker'4 and are probably correct to 1 part in 104

or better. The estimate adopted for the fcc lattice lies
close to Baker's estimate'4 and is 2 parts in 104 larger
than the original estimate of Domb and Sykes."We
have adopted it here because it seems to give rather
more consistent results. For all three lattices the un-
certainties in v, are so small (relative to the available
length of series) as to make very little difference to our
conclusions. In particular, they only a6ect the third
decimal place in estimates of the various exponents
v, g, etc.

In analyzing the series we will employ the ratio and
Pade approximant techniques. These methods have
been discussed in detail elsewhere' ""4' 44 and we will

not, therefore, give further general explanations.

8.1 Correlation Range

We start by studying the series (7.18) for the decay
factor a&, = exp( —x,a) for the simple cubic along a lattice
axis. The last 6ve ratios p„=w„/w„q are

3.000, 3.296, 3.382, 3.671, 3.648, (8.2)

while the square roots of alternate ratios, (w /w„2)'~',
are

3.000, 3.1447, 3.3389, 3.5236, 3.6595. (8.3)

"J.W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802 (1963).
44 G. A. Baker, Jr., in Advancesin Theoretical Physics, edited by

K. A. Brueckner (Academic Press Inc. , New York, j.965), Vol. I.

v„{(1—(u.) '}=1—e(1—p„v,)

for the exponent v. We find

(8 5)

v„=0.6204, 0.6557, 0.6191, 0.6563, 0.6194. (8.6)

These are oscillating regularly (a consequence of the
loose-packed structure of the lattice) so we examine the
sequence of means

Vn= g vn vn —i (8.7)
which yields

v„=0.6593, 0.6380, 0.63740, 0.63769, 0.63782. (8.8)

These are rising slightly and accordingly we estimate

v =0.641&0.004. (8.9)

Through the relation (6.9) and the result" "y = 1.250
this provides us with our first estimate of q in three
dimensions, namely,

q =0.050&0.012, (8.10)

which is clearly greater than zero. In fact our further
analysis will lead us to a somewhat higher estimate of
greater precision.

We may also employ the Pade approximant tech-
nique to study the function (1—co,) '. If this function
has a pure branch point at v= v, then the logarithmic
derivative

D(v) = (d/dv) ln(1 —~ ) ' (8.11)

will have a pole at v= v, but will otherwise be analytic
there. In these circumstances, the Pade approximants
should converge rapidly and the residues of the ap-
proximants to D(v) or the values of the generalized
exponent function

y+{v' 1—co~}= (v—v,)(d/dv) ln(1 —u~) ~ (8.12)

These sequences are increasing roughly linearly with 1/n
and extrapolation indicates a limitof about 4.6~1/v,
(the second sequence being far more regular). This
indicates that &o,(T) is nonanalytic at T=T, for the
simple cubic lattice in contrast to the plane square
lattice [see Eq. (5.23)] but as would be expected on the
basis of the mean field or Bethe approximations t see
Eq. (4.12)]. The limiting slope of the sequences (8.2)
and (8.3) on a plot versus 1/n should yield the ex-
ponent v. The sequences are not sufficiently regular,
however, to yield more than the rough estimate
0.60&~v&~0.70; this is consistent with our expectations
but says nothing significant about the value of q.

To obtain a more well-behaved function we use the
fact that ~, —+ 1 as T —+ T, and examine the function

(1—a),)
—' = 1+v+5v'+ 21v'+ 89v'+ 377v'+ 1629v'

+7061v +30977v'+135993v'+, (8.4)

which must diverge at the critical point as (T T.) ". —
The ratios of this series are found to behave quite
regularly and from the sequence of ratios p„we may
form successive estimates
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From its definition we see that this function should
diverge as (T T) '"—

The ratios are again found to be quite smoothly be-
haved and from the analog of (8.5) and (8.'/) we find
the sequence of estimates

2r„{A2')= 1.2738, 1.2862, 1.2873,

1.28907, 1.28802, 1.28813. (8.15)

These are a little irregular but suggest a limit fairly
close to 2v=1.2875 or

v =0.6437+0.0015 . (8.16)

We may now reapply the Pade approximant method
to the function A2'(v). In the mean field and Bethe
approximations (where A2' ——h. 2) the correction factor at
T= T, is now quite analytic so we might hope more
generally that A&'(v) will have a simP/e branch point at
~,. This guess is borne out by the rapid convergence of
approximants to the logarithmic derivative of A2'(v)

and to the generalized exponent 2v*{Av'/v} defined in
analogy to (8.12). In Table I we display some of the
higher-order Fade approximant estimates for 2v."
These suggest a limit in the range 2v=1.290&0.003 or

v =0.645&0.0015, (8.17)

"The near diagonal approximants to v*(v) yield the mainly
increasing sequence 0.565, 0.555; 0.565, 0.574; 0.583, 0.592; see
R. J. Burford's thesis t Ref. 14(b)).' We adhere to the notation of Ref. 43 in which I L,iV$ de-
notes an approximant with a polynomial of degree I in the numera-
tor and degree M in the denominator. Baker (Refs. 34 and 44)
and other authors use the opposite convention.

at n= e. should yield accurate estimates for v. In fact,
it is found that the Pade approximants to D(v) or
v*(v) converge very slowly at v, and do not yield useful
estimates for v.4' The structure of the approximants
indicates a singularity more complex than a simple
branch point in (1—cv,), of the form, for example,

(1—rv.) =A(v —v, )"[1+b(v—v,)r+ ], (8.13)

with 0(f(1 and a significant value of b. It is easily
checked that the functions D(v) and v*(v) following from
(8.13) still have branch points at v=v, . Furthermore,
the behavior of the expansion coeIIicients of D(v) them-
selves is also consistent with (8.13). The occurrence of
such a strong "coincident branch point" is perhaps not
very surprising since reference to Eqs. (4.13) and (4.14)
shows that the same thing happens even in the mean
field approximation (where l = v) and it remains in the
Bethe approximation.

To complete the analysis of &v, we form the effective
reduced second moment A2'(a&) of the inverse scattering
as defined in Eq. (4.17) Lsee also the discussion in Sec.
5.4]. Substituting with (7.18) we find

Ar, '(v) = v+6v'+31v'+156v4+765v'+3714v'
+17827v'+85144v'+404081v'+ . . (8.14)

TABLE I. Pade approximant estimates (Ref. 45) of v from
2v*{A2'/v}= —

{ (v —v, )(d/dv) tu(A&'/v) j„„,for the simple cubic
lattice.

12
21
2 2

23
3 2
2, 4
33
4, 2

2v*{A&'l

1.2850
1.2845

1,3058

1.2910
1.2908
1.2906
1.2899
1.2904

1, 6
2, 5
3
4, 3
5, 2
6, 1

2V {A2 l

1.2886
1.2921
1.2929
1.2916
1,2913
1.2886

which is consistent with (8.16) and (8.9) although some-
what higher.

It may be appropriate at this juncture to stress that
the uncertainties quoted here and elsewhere represent
an indication of the apparent precision of thepro-
cedure used and are not in any sense rigorous bounds.
The consistency between diferent procedures gives an
indication of the probable over-all accuracy and
precision.

Ke may sunuriarize our analysis of the true range of
correlation of the simple cubic lattice with the com-
bined estimate

which yields

v =0.644+0.002,

~=0.059+0.006.

(8 18)

(8 19)

Kith the aid of these estimates we can construct
approximation formulas for the numerical evaluation
of co, and ~, for all T& T„but we defer consideration of
this task to Sec. 9.

2vi, „'——(e+1)(2vi, „+i)—ri(2vi, „) (8 21)

8.2 Second-Moment Exyansion

The expansion coe%cients m„(2' of the second moment
Ii2(v) of the correlations are listed in Appendix B. We
examine these firstly by the ratio method to estimate
the exponent of divergence at T, which, by the defini-
tions (3.16), (3.20), and (3.23), will be y+2vi. The ratios
Ii„=m„'"/m„ it'& are found to behave regularly on a
plot versus 1/e and linear extrapolation yields the
known critical points quite accurately. Accordingly we
proceed directly to estimate vi from the sequence

2vi, ~(ii2)+y —1= (ri —&) (v, li —1), (8.20)

where 5 represents an "e shift" which has no effect
asymptotically but yields different sequences for finite
m. This is a useful aid to over-all extrapolation. Various
sequences for all the lattices are presented in Table II.

The sequences 2v~, „ for the two plane lattices are
fairly slowly varying but are signi6cantly curved on a
1/tv plot. However, the corresponding sequence of
linearly extrapolated imtercepts
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TAszz II. Estimates 2v~, ~ derived from the ratios of the expansion coefficients for the second moment vs(v) thxough Eq. (8.20).

Square
8=0

Triangular
n S=o

sc
n &=i

bcc
a=i

fcc
n 8=1 8=)

5
6
7

9
10
11

2.2165
2.1486
2, 1028
2.0765
2.0561
2.0435
2.0329

1.9200
1.9070
1.8990
1.8999
1.9003
1.9038
1.9064

3 2.7478
4 2.4542
5 2.3151
6 2.2367
7 2.1871
8 2.1532

2.1648
2.0537
2.0087
1.9878
1.9773
1.9718

4
5
6
7
8
9

10

1.2839
1.2777
1.2837
1.2819
1.2845
1.2835
1.2849

1.5396
1.4687
1.4371
1.4096
1.3941
1.3794
1.3702

3 1.2053
4 1.2393
5 1.2400
6 1.2513
7 1.2526
8 1.2583

1.5691
1.4875
1.4262
1.4014
1.3777
1.3661

2 1.1925 1.9138
3 1 2187 1 5859
4 1.2349 1.4824
5 1.2446 1.4314
6 1.2509 1.4010

for the triangular lattice, and

2vi, „"=s(m+1)(2vt,~s) —s(is —1)(2vi,„) (8.22)

for the square lattice vary almost linearly with 1/n
and may be extrapolated with greater confidence. In
this way we estimate

vy = 1.000+0.010, square
= 1.005+0.010, triangular. (8.23)

We note in the first place that the two values are
essentially identical as expected. Secondly, within the
uncertainties of &1'Po we also have v= vi in agreement
with the conclusions of Sec. 6.1.

For the three-dimensional lattices the values of 2v~,
are found to vary more linearly with 1/ts. Indeed the
5=1 sequence for the simple cubic lattice is almost
constant (see Table II). Allowing for the slight rate of
increase of this sequence suggests a limit of 2vy~1. 287.
The successive intercepts (8.22) of the 5= rssequence are
1.2834, 1.2907, 1.2866, 1.2886, and 1.2866. In view of
these results we estimate

vi =0.6425&0.0015, bcc. (8.25)

Evidently, within the precision obtainable this agrees
with the value for the simple cubic confirming the ex-
pected independence of lattice structure.

Finally for the fcc only very short sequences are
available although they are fairly linear. The intercepts
calculated for 8=1 from (8.21) are 1.2711, 1.2835,
1.2834, and 1.2824. We feel able to estimate

vi= 0.6415&0.0025, fcc. (8.26)

so that, well within the uncertainties of extrapolation,
we have v= v~ for the simple cubic lattice also.

The sequences for the bcc lattice are shorter but also
fairly regular. The intercepts (8.22) for the
sequence are 1.2833, 1.2723, 1.2807, and 1.2779 which
seem to be increasing. The most constant intercepts for
the 8= 1 sequence are obtained by replacing the factors
(tv+1) and (n —1) in (8.22) by (tv+3) and (n+1) and
are 1.3094, 1.2813, 1.2904, and 1.2828. From these
figures we conclude

vi ——0.6435+0.0010, sc. This is slightly lower than the values for the bcc and sc
lattices but allowing for the increased uncertainty due

This agrees closely with the final estimate (8.18) for v to the shorter length of the series there seems little

TAsLz IIL Pade approximant estimates of v from 2v~
f vs/v }= —L(v —v, ) (d/dv) In(v&/v) I, „—~.

2 2

23
32
33

2, 5
3, 4
4 3

2, 6
3, 5

5, 3

27
3, 6
4, 5

4

Square

1.9531

1.8990
2.0140

2.2266

2.0038
1.9334
2.029f

1.9958
1.9995
2.0037
1.9983

1.9994
2.0007
2.0011
2.0007

12
2, 1

2, 2

1.9822
1.9821

1.9835

23
32
2, 4
33
4, 2

2.0094
2.0069

2.0003
2.0017
1.9998

Triangular
L, Jt/I 2v*

1, 1 1.9835 12
21
2 2

23
32
2, 4
3:3
2, 5
3, 4
4

2, 6
3,'5
4 4
5, 3

sc

1.2766
1.2753

1.3594

1.2951
1.2943

1.2935
1.2900

1.2790
1.2876
1.2873

1.2868
1.2879
1.2879
1.2879

L, 3f

12
2, 1

22

23
3 2

2, 4
33

3

bcc

1.2139

1.2782
1.2747

1.2833

1.2812
1.2808

1.2813
1.2813
1.2812

0, 2
1, 1
2, 0

0, 3
1,'2
2 1

3, 0

13
22
3, 1

fcc

1.2812
1.2931
1.2798

1.2822
1.2823
1.2821

1.2812

1.2816
1.2805
1.2812



1VI. E. F ISHER AND R. J. BURFORD

TABLE IV. Pade approximant estimates of v from 2r~l A2/v }= —f(v —v, ) (d/dv) ]a(g,/v)]„

2, 5
3, 4

2, 6
3', 5

5, 3
2', 7
3, 6

5, 4

2.0234
1.9927
2.0025

1.9972
1.9952
1.9954
1.9923
1.9956
1.9958
1.9960
1.9959

Square
I., 37 2p*

3, 3 2.0000

12
2, 1

22
23
32
24
33
4, 2

2.0018
2.0008

2.0000

2.001.9
2.0009

1,9981
1.9881
1.9944

Triangular
L, 3I 2p*

1,'1 2.0181 2, 4
33
4, 2

25
3, 4
4, 3
5, 2

2, 6
3, 5

4
5, 3
6, 2

1.2906
1.2899
1.2904

1.2919
1.2926
1.2915
1.2912

1.2823
1.2891
1.2858
1.2894
1,2825

12
2', 1

22

2, 3
32
2, 4
3 3

3

bcc
2v*

1.2420

1.2787
1.2769

1.2830

1.2816
1.2814

1.2818
1.2819
1.2814

0, 2
1p

2, 0

0, 3
12
21
3, 0

1, 3
2,'2
3', 1

fcc

1.2787
1.2844
1.2775

1.2811
1.2816
1.2815
1.2806

1.2810
1.2808
1.2810

8.3 Reduced Second Moments and Other Series

InAppendix C are tabulated the expansion coefficients
X &" of the reduced second moment As(v) defined by
(3.16). /The coeKcients have been multiplied by (2djq)
to remove fractions. ] We first notice, by comparison.
with (5.34), (5.55), and (8.14), that h. s(v) is equal to
h.s'(v), derived from the true correlation range, correct
to order e' for both the square and simple cubic lattices
and correct to e' for the triangular lattice. In fact the
differences are

At'(v) —As(v) =4v'+Ov"+32v" + square
=4v'+24v'+, triangular
=8v'+, sc. (8.28)

These are so small even at ~ ~, that we may conclude
immediately that the critical behavior of A2' and A&,

and hence of K and K~, is almost identical. This is proba-
bly the strongest indication that v= v~. Nevertheless, as
demonstrated in Sec. 5.4, the differences are not without
significance for the behavior of the scattering at T,

reason to doubt that the true value of v~ is the same for
all the cubic lattices and equal to v.

Ke have also used the Pade approxirnant technique
to estimate v from the p~ series. Table III presents
various approximants formed by evaluating 2v*(psjv}
defined in analogy to (8.12). For both plane lattices, the
approximants converge very rapidly and we would
estimate

vi=1.000&0.003, (d=2) (8.2/)

which is a significant improvement on the result (8.23)
obtained by the ratio method and confirms closely the
equality v&= v. Convergence for the three-dimensional
lattices seems less rapid. Nevertheless the values for
the simple cubic confirm (8.24) quite closely although
perhaps suggesting a somewhat higher value for vi

near 0.6440. The bcc values have a tendency to increase
but by themselves would lead to the rather low esti-
mate 0.641 which is just consistent with (8.25). The
very short fcc series lead to a similar estimate.

as a function of O'. Indeed the positiveness of the dif-
ference is in agreement with the analysis of Secs. 6.2
and 6.3 which indicates that the critical-point ratio
f.=(& s/A )s, should be slightly greater than unity
[see Eqs. (6.25) and (6.29)].

The A2 series for the bcc and fcc lattices agree pre-
cisely with the few initial terms known for h.2 on these
lattices. There are reasons to believe, however, that the
diGerences will be of order e' for the bcc lattice and
possibly the same for the fcc (see Sec. 10.4).

For the simple cubic lattice the difference (8.28)
and the additional term in A.2 leads to estimates for v~

slightly diferent to those found for v. Thus from the
last five ratios we find

2r i,„(As)= 1.2873, 1.2890/,

1.28802, 1.28785, 1.28680, (8.29)

in place of (8.15). The last few estimates are falling
fairly rapidly and suggest a, limit for vi between 0.6420
and 0.6430 which is somewhat lower than the direct
estimate (8.24) from ps. Similarly the last sets of Pade
approximant estimates differ from those in Table I.The
modified values and further values are presented in Table
IV. These lead to essentially the estimate (8.24) if not to
a slightly higher value. The slight disparity between the
two approaches and the spread of the approximants
indicates the magnitude of the uncertainty. It is worth
remarking tha, t in estimating v~ from A2 we do robot need
to know (or assume) a va, lue for y.

The evidence for the bcc lattice in Table IV also
suggests a lower value than (8.25) obtained from the its

series, say, v 0.641 or slightly higher. The fcc estimates
are again similar but as before do not deserve much
weight in view of the few terms available.

The value of v~ may also be estimated in various other
ways such as by evaluating the terms of the logarithmic
derivative series for As at v=v, (see below) or by
studying the sequence of coeKcients (R„') defined in
(/. 10) which are analogous to the mean square size of a
self-avoiding lattice walk of e steps. 3~ 4' These co-
efficients have the theoretical advanta, ge that the ratio



CR I TI CAL —POINT SCATTER I NG AND CORRELATIONS 605

of successive terms must approach Nmty, with a slope
versus 1/n proportional to vi. Consequently we need
neither the exponent 7 nor the value of the critical
point e. to make estimates.

From the series for the higher moments ti4(v) and
ti~(v) for the square and simple cubic lattices given in
Appendix 8 one may check (6.14) for t) 2 and obtain
further estimates for v». The check proves quite satis-
factory although, as might be expected, the approach
to simple asymptotic behavior is somewhat slower for
the higher moments.

These methods, and others, lead to essentially the
same conclusions regarding the value of I I (and with
comparable precision) as those already described.
Consequently we omit further details.

v =0.6430&0.0025, (d =3) (8.30)

while for plane lattices we have the result (fully rigorous
for the square lattice)

v=1, (d=2). (8.31)

Through the relation (6.9) we have the corresponding
estimates

8.4 Values of v andy

To summarize the above analysis we may state:
(a) that we have verified that v= vi for the square and
simple cubic lattices to well within the uncertainties of
extrapolation (we will assume the equality holds for all
lattices and drop the distinction henceforth); (b) that
to within the uncertainties, the value of v for the lattices
studied depends only on dimensionality. In as far as
there is any evidence to the contrary the value of v for the
simple cubic lattice might be some 0.001 to 0.003 higher
than for the bcc and fcc lattices. We do not, however,
believe these apparent differences are real and they will
be ignored in the subsequent analysis; (c) bearing in
mind the relative length of series and the precision of
different extrapolation procedures we estimate for all
three-dimensional lattices that

These values are in the center of the range of uncer-
tainty (and the fraction for I is less repulsive). For the
sake of definiteness we shall adopt them in subsequent
analysis. In any event probable deviations from these
conjectures will cause negligible changes in other
numerical estimates.

Q. l Effective Correlation Range

The effective correlation range Ki(T), related to A2(T)
by (3.20), may be evaluated by various routes. We
follow a procedure used successfully for evaluating the
susceptibilities. " From the series for A.2 tabulated in
Appendix C we form the expansion of the logarithmic
derivative

(d/dv) 1nL2dA2/pj= P l„v" ',
n=l

(9.1)

already used in the Pade approximant studies. We then
examine the coeS.cients

j =j v 2v) (9.2)

using the values v=1 and 9/14 for d=2 and 3. If the
value of I is correct (and the dominant singularity is at
v=v, ) the coefFicients j„should approach zero; this is
observed to be so. We can then write

In{KIC)'= —1Il~h2) =2p lnL1 —(v/v, )j

where

+ln(2d/qv, )+ln~t~+ P d„t"+@ (t), (9.3)
n=»

(9.4)

9. EVALUATION OF SEMES

To calculate the range of correlation K(T) and other
functions through the critical region one needs dosed
extrapolation formulas that are consistent with the
values of the critical exponents y, v, and g. Such formulas
are derived in this section.

it =0.056&0.008, (d =3) (8.32) d„=—j„/It, (9.5)
with better precision and a slightly higher value for the
simple cubic, while for the plane lattices

(d=2). (8.33)

implying

iI = 1/18 =0.055555

v =9/14 =0.642857

(8.34)

(8.35)

We might be tempted to conjecture that the exponent
g in three dimensions should also be a simple fraction
and we might note that powers of two seem to be
favored in the Ising model. The conjecture' q= —,',
=0.062500 which implies I =20/31=0.64516 ~ can-
not, perhaps, be ruled out but is dehnitely high on pres-
ent evidence. The next simplest possibility is

and where (R (t) is the remainder resulting from the
truncation of the series with coefFicients d„. LNote
A~(v) changes sign with v so that (9.3) extends to nega-
tive as well as positive v.$

For the loose-packed lattices the coeS.cients d
alternate in sign (see Table U) and the partial sums even
at t= 1 are quite rapidly convergent. For the triangular
and fcc lattices, the d„are apparently of one sign (see
Table V) but the partial sums again converge rather
rapidly. Consequently, it would not be unreasonable to
neglect the remainder (R altogether. To improve the
accuracy, however, expecially near the antiferromag-
netic singularity of the loose packed lattices at t= —1
we examine the coefFicients j„in an attempt to choose a
reasonable form for (R . Previous work on the suscepti-
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YArLz V. CoeKcients d„and amplitudes A for the calculation of ft:I{T) from Eqs. (9.3), (9.4), and (9.8).
I Note t must he replaced hy —s/v„, in the remainders for the triangular and fcc lattices. g

1
2
3

5
6
7
8

10

Square

0.343146
0.142136
0.003367
0.014285
0.000060
0.001675
0.000001
0.003683—0.005743
0.006572

—0.80—0.0033

Triangular

0.392305
0.066642
0.012579
0.002564
0.000552
0.001604
0.000028

—0.001
0.0001

—0.023186
0.024195—0.007457
0.003231—0.004312
0.001711—0.002372
0.001485—0.001463

—0.120
0.00060

bcc

0.036338
0.033110—0.008193
0.007045—0.003126
0.003445—0.001690

—0.150
0.00116

fcc

0.064465
0.011062
0.002727
0.001271
0.000953

—0.027
0.0045

bility" and the known behavior of the plane lattice
correlation functions at T, suggests that (sia)' might
have a logarithmic (or near logarithmic) branch point
at the antiferromagnetic singularity corresponding to
d„(—)"/n(n+1). Accordingly, we have examined the
sequences (n+1)j„.For the simple cubic lattice we find

(—)"(n+1)j =0.090, 0.065, 0.129,
0.072, 0.133, 0.107, 0.132. (9.6)

These values seem to be oscillating around a limit of
about 0.120. Similarly for the bcc we 6nd

(—)"(n+1)j =0.199, 0.098,
0.141, 0.094, 0.145, 0.095, (9.7)

which suggests a limit of about 0.150. In view of this
behavior, a reasonable approximation for the remainder
should be

with the amplitudes A„=—0.120 and A~„———0.150.
For the square lattice the coeKcients d„exhibit only
one cycle of oscillation so that a firm value of A cannot
reallv be estimated. Nevertheless, the value A,q= —0.80
should yield a fairly accurate estimate. Alternatively,
because of the relatively small difference A2—A2' dis-

played in Eq. (8.28) one might almost as well adopt the
approximation f~:i——K~' and use the exact expression
(5.33).

For the fcc lattices the constant sign of the coef6cients
d„means that the expression (9.8) for 6t is only
appropriate if t is replaced by —t on the right-hand side
(or equivalently if t is defined as —v/v, in the remainder) .
The sequence 0.066, 0.0327, 0.0254, and 0.0286 for
(n+1)j„indicates that 2&„———0.027 should then. yield
a satisfactory approximation to the remainder. The

available coefficients d„ for the triangular lattice are
also all positive and if they remain so, the same modified
form of remainder would be appropriate. The penulti-
mate term, however, represents rather a large irregu-
larity [associated with the difference h.s' —As, see Eq.
(8.28)] so that it is difficult to estimate a reliable value
of A. The value At„=0.001 should, however, be satis-
factory pending the calculation of further terms.
[Comparison with the square lattice series even sug-
gests that subsequent terms might alternate in sign
which would indicate a small remainder near a= v, in
agreement with the value of A chosen. Further con-
firmation of this value is obtained by comparison with
the true value of Ii, equation (5.44), and from the esti-
mation of ri(T) in the next subsection. ]

The selected values of A and the consequent (maxi-
mum) values of the remainder (R at the ferromagnetic
critical point n= n, (t= 1) are also included in Table V.
The additional logarithmic branch point at ~=e, im-

plied by the modified form of remainder is probably
spurious but because of the small amplitude it will be
numerically insigni6cant. Other forms of remainder
might be chosen for the fcc and triangular lattices but
until longer series are available they are probably not
justified. Notice, however, that this remainder [and
the equation (9.3)] predict no singularity at n= —v,
which is correct as the close packed lattices will not
sustain simple antiferromagnetic order and have no
transition of any kind near v= —e,.

9.2 Behavior of ter(T) and x(T)

With the data in Table V and Kqs. (9.3), (9.2), and
(9.8), the effective correlation range may be calculated
accurately at all temperatures exceeding T,. Very
close to T, the dominant error for d=3 will arise
from the uncertainty in the value of i (unless the
adopted value proves to be exact). However, even at
(T T,)/T, = 10 ' the e—rror in sio, for the simple cubic
lattice is probably only a fraction of a percent while for
higher temperatures the errors will be 0.1% or less.

Figure 5 compares the variation of ~ie with tempera-
ture for two- and three-dimensional lattices and for the
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we adopt a method devised by Domb in another con-
nection. 4' Consider the Cartesian moments of the cor-
relations, p f 0 I(n), defined in (3.10), and their expan-
sion coefficients 1,4

5 6 8 10 6

1.4

m (f,g,h}=~(x/a)r(yla)'(z/a)"q. „(r), (10.1)

which are just the corresponding moments of the
coeKcient distributions. (For definiteness we consider
the simple cubic lattice. ) One may then. define symmetry
coefficients

1.2

1.0— 1.0

a„(f,g, h) = m (f,g,h)/m„'~+'+"', (10.2)
(y „(f,g, h)

a' (f,g, t )

where m„~') are the expansion coefficients of the
spherical moments [see Eqs. (3.7) and (7.9)].A similar
definition of 0„(f,g) applies to the square lattice.

Now it is not difficult to show4' that for a spherically
symmetric distribution one has

o.(f,g,h) =o'(f, g,h)

~Ll (f+1)j~Ll(g+1)j~Ll(h+1)j
(10.3)

27rr[-,'(f+g+h+3)7

0.8

0.6

0.4

I

0.5
I

0.2
I

0.1

0.8

0.6

0.4

a.(f,g) =a"(f,g)

If one calculates the reduced symmetry coefficients
0„(f,g, h)/0'(f. ,g,h) for lattice distributions of unre-
stricted random walks (which correspond to the mean
field approximation) or for random walks restricted

5 6 8 10 12 n m
I I I I I)II

n (f'g)

cr' (&,g)

1.0

- 0.8

0.6

I

0.3 0.2
1

0.1

where F(s) is the gamma function. Similarly for a
circularly symmetric two-dimensional distribution one
finds

ll n

FIo. 8. Plot of the reduced symmetry coeScients for the simple
cubic lattice versus 1/n demonstrating the asymptotic approach
to full spherical symmetry.

to make no immediate reversals" (which correspond to
the Bethe approximation) one finds that for all com-
binations of f, g, and h the values approach the sym-
metric limit unity as n —+00. Furthermore the approach
may be expressed as a power series in (1/e)."

Accordingly we have computed various reduced
symmetry coeKcients (up to order f+g+h=8) for the
square and simple cubic lattices and examined their
behavior versus 1/e. To economize space we do not
tabulate the values (it is only a matter of labor to ob-
tain them from the tables in Appendix 8 but the plots
are displayed in Figs. 7 and 8. [Note that the coefFicients
0 (4,0) and 0 (2,2) are linearly related. All the other
coe%cients selected for both figures are linearly inde-
pendent. $ Examination of these figures leaves no reason-
able doubt regarding the full asymptotic symmetry of
the distribution coefficients and hence of the scattering
intensity as T—+ T,. Indeed the approach to full sym-
metry is more rapid than for the corresponding mean
field or Bethe approximations —presumably owing to
the more rapid divergence of the mean square size
(E„I) as e —&m or, correspondingly, of the second mo-
ment AI(T) as T —+ T,.

An alternative approach would be to examine the re-
duced symmetry functions

S(f,g,h) =pr, I(r)/&r+, +a(z)ao(f, g,h). (105)
&G. 7. Plot of the reduced symmetry coefficients of the nth- Th ll fiorder correlation distributions on the square lattice versus ]//n. ese wi remain ni e a e cri ica poin an, in view

The value unity corresponds to a syrnrnetrical distribution. Of the conclusions drawn above, should approach the
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TABLE VIII. Critical-point behavior of the correlation functions of the simple cubic lattice compared with some results for the
square lattice. Note r = (ka, la, mal, the indicated uncertainties refer to the last decimal place, and E(rl is defined in Kq. (5.2l.

Simple cubic
~(rl (r/ol""& /D ~(r)/~r

Square
(r/o&»4r /D E&r)/g,

1, 0, 0
1, 1, 0
11, 1
2, 0, 0
2, 1, 0
2, 1, 1
2, 2, 0

1
1.4142
1.7321
2
2.2361
2.4495
2.8284

0.3284+8
0.2070~10
0.1630+15
0.1585+20
0.137&3
0.120&4
0.11~1

0.332+4
0.472' 7
0.568+8
0.623+8
0.72+1
0.75&2
0.76+3

1.026
0.933
0.910
1.030
1.001
0.966
1.031

1
1.423
1.656
1.88
2.17
2.26
2.29

1.0053
0.9870

~ ~ ~

1.0055
0.9965

~ ~ ~

0.9963

1.4142
~ ~ ~

1.8006
2.000

symmetric value unity as T —+ T,, In principle, these
functions could be measured experimentally by studying
the anisotropy of the k', k', . terms in the low-angle
scattering. Should this prove feasible it would be a
straightforward matter, along the 1ines of Sec. 9, to
obtain accurate extrapolation formulas for S(f,g, k)
valid up to the critical point.

10.2 Correlations at the Critical Point

The rows in Tables XVI and XVII of Appendix 8
represent the expansion coeKcients of the individual
correlation. functions I'(r). The values for low r on. the
square lattice may indeed be checked against the exact
expressions for the correlation functions (Sec. 5). The
nearest-neighbor correlation function is proportional to
the energy U and hence two further terms are known for
the simple cubic."4~ To estimate the critical values of
the correlation functions from the truncated. series, the
remainders must be estimated. For the energy this
problem has been studied in detail" 35'~" To a
reasonable first approximation the specific heats of the
three-dimensional lattices appear to have logarithmic
singularities as for the plane lattices. Consequently, the
behavior of the energy of I"(r) near T, should again be
given by (5.2). The (T T,) ln(T —T,)—singularity in
that formula implies that the remainders 8, (n,) of the
truncated energy expansion evaluated at e= e, will de-
crease asymptotically as 1/m. Accordingly, linear
extrapolation of the partial sums versus 1/m [or versus
1/(m —fi) for small 5j should yield estimates of the criti-
cal energy and. I',. Equally the slopes of the plot will

give an esimate for the amplitude E of the singular term

I see Eq. (5.2)j.The reliability of this method may be
tested on the plane lattices where it is found to yield. the
exact values of I', to within 1%or better and the ampli-
tudes to comparable or slightly lower accuracy. "

We expect in three dimensions, as in two, that all
correlation functions will exhibit a singularity of similar
type at T,. The behavior of the partial sums for I', (r)
bears out this hypothesis with reasonable precision.
Accordingly, all the I', (r) and E(r) may be estimated by
linear extrapolation of the partial sums versus 1/(m —fi).

47 C. Bomb and M. F. Sykes, Phys. Rev. 10&, 1415 (1957).
48 M. E. Fisher, Phys. Rev. 136, A1599 (1964).

The results of this extrapolation are displayed in Table
VIII for small k, l, and m with r= (ka,4,ma). For
~k)+)l)+(m) &4, four or five nonvanishing terms of
each series are available, but for (r/a) ~&3 the estimated
remainders are greater than the largest partial sums and
the uncertainties are consequently rather large. (When

~
k ) + [l ) + ~

m
~

~& 5 only three nonzero terms are availa-
ble and worthwhile extrapolation is not really possible. )
Note that the indicated uncertainties in Table VIII
refer to the last decimal place and the uncertainties
quoted. for the amplitudes E(r) do not take full account
of the possible errors in I', (r).

By multiplying the estimated critical values by
(r/a)'+& with rt= 1/18, we may test for consistency with
the expected decay law

I', (r)~D/(r/a)'+" (tf = 3) r ~ ~) (10.6)

and estimate the amplitude D )see Eqs. (5.29)j. In this

way we conclude that

D 0.320&0.010, (simple cubic) . (10.7)

This value of D has been used to compute the fifth
column in Table VIII. The constancy of the entries
to within 3 to 6% indicates that (10.6) is quite accur-

ately followed even for small r, as on the square lattice.
Llndeed the values of I', (r) would by themselves indi-

cate that p has quite a small value, although with rela-

t,ively low precision. j The penultimate column of the
table contains the corresponding 6gures for the square
lattice (where they exist). The variation above or be-
low unity for the two lattices is very similar except that
square lattice deviations are of somewhat smaller
amplitude.

The sixth column of Table VIII contains the
simple cubic singularity amplitudes normalized by
Et=E(a,0,0). The last column gives the corresponding

figures for the square lattice. The correspondence be-
tween the two sequences is quite remarkable. Although
a general similarity is to be expected it is not clear why
the behavior should be so close numerically.

The estimates of Table VIII rest on the assump-
tion that the specific-heat singularity of the three-
dimensional lattices is logarithmic. Actually careful

analysis and other theoretical arguments suggest that it
is probably slightly sharper, diverging as (T 2'.)—
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TABLE IX. Values and estimates of the correlation amplitude D
(see Eq. (10.6) and Eqs. (6.18) and (6.22)].

Lattice F,(a,0,0)/D c/c'

Square
Triangular

sc
bcc
fcc

1.00530
0.99703

1.026
1.026
0.984

0.703380
0.66865

0.320
0.263
0.248

0.63917
0.63919

1.129
1.138
1.145

"Longer series for the fcc lattice indicate that F,(o,0,0) might
be slightly higher than the original estimate of Ref. 35 LM. F. Sykes
(private communication)].

with a=8 or even as large as 5. ~ ' ""If o,/0 the esti-
mates of I', should be obtained by extrapolating the
partial sums linearly with 1/(m —5)' ~ which leads to
slightly higher values. For the shortest vectors r the
boost is only about 1.5% but it increases with r to 6
or 7% at r/u 3. Because of the distribution of values,
however, the estimate for D increases only about 1.3%
to 0.325&0.010 so that F,( 0u, 0)/D remains close to
j..025.

The data in Table VIII describe the individual cor-
relation functions close to T, while the truncated series
expansions will sufFice at high temperatures. To cover
all temperatures above T, we may easily extend the
analysis slightly to derive explicit extrapolation formulas
as in the original discussion of the energy. "Since the
individual functions are not, however, really accessible
to experiment we do not give such formulas here.
(Approximate theoretical calculations might well be
compared ~ith the previously given accurate expressions
for the energy. )

The fact that D I', (u, 0,0) = U,/Ue, where Us is the
zero-point energy, enables us to estimate D for the other
three-dimensional lattices. Table IX shows the values
of D and the ratio I', (u,0,0)/D for the square and tri-
angular lattices. "The ratios deviate about 0.5% above
unity and 0.3% below, respectively. As we have seen,
the corresponding deviation for the simple cubic is
about +2.6%. It seems reasonable to assume a similar
deviation for the bcc lattice, whereas for the fcc, which
is close packed, we assume a proportional deviation of
—1.6% as shown in the table. The previously estimated
values" 4' of U, can then be used to obtain the estimates
of D shown in Table IX. These should be accurate to
within a few percent.

The last column in this table gives the ratio of the
approximate susceptibility amplitude C' calculated via
(6.22) using these values of D and the values of E Ft
(Table VI), to the "true" amplitude C as found by the
best numerical estimates. ""(For the plane lattices the
exact value of F has been used. ) These figures validate
the arguments of Sec. 6.2.

10.3 Metamagnetic Susceytibilities

For the normal antiferromagnetic Ising model con-
templated in Secs. 2.2 and 3.1 the sign of the interaction
energy J is negative for all nearest-neighbor bonds and
the ground state is one of strictly alternating spin
alignment. As explained, antiferromagnets are included
in all our analysis simply by changing v to —v and k to
k+kp. One may, however, also contemplate "meta-
magnetic" or "layer" models in. which the ordered state
consists of sheets of ferromagnetically aligned spins,
alternate sheets being oriented antiferromagnetically.
The simplest such two-dimensional model is obtained
on the square lattice by taking J,= ) J( and J„=—

~
J~.

Then alternate columns of spins in the lattice will tend

to align all up or all down. By using the symmetry of

the correlation functions under change of sign of v, and

v„ it is easy to see that the initial susceptibility of this

model is given by

(k,2/m )X,= I+4LF(2u, o) —F(u,u)]
+4t F(4u,o)—2F (3u, u)+F (2u, 2u)]

+4[F(6u, 0) 2F (S—u, u) 2F (4—u, 2u)

+F (3u,3u)]+, (10.8)

where the F (r,e) are the standard ferromagnetic correla-
tion functions with e=t ahn(~ J~/knT). On. reflection it
will be clear that the right-hand side of (10.8) is also

equal to X(k,e) at the symmetric point k,u=x and
k„a=0 in the Brillouin zone. From Appendix B we then
find the expansion

(knT/floss)X 1 4os+4t14 12es 12&s 84vso. . . (10 9)

The absence of a term in v shows that the susceptibility
at high temperatures appears to be "paramagnetic"
over a greater temperature range than for a normal
antiferromagnet.

By the same arguments one may construct the
susceptibility expansions for simple cubic metamagnets
with layer ordering in sheets (J =J„=

~
J~, J,= —J )

or ordering in ferromagnetic chains (J,=J„=—J,
J,=

~
J~). These again correspond to g(k, o) at simple

points in the Brillouin zone. More complex situations in
which the aligned sheets are two or more lattice layers
thick, etc. may be handled similarly. We defer detailed
analysis and discussion of these models until a future
occasion. (Although it might be remarked that in real
metamagnetic materials the in-lattice and between-
lattice interactions are normally significantly different,
this case is not covered by our present data. ) We may,
however, anticipate that as for the simple antiferro-
magnets, "" the susceptibility Xr (T) will have a maxi-
mum slightly above T, and be decreasing rapidly at the
critical point.

"M. E. Fisher, Phil. Mag. 7, 1/31 (1962}.
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10.4 Direct Correlation Function

To characterize the correlation distributions more
generally it is of interest to compute the direct correla-
tion function H(r) defined in Sec. 3 1. We consider the
square lattice initially and proceed in two stages: Firstly
we attempt to express the correlation expansion co-
efficients q„(r) in terms of the unrestricted random walk
distributions and then we invert the resulting expression
for x(k,v) to obtain 8(k).

The distribution of unrestricted random walks of m

steps has the Fourier transform [q(k)] =q [j(k)] .
Kith the aid of the binominal expansion, the corres-
ponding distribution on the square lattice is found to be

1

3
5
7

11

2

6
8

10

1—7
21—51
77—199

1—13
82—354

1175

1

179—1137

1
—25 1
312 —31

4—12
—12—84

I—10
47—156

393

1—16
126—672

10

—22 1
241 —28 1

A,

TABLE X. Coefficients I„ for the expansion of F{k)
on the square lattice in powers of j(k).

By repeated subtraction of the distributions p„(r)
from q„(r), starting with m=n, one may find the co-
eScients I in the relation

q„(k)= Q u„q"(k),
m=o

(10.11)

provided such a relation holds. It is to be stressed that
this expression is not obvious. There are many distribu-
tions with the full symmetry of the square lattice which
cannot be so expressed. [An example is Pp(r)=1 if

~x~ =
~y~ =a but Pp(r) =0 otherwise. ] In fact one dis-

covers that (10.11) is valid for the square lattice, at
least to order eleven, with the coefficients given in
Table X. (Owing to the sublattice structure I,„=0—
unless m and n have the same parity. )

From (10.11) follows the double power series
expansion

QC

x(k v) = j '

Q I . v"q"
n=o m=o

(10.12)

which may be inverted algebraically via (3.11) to yield

II(k) = P II,(v)q"(k).
m=o

(10.13)

H (v) =4v"+0(v"-)

H, (v) =0(v") II,(v) =0(v")

(10.16)

(10.17)

Correct to t' the transform of the direct correlation func-

Although proved only to order v" for the square lattice
we conjecture that such an expansion may be generally
valid for all two-dimensional nearest. -neighbor Ising
lattices.

For the square lattice we find explicitly

H (v) = —4v' —12v' —44v" —188v' —852v"—0 (v"),
(10.14)

Hi(v) =v+ v'+5v'+ 21i'+93v'+401v"+0(v"), (10.15)

tion evidently has the simple form Hp+Hiq(k), which

is the most obvious generalization of the mean field

and Bethe approximation formulas. By considering the
limit k ~ 0, we see that the leading coefficients of Hp(v)
and Hi(v) are merely proportional to the corresponding
coetficients of the expansion of 1/Xp(v). In fact we may
write

1 —Hp(v) = h(1/Xp(v))+0(v'"), (10.18)

—qHi &v) = 8(1/Xp(v) ) +0(v"), (10.19)

where h( f) and 0(f) denote the even and odd parts of
the function f We rema. rk that the smallness of Hp(v),
H, (v), might have been guessed from the smallness

of the difference Ap' —Ap already noticed (although it
does not follow from this). Indeed by comparing (10.13)
with the definitions (3.11) and (3.14) we find

2dAp ——xp(v) 0(—1/xp(v) )+2q'xp (v)H p (v)+ . (10.20)

For the square lattice, the second- and higher-order

terms are of order ~". Thus to a very good approxima-
tion (as may be checked directly) the second correlation
moment may be calculated from the zeroth-moment Xo

alone.
One may ask for the graph-theoretical significance of

the "deviations" found in tenth order. This turns out to
be the fact that the smallest theta graphs on the square
lattice in which the odd vertices can reach beyond the
first coordination shell are (2,2,6)p and (2,4,4)p as is

easily verified. "Both these graphs have ten lines and
hence enter at v". Their relative weights (lattice con-

stants) are 2:1 which is the same as the number of two-

step random walks to the corresponding points (a,a)
and (2u, 0), respectively. For this reason only a multiple
of qP(k) is introduced. The same thing happens on the
triangular lattice with the theta graphs (2,2,4)p and

(2,3,3)p which would enter in a corresponding way in

eighth order.
%hen we undertake the corresponding calculations

for the coeS.cients n„ for the simple cubic, we find that
(10.11) remains valid. up to the eighth order with the
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TABLE XI. CoeKcients for the expansion of I'(k) in powers of j(k) and for the excess distributions
y„(r) at r= (+jo, +ka, +la) for the simple cubic lattice.

1—11
45

-359
129

1—21
198—1574

1—31
451

1—41

(j,k,l)
2, 1, 0

32

10
(j,k, l)

1, 1, 0 2, 1, 0 2, 2, 0 3, 1, 0

2
4
8)

8
10

—6
6—174—1146

—22 038

1—16
109—784

3337

1—26
321—2854

—36
615

16
152 256 96

H(k, v) = P H„(v)j"(k)+Z(k,v),
m=0

(10.21)

which defines the direct correlation excess distributions
s (r) uniquely, provided, as before, we choose H (v) in
case of ambiguity so that z„(r)=0 at r= (ma, 0,0). The
resulting nonvanishing expansion coeKcients for the
H (v) and s„(r) are tabulated in Table XII. Evidently

' The appropriate pure random walk distributions p (r) follow
from the generating function (x+x '+y+y '+z+z ')~ but
cannot be expressed as compactly as in (10.10). They are readily
calculated, however, by recursion. We are indebted to F.T. Hioe
for assistance with the related calculations.

coefFicients given in Table XI."At that stage, however,
the relation (10.11) breaks down since the residual dis-
tribution in the second coordination shell [obtained by
subtracting the fourth and higher powers of j(k)j is
eof proportional to q'(k). This leaves an ambiguity in
the definition of N„which we remove generally by re-
quiring that the value of q„(r) at r= (ma, 0,0) be cor-
rectly given by (10.11). This in turn serves to define
an "excess correlation distribution" y„(r) whose Fourier
transform g„(k) must be added to the right-hand side of
(10.11) to ensure its validity. The coefficients of the ex-
cess distributions, which have of course full cubic sym-
metry, are also presented in Table XI. The 6rst devia-
tion at m=8 and r= (a,a,0) corresponds to the theta
graph (2,2,4)s. It may be verified that the odd vertices
can be placed only on sites equivalent to 0 and
r= (2u,0,0) and that there are no other theta graphs on
the simple cubic lattice of this order. Similarly the lead-
ing term of the excess in ninth order is associated with
the new theta graph (3,3,3)& which will only reach to
r= (a,a,a) or equivalent points.

The inversion of (10.12) with the addition of the ex-
cess transform Y(k,v) may be accomplished with just a
little more labor than before. [What is involved is the
convolution of the excess distributions y„(r) with the
lower-order q„(r) and corresponding h (r) distribu-
tions. j We may generalize (10.13) by writing

TABLE XIl. Expansion coefFicients in powers of v for the partial
direct correlations H, (v) and corresponding excess distributions
z„(r) on the simple cubic lattice.

H2 z„(a,c,0) El) s„(o,a,o)

2

6
8

10

—6—30—318—3918—54 582 24 312

1
9

121
1609 8

The relations (10.18), (10.19), and (10.20) hold again
but with correction terms of order v', v', and v, respec-
tively. On checking (10.20) for the bcc lattice, one finds
"deviations" of order v' presumably related to the theta
graph (2,2,2)s which can be realized on this lattice. This
might suggest that the difference A2' —A2 will be of order
v' or v' on the bcc lattice. However, the deviations in
the expression (10.20) for As on the simple cubic enter
in order v' irI, corItrast to v" for the square net but for
both lattices the difference A2' —A2 is of order v'. The
reason for this behavior must be in the rather different
basic expansions of the true and effective correlation
ranges so that too close an analogy should not really be
expected. [Note that (10.20) cannot be expected to hold
for the triangular and fcc lattices because of their close-
packed structure. j

11. BEHAVIOR OF THE SCATTERING

11.1 Recapitulation

In this section we return to the general discussion of
Sec. 6 concerning the form of the critical scattering in
order to test the formulas advanced there against the
detailed knowledge of the correlation series and to re-
view the results which follow for the Ising model.

the excess distributions are initially very small but their
relative magnitude probably increases for larger n. Al-
though their existence is of theoretical significance they
probably do not play an appreciable role numerically.
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Firstly we restate the exponent values q= ~, v= 1 and
i/= 1/18, v=9/14 for two and three dimensions, respec-
tively (Sec. 8), and recall that precise extrapolation
formulas for the eRective range of correlation ~i(T)
[or equivalently the second moment &&=1/(~in)'] on
all the lattices were developed in Sec. 9; specifically,
Eqs. (9.3) to (9.5), (9.8), and. Table V. Near the critical
point the simpler formula (9.9) with the data in Table
VI should suSce. Similarly explicit formulas have been
developed for the effective interaction range ri(T),
namely, equations (9.12), (9.13) with the coefficients
listed in Appendix D, while near T, the approximate
formula (9.14) with the data of Table VII applies.
Alternatively, the zero-field reduced susceptibility
~0(T) 1/(Kl/ i)'-~ may be calculated directly from pre-
viously developed expressions. '4 "

With this information one may evaluate the simple
"first-order" approximation formula (6.23) for the scat-
tering, namely,

y(k T) xo(T)/[1+E'(k)//c '(1—-'i/)]' &»'i

=(~/~ )' "[(~i~)'+~'&'(k)/(1 —ln)1 "'""'.
(11.1)

For small k and T&T, this is always correct to order
jP while the behavior at T, is correct in form. However,
the amplitude of the k (' » dependence at T=T, is
too large by about 12% for the sc lattice (and about the
same for the bcc and fcc lattices) and by a factor of
about 2.4 for plane lattices. This does, of course, imply
a similar inaccuracy for larger values of k mear T..
Indeed at the zone edge k=kp, corresponding to the
antiferromagnetic susceptibility (Sec. 3.1), the approxi-
mation (11.1) yields a value for Q(T,) on the sc lattice
13.6% higher than the best estimate. "For the square
lattice the corresponding ratio is 2.39. Thus (11.1) is
fairly satisfactory for three-dimensional lattices but
much less so for plane lattices. To remedy these defects
we examine critically the "second-order" approximation
formula of Sec. 6 in the following subsections.

11.2 Square Lattice Scattering

&,= (ha T/m') X.„„(T,)=g(kp, T,)

~)' " (4'"/0.)~p x-
(4d) i (n/—2)

(11.4)

For the square lattice the estimates of (a/ri), and g,
yield $, =0.1743 which should be compared with the
best direct estimate for )„namely 0.1570 [obtained by
studying the lengthy series expansion for x,„„(i/)""].
Since the approximation (11.2) was optimized for small

k (rather than. for small
~

k—ko~), this comparison is a
stringent test. Consequently the 11% deviation of $P
from $. is not too unsatisfactory [and in particular rep-
resents a major improvement over the consequences of
the first-order expression (11.1)].To obtain more accu-
rate values near ko, allowance would have to be made for
the nonanalytic drop in x, &;(T) [essentially of the form

(T T.) ~ln(T ——T,) ~] which occurs as T, is approached
from above. " Without further detailed analysis the
simplest method of improvement is to add to the right-
hand side of (11.2) the k-independent correction term

(I aT/m') [&-i (T)—&-i"(T)], (11.5)

where X,„i;&&(T) is the approximation to X,„i;(T) im-

plied by (11.2). )The accurate extrapolation formula

given in Ref. 35 can be used in evaluating (11.5).]
This correction term decreases rapidly from its critical
value 0.017, as T increases. Furthermore, for ~ka~

the magnitude of x reaches unity so that the correction
is then only of order 1 or 2%. For the smaller values of k

where the enhanced critical scattering is observed it will

be relatively smaller by a factor of a tenth or less.

To determine the form of g(T) at high temperatures
we impose (6.28) which ensures that the pole of the
denominator in (11.2) corresponds to the true correla-

tion range ~. This yields

As a test of the accuracy of (11.2) at T= T, for higher
values of k we may, as above, evaluate (11.2) at the
extreme point of the Brillouin zone, i.e., at the antiferro-
magnetic point k= ko. In d dimensions we obtain

The improved, "second. -order" scattering approxi-
mant (6.27) may be written

~t'(T) = 32''[1—4a+ 1 li/'+ ]. (11.6)

i—g [(g g)2+yigiri(k)]q/i
x(k, T)~—,(11.2)

ri [(gaia)'+lt //'X'(k)]

where, in recapitulation E(k) is defined in (2.2) and
(2.1) and

4 (T) 1+kn4='(T), (11 3)

which ensures that the behavior for small k is always
given correctly to order k' (for T above T.). As ex-
plained in Sec. 6 we may then. fix the critical value

P,=Q(T,) by requiring that (11.2) reproduce the cor-
rect amplitude D of the 1/k' & small-k behavior at T,.
This yields the values (6.31).

With this series for P we may expand (11.2) in powers of
K and check the accuracy of the coefficient of a'E4(or'
equivalently &') by comps, rison, most easily, with

(10.13) to (10.17). This reveals the surprising fact that
(11.2) with (11.6) yields the exact fourth-order k de-

pendence as far as it is known, i.e., correct to order v".
Finally to obtain an expression for P(T) valid at all

temperatures above T„we extract the square root of
(11.6) and form a Pade approximant for g(i/) subject to
the extra ("second. point") condition that it (i/, )=p,

'2 These estimates have been closely confirmed by W. Marshall
and J. I. Gammel {private communication) using Pade approxi-
mant techniques.
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=0.02940. We thus adopt the expression

g(T) =4v2v'(1+a, v)/(1+b, n+b2v'), (11.7a)
with

ui ———2.360217, bI = —0.360217,

b2= —4.220435, (square lattice) . (11.7b)

This function is regular and without zeros in the interval
~v~ (1.02', . It exhibits a maximum about 1.64), at
T 1.086T, (for ~ positive).

In summary, Eqs. (11.2), (11.3), and (11.'7), together
with (9.3), (9.12), and (9.13), constitute our best
approximant to the square lattice scattering function.
They embody the k', k', and k4 behavior exactly to order
v" and the exact small k dependence at T=T,. For
ferromagnetic interactions the over-all expressions
should be accurate to better than 1 or 2% for all T&~T,
and all ~ka~ & ~2'. With the added correction (11.5),
this accuracy will probably be retained for all k. For
smaller values of ka the accuracy will improve further,
approaching 0.1% or better. Figures 9 and 10 contain
plots of the scattering intensity according to (11.2).
They will be discussed below.

11.3 Simple-Cubic-Lattice Scattering

To test the second-order approximant for the simple
cubic lattice we first use the critical-point scattering
amplitude

D= 12.0917 D —,11.8
20

as determined by the estimate (10.7) for D, to 6x the
value of Q. as previously. [The numerical coeKcient in
(11.8) follows from (6.5) with g=1/18.j The central
value for D gives

P,=0.084, P,=1.00020, (sc lattice) (11.9)

which may be compared with the square lattice values
(6.31).

The accuracy for large k may again be assessed
by evaluating Q at k=ko via (11.4) which yields
$. =0.3456. The best estimate" "for g, is 0.3397 which
is only 1.7% lower. In view of the 3% uncertainty in D
(see Sec. 10.2) this agreement is excellent and indicates
that the second-order approximant should be accurate
to 1 or 2% for all k [without need of the correction
(115)j.

The high-temperature behavior obtained by imposing
(6.28), using (8.13) and (8.27), is

y(T) = 12V25'[1+ .g. (11.10)

Only the leading term of @ can be found since ~2' is
known only to order n' (even though A.2 is known to order
bio). By expanding (11.2) in powers of E' we can again
determine the approximation for A4 to order ~"and com-
pare it with the exact series. We discover that when
e=k/~k~ is parallel to a lattice axis the agreement is

with
y(T) =1242' /(1+b, n), (11.11a)

bi = —0.4026, (sc) . (11.11b)

This function is regular and monotonic in the interval
~
s

~
(1.8e, and reproduces the desired value at the criti-

cal point. Together with (11.2), (11.3), (9.3), (9.12),
and (9.13) it constitutes our best over-all approximant
for the simple cubic lattice scattering. These formulas
should be accurate to within 1 or 2% for all k and all
T&~ T, but appreciably more accurate for T& T, and k
moderately small. If p(T) is simply replaced by its
critical value p, accuracy suGers very little. The devia-
tion in x never exceeds 0.6% and is always less than
0.1% for ka(1 and less than 0.01%for ka(0.2. Plots of
the scattering are given in Figs. 11, 12, and 13, and are
discussed below.

11.4 Other Lattices

Table XIII collects together the values of D following
from Table IX and (6.5) and the corresponding values
of p, and P, for the square, sc, and other lattices. (In
three dimensions the uncertainties in D correspond to
uncertainties in P, of about 20% but owing to the small
value of g this evidently corresponds to only 1 or 2%
in X)

For the triangular lattice two leading terms of the ex-
pansion of P may be determined from (8.27). The Pade
approximant

g(T) =4V2v'/(1+bmv'), b2 ——37.633, (triangular) (11.12)

reproduces the critical value; it is monotonic and regular
for all real v and should yield a satisfactory approxima-
tion for x. It is not possible to check the accuracy at
I=ho by comparison with the antiferromagnetic case
since the symmetry relation applies only to the loose-
packed lattices. There is little reason to doubt, however,
that the accuracy will be nearly comparable with that
obtained on the square lattice, i.e., within 1 or 2%%uo

for all T& T. for
~
ka

~

& -,'s.

exact to this order (as for the square lattice). However,
this equivalence does not hold for general directions of k;
small deviations occur in the ~' and higher terms. This
discrepancy is a direct reQection of the existence of the
"excess distributions" found in Sec. 10.4. These cannot
be expressed as powers of g(k)[or E(k)] and are there-
fore necessarily overlooked by (11.2). (The excess dis-
tributions do not apparently arise on the square lattice. )
One might modify the numerator of the approximant
(11.2) so as to represent the angular variation more
accurately (or to match the spherically averaged value
of A4 rather than its value on an axis) but this does not
seem worthwhile since the differences are quite small,
the value along an axis is given correctly, and the form
of (11.2) is, in any case, not exact.

For use at all temperatures we adopt the simple
Pade approximant
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0.08

0.06

(x)

0.04
I'IG. 9. Inverse scattering intensity

of the square lattice versus (ka)' for k
parallel to a principal diagonal and
for various values of T/T, . Note
change of scale for inset.

0.02

0.02 0.04
2

(ka)

0.10

For the bcc lattice evaluation of the approximant to
at k= kp yields $P= 0.3686 compared with the best

estimate" of $.=0.3692. The very close agreement

(within 0.2%) is probably fortuitous in view of the un-

certainties of the estimate for D but it does again sug-

gest that the second-order approximant should be
accurate to 1 or 2% for all k in three dimensions. For
the fcc lattice this check is again impossible but quite
comparable accuracy should obtain.

11.5 Discussion

The accuracy of the formula (11.2) for the scattering
having been assessed above, we may examine its conse-

quences graphically. Figure 9 shows a conventional plot
of inverse scattering intensity versus (ka)s for k parallel
to a main diagonal of the square lattice. The curvature

TABLE XIII. Values of the critical-point scattering parameters. t00

Lattice

Square
Triangular

sc
bcc
fcc

D

1.07499
1.18100

3.87
4.13
4.24

0.02940
0.02940

0.084
0.073
0.065

(f.—1)X10'

0.108
0.108

0.20
0.15
0.12

SO

60

For both these lattices the high-temperature expan-

sion of P cannot be computed since the series expan-

sions for & or A2' are not yet derived. However, the

graph-theoretical arguments at the end of Sec. 10.4
suggest that Q(e) is probably of order es for both lattices.

For this reason we propose the simple expressions

(11.13a)

with

C = 19.191 (bcc), C =62.045 (fcc) . (11.13b)

40

t5

The amplitude 4 is of the order of magnitude expected

by analogy with the simple cubic result (11.10).The still

simpler alternative of setting g=—p, should be almost as

accurate as verified on the simple cubic lattice.

x )QO
T

Tc

FlG. 10. Variation of the scattering intensity of the square
lattice with temperature for fixed wave number. (The curves are
labeled by the values of k,e= k„a.)
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of the critical-point isotheiin (marked T/T, =1.000)
corresponding to the value z= 4 is clearly seen and the
vertical tangent as (ka)' —+0 can easily be imagined.
Surprisingly, perhaps, the isotherms appear at 6rst to
fall as the temperature increases. This is quite contrary
to expectations based on the approximate theories. The
large scale inset (of the region marked off near the
origin) shows that this fall occurs, as it must, only for
large enough values of k, since the plots for 2)2",
intersect the critical isotherm at small k. The meaning
of this strong "line-narrowing" behavior becomes more
apparent from Fig. 10 where the intensity is plotted
versus temperature for fixed wave number. (The curves
are labeled by the values of k,a=k„a.) Evidently the
scattering intensity at a fixed angle goes through a
marimum abo~~e 2'. a,nd then falls as the critical point is
approached more closely. "There can be no doubt as' to
the reality of this maximum since for moderately large
ku it occurs so far above 2', as to be predicted by the
truncated series expansions without any extrapolation.
For T/T, (1.05 the relative temperature of the maxi-
mum T,„/T„ is linearly related to ka with a moderately
large coefficient so that the difference 2' „—2'. should
be readily detectable in experiments on two-dimensional

100

80

\

h 0.27

0.57

0
0.25

0.5 1.0 ——
1 x 100

FIG. 12. Scattering intensity of the simple cubic lattices versus
temperature. (The curves are labeled by the values of k,u=k„a
=k.a.)

0.20

0.15

0.10

0.05

0.2 0.4
(ka)

0,8 1.0

~' According to (11.2} the intensity displays a point of inflection
much closer to T, and finally approaches the critical point with
rather small slope. It may be doubted, however, whether the pres-
ent extrapolation formulas can be relied on for such a subtle
point so relatively close to T,. The effect is quite invisible on the
scale of these figures.

FIG. 11. Inverse scattering intensity of the simple cubic lattice
versus (ka}~ for k parallel to a principal diagonal and for various
values of T/T, .The dashed straight lines are tangent to the critical
isotherms at the high ka values. The arrows indicate intersections
with isotherms for higher T.

systems (e g., scattering from foreign absorbed atoms in
equilibrium on a crystalline face). Depending on the
scale, the curvature of the isotherms of i ' versus (ka)'
persists to 1 or 2% above T, but thereafter the plots
become rapidly very linear.

On the scale of Figs. 9 and 10, the scattering for k
parallel to a lattice axis, instead of a diagonal, is indis-
tinguishable, i.e., the scattering is quite isotropic.
Numerically the intensities at 2"=T, for axis and
diagonal diRer by 0.1%when ka~0. 17 and by 1%when
ka~0.52. The fractional differences at T/T, = 1.05
are very similar. These figures indicate the point at
which the lattice structure becomes detectable.

In Fig. 11 the inverse scattering for the simple cubic
lattice with k parallel to a principal diagonal is plotted
versus (ka)'. The critical isotherm is definitely curved,
as can be seen by comparison with the dashed straight
line which is tangent at the higher ka values. Because
of the small value of g, however, the curvature is not
obvious and could easily be obscured in a real system by
experimental uncertainties in the data. (There is no
sign graphically of the theoretica)ly in6nite divergence
of the slope of the isotherm as ka-+ 0!) Dependent on
the range of (ka)', the plots examined are already very
linear at only 0.5 to 1% above T,. The line narrowing
observed with the square lattice is also much less marked
but each isotherm does eventually intersect the critical
isotherm and thereafter lie below it. The intersections
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FIG. 13. Complete variation of the inverse scattering intensity
for k parallel to a principal diagonal of the simple cubic lattice

(k, =k„=k,). Note the displacement of the "neutral point" &=1
as T falls.

for T/T, =1.01, 1.02, and. 1.001 (in inset) are marked
on the 6gure by vertical arrows, The corresponding
maxima in x versus T at 6xed ka are visible in Fig. 12.
Comparison with Fig. 10 (note different temperature
scales) shows that the maxima now occur far closer to
the critical point. Furthermore instead of varying
linearly with ku the diKerence T,„—T. varies as
(ka)'I" The general relation as T approaches T, is

—1 =
~

ka{1+0((ku)'~"j},
T ) 2 g ) '

(1l 14)

so that the coeKcient of proportionality is rather small.
As a consequence when, for example, ha=0. 1 the maxi-
mum occurs only 0.05% above T, compared with 2.2%
on the square lattice. Even at ku=1 the simple cubic
maximum occurs only some 3% above T,. Similarly the
height of the maximum relative to the value of g(k, 7)
at the critical point is about 1.019 compared to about
1.{jv for the square lattice. For this reason it may be
dificult in low-angle experiments to resolve the tempera-
ture of the maximum from the critical point itself.
However, in precise work the critical temperature
should obviously not be determined from the position
of a maximum at finite k. Probably, as in the case of the
antiferromagnetic susceptibilities, ""T, is located at
tile polllt. of steepest. dccleasc of x(k, T) witll falllilg T,
i.e., at a (mild) singularity in 8$/BT."'

The degree of spherical isotropy and the inQuence of
lattice structure may be gauged by comparison with

'3'Note added As proof. Dr. L. Passel has kindly pointed out
that recent neutron-scattering experiments on iron by D. anally,
B.Grabeev, A,. M. I ungu, M. Popovici, and M. Totia, at Sucha-

scattering for k parallel to an axis. At the critical point,
differences of 0.01, 0.1, and 1%are observed at ka 0.04,
0.14, and 0.43, respectively, while when T/T, = 1.05 the
corresponding wave numbers are ha~0, 12,0.23, and 0.49.

Finally in Fig. 13 the inverse scattering intensity of
the simple cubic lat tice with k parallel to a main diagonal
is plotted versus k,o (=k„a=k,u) over the whole range
up to the antiferromagnetic point k= ko. The displace-
ment of the "neutral point" x= 1 from the midpoint to
lower k values is indicative of the line narrowing near T,
and the maxima at fixed k. Evidently the displacement
is quite marked even at T=3T, although it is not, of
course, predicted by mean 6eld theory. The scattering
intensity about the antiferromagnetic point k= ko is at a
minimum but is not otherwise anomalous.

%e present no figures for the bcc, fcc, or triangular
lattices because of the close similarity to the sc and
square lattices, respectively. Clearly, however, experi-
mental data shouM be compared with the theory for the
appropriate lattice so that the significance of any devia-
tions will not be obscured. The explicit magnitude of the
dependence on lattice structure can be gauged by com-
paring the different rows in Tables VI, VII, IX, and
XIII bearing ln mllld that all wave vectors and dis-
tances have been scaled by the nearest-neighbor dis-
tance u (rather than by the cube edge a' or other factor).

j &.6 Conclusion

%e conclude by comparing our theoretical predictions
with the recent experiments on pure beta-brass by Als-
Nielsen and Dietrich" who studied the ordering transi-
tion by neutron scattering techniques making careful
corrections for finite resolution and other limiting
factors. (Comparisons with other relevant experiments
have been. discussed elsewhere. a' "") However, atten-
tion should also be drawn to more recent experiments
on the binary Quid system perQuorheptane-iso-octane
by Brady, McIntyre, Myers, and Wims54 in which they
hnd that q~0.10 gives a good account of the observed
curvature in the scattering plot close to T,. LSCC also
the note added in proof (Ref. 53a).)

Als-Nielsen and Dietrich erst measured a scattering
isotherm at 1.2% above T,(=741'K, AT=8.9'E) in an
angular range 0&~~ku~ &0.64. They found the k de-
pendence could be well htted by the Ornstein-Zernike
form but on using our first-order approximant (11.1)
with various values of g they found a shallow minimum
in the total squared deviation at q=0.03; the 6t at
rl=1/18 appeared to be about as good as at q=O."

They then measured the peak intensity x(k=O, T)
in the decade T/T, =1.003 to 1.030 and from a least-

rest, have revealed a maximum in x at 6xed & &0 above T„just as
predicted here. Furthermore, the observed values of T —T,
seem to be of the same order of magnitude as we find, and the crit-
ical point is located on the steepest portion of the y-versus-T curve.

~4 G. %. Brady, D. McIntyre, M. K. Myers, Jr., and A. M.
Aims, J. Chem. Phys. 44, 2197 (1966); see also Proceedings of the
Small Angle X-Ray Conference, Syracuse University, 1966 (to be
published).

"In Eq. (f1.1) Ea was replaced by ka. The second-order
formula (11.2) has not yet been fitted to the data.
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Ising-model estimate of ~=0.643+0.003. Through the
relation (2—ri)v=q Als-Nielsen and Dietrich finally
estimated g =0.077+0.067 compared with our estimate
of q=0.056+0.008. As evident from Fig. 14, the ob-
served amplitude Iii for ai is slightly larger than our
estimate; the experimental-to-theoretical ratio was
1.17+0.13.

The very close agreement of these results with our
analyses of the Ising model is most satisfying. While it
may be premature to draw physical conclusions (e.g.,
about effective higher-neighbor interactions, etc.) from
observed deviations in amplitudes, it is clear that the
Ising model provides an excellent detailed account of the
order-disorder process in beta-brass. "One may in the
future hope to see it tested as precisely in other real
physical systems thereby increasing and deepening our
insight into critical phenomena.

FIG. 14. Logarithmic plot of the experimental data on a&a for
beta-brass as a function of temperature. The curves are the pre-
dictions of (a) mean field theory, (b) the Elliott-Marshall-Bethe
approximation, and (c) the present analysis of the bcc Ising
nearest-neighbor model.

squares Gt on a log-log plot deduced the result p= 1.252
&0.006 or, allowing conservatively for possible systema-
tic errors, 7=1.25&0.02." This value is, of course,
exactly the prediction for the three-dimensional Ising
modelst The range of correlation ~i was determined in
the same temperature interval by Gtting the observed
angular dependence. " These experimental results are
shown on a log-log plot in I'ig. 14 together with the pre-
dictions of mean Geld theory, the Bethe-Klliott-Marshall
approximation, and the present analysis for a bcc lattice.
A least-squares Gt to a straight line on this plot yielded
v=0.647+0.022 in remarkable agreement with our

Lattice

square

triangular

sc

bcc

fcc

Direction parallel to.

axis
diagonal

normal to bond

cube edge (axis)
face diagonal
major (body) diagonal

cube edge
face diagonal

cube edge

1'
3
3

APPENDIX A

Values of the parameter f relating the correlation
ranges in Eq. (4.17) and (4.18) are given in Table XIV.

Tmr.z XIV. Values of the parameter f relating the correlation
ranges in Eqs. (4.17) and (4.18).

APPENDIX B

Expansion coefficients for moments and correlations are given in Tables XV-XVIII.

TABIE XV. CoeKcients for the expansion of the zeroth and second correlation moments in powers of s; see Eqs. (3.7), (7.7), and (7.9).

Square
m (0) m„(')

Triangular
m. (o) m. () m (')

sc
m. (» m. (o)

bcc
m (2) m (')

fcc
m (2)

1
2
3
4
5
6
7
8
9

10
11
12

12
36

100
276
740

1972
5172

13 492
34 876
89 764

229 628

32
164
704

2708
9696

32 948
107 648
340 916

1 052 960
3 185 188

6
30

138
606

2586
10 818
44 574

181 542
'?32 678

2 935 218
11 687 202
46 296 210

6
72

582
3912

23 550
131 640
697 422

3 547 392

6
30

150
726

3510
16 710
79 494

375 174
1 769 686
8 306 862

38 975 286

6
72

582
4032

25 542
153 000
880 422

4 920 576
26 879 670

144 230 088

8
56

392
2648

17 864
118 760
789 032

5 201 048
34 268 104

8
128

1416
13 568

- 119240
992 768

7 948 840
61 865 344

12
132

1404
14 652

151 116
1 546 332

15 734 460
159 425 580

12
288

4908
72 096

- 973 li6
12 432 096

56 The ohserved temperature dependence of s& is not changed if o =0 or s = 1/18 is assumed in this fitting. Note also that a slightly
different dehnition of If:I was used in Ref. 12."It should be remarked that Als-Nielsen and Dietrich have also made measurements below T. which again correspond closely to
Ising-model predictions although this is not the place to discuss them.
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TAnIE XVT,. Square lattice: correlation furjction expansion coef6cients q (r) with r= (+3g, +ma) or (+ma, +la); see Eq. (7.1).

3, 2

5, 0

5, 4
6, 3
7) 2
8, 1
9, 0

55
52
30

201
244
250

684
885

1200

1176
1026
699
326
90

22
3) 1
4, 0

33
4, 2

6, 0

5, 3
6, 2
7,'1
8, 0

5, 5

7,'3
8, 2
9, 1

10, 0

560
532
416
226

72

YAsi,x XVII. Simple cubic lattice: correlation function expansion coefFicients q„(r) with
r= (+kg, ~4, +ma) or other perrnutations of k, 1 and m; see Eq. (7.1).

k, l, m

1, 0, 0

1, 1, 1

2, 1, 0
3, 0, 0

2, 2 1
3,'1, 1
3. 2, 0
4, 1, 0
5, 0, 0

322
3', 3, 1
4, 2, 1
4, 3, 0
5', 1, 1
5, 2, 0
6, 1, 0
7, 0, 0

210 5250
140 4340
105 3507
35 2219
42 1806
21 1407

7 541
1 112

333
4, 3, 2
4, 4, 1
522
5, 3, 1
5, 4, 0

6, 3, 0
7', 1', 1
7, 2, 0
8, 1, 0
9, 0, 0

1, 1, 0
2, 0, 0

211
2, 2, 0
3, 1, 0
4, 0, 0

2p 2p 2321
3) 3, 0411
4, 2, 0
5, 1, 0
6, 0, 0

332
422
4, 4, 0

-- 5, 3, 0
6„ 1, 1
6,-2, 0
7, 1, 0
8, 0, 0

2 4 6 8 10

2 16 170 2144 30 334
12 176 2348 33 804

90 1800 31 410
60 1480 28 220
20 960 21 960
30 936 21 474
15 748 18 647
6 344 11 050
1 84 4140

4, 3, 3
4, 4, 2532
5, 4, 1
5, 5, 0
6, 2, 2
6, 3, 1
6, 4, 0
7', 2,'1
7, 3, 0
8, 1, 1
8, 2, 0
9, 1, 0

10, 0, 0

4200
3150
2520
1260
252

1260
840

- 210
360
120
90
45
10

TABLE XVIII. EXPRI181011COCKC181118f01'f0111"tll 811Cl81XtlllBOIBCIItS 011 thC SqIIR1'C Slid SIIIlP(C CIIblC ]Rtt'ICCS t SCC Fq8 (3 7)g

Square
m„&@ m (4&

SquareI m„&'& m„&'&

7 693 940 16 836 020
8 2 805 120 84 131 072
9 10 743 220 388 949 684

10 39400288 iN0053440
11 139444004 6980530084

sc;

12 868 422 224 595 942
85 N7 280 1792 799 232

546 306 582 13 397 954 550
3364 458 048 95 064 939 840
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APPENDIX C APPENDIX D

Expansion coefFicients for the reduced second ino-
ments (2d/q)A2'"' are given in Table XIX.

TABLE XIX. Expansion coefficients for the
reduced second moments (2d/q)A2(v).

Pade approximant coefficients for evaluating ri(T)
from Eqs. (9.12) and (9.13) are given in Table XX.

TABLE XX, Pade approxirnant coeAicients for evaluating
ri(7') from Eqs. (9.12) and (9.13).

Square Triangular
(2) ~g„(2)

sc
('-')

bcc
(&)

fcc
Ly ('-)

Square Triangular bcc fcc

1
2
3

5

7
8

10
11

1

13
4()

117
332
921

2512
6757

28 004
47 493

1

6)

31
148
673

296)2
12 731
53 776)

1

C)

156)
7()5

3714
17 827
85 144

404 073
1 912 222

8
57

4()0
2729

18 472
123 597
823 632

1

12
133

1424
14 949

154 98()

a1

a4

a6

b

bs

b4

bs

—0.285714
—0.652146
—0.384998
—1.879136
—0.981609

3.032511
1.288541
5.342517

1 1.019412
—6.536274

—0.428571
0.139989

—6.5872S8

—1.15997S

16.003582
—12.366329

4.094098

—0.085714
0.523635

—1.168644
—0.689180

6.724875

—0.114286 —0.171429
2.543144
1.230130
4 9()7585

1.218250

—2.089506
43.S44196

—47.883490

—53.803544
312.393280

—9.189792
9.478733

25.87896()

—2.275 743 —20.877 S08

APPENDIX E

Glossary of principal symbols is given in Table XXI.
TAI3LE XXI. A glossary of principal symbols.

Symbol

a; a'

Bo, Bi
b

C, C'

C(r)
C

I)
D
d

ihreaning

l.attice spacing; edge of cubic cell

Temperature coefTicicn t for logipKiQ

Temperature coefficient for Ka

Susceptibility am')litudes at 7'„.

Direct correlation fiinction for Huid

Temperature coefhcient for ~1/a

Number of n-step self-avoiding walks

Amplitude for correlation decay a.t 7', .

Amplitude of scattering at T,
Dimensionality

Introduced in'

2 1

(9.9)VI
(5.24)
(6.8) (6.»)IX
(3.13)
(9.14)VII
7.1(7.8)
(5.8) (5.29) (10.6)IX
(3.19)(5.10)(6.5)XIII

r.(r), S

e
c{ }
I:, I'1

G(r), a~(r)
G(k)

8 (p)
EI(r), H(k)
H„(&)

I, Io
Inl {
J,J, Jy
J;,j;
Ez
E(k)
k, k= (k(, k„k„,k,
kp

k„(e; 7')

ki)
l

iV, m

m ('), m„( f~;,h)
N
o( )
8{ )
Q(x)

Amplitude of logarithmic singularity in I'(r, T)
Unit vector
Even part of
Amplitudes for Ka and K)Q at T,
Fluid pair correlation functions
I'ourier transform of G(r)
Spectra, l density of transfer matrix
Lattice direct correlation function and its transform

Expansion coefficient for H(k)

Scattering intensity
Imaginary part of
Exchange integrals
Junction orders
Isothermal compressibility
Effective wave vector for lattice
Wave vector, modulus, and components
Superlat tice wave vector
Complex singularity of z (k)
Bolt zmann's constant
I.ength in units of lattice spacing

Magnetization, magnetic moment
Expansion coeScients for the moments )u, (o) etc.
Total number of lattice sites
Term of order
Odd part of
Term in asymptotic scat(.ering function

(5.2)VIII
(3.24)

(5.24)(6.7)(6.13)(9.10)
(2.17)
(2.18)
(5.18)
(3.11)
(10.13)(10.21)

(2.9)

(2 3) (2 13)
7.4
(2.16)
(2 2)
2.2
(3 2)
(3.25)

(5.5) (5.14)

(2 7)
(7.7) (7.9) (10.1)
2.1

(5.30)

a Decimals 2.1, 9.3, ~ ~ denote subsections, 'numerals in parentlieses (9.3), (3.27), ~ ~ ~ denote equations; &on)a» numerals IX, VI, ~ ~ ~ denote tables.
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Tax z XXI. (continued).

Symbol Meaning Introduced in

q(k)
q„(r), q.(l)
R'
r, r=fr[
r&, rg(T)
R
s, sp, $~7 sq

T T
t
U

Vp

j(k)
r(r)
I {k)
j. (s)

Ii, [8 [
=o

yl

8) 8
ff:, K, (T)
xg, xg(T) = I/A

pg, A4) A4 ~ ~ ~

h. '2

p4 Air, & (s),
V) Vg

V*(v,H/'}

g„g(T)
gc7 gc

pp pc

r (r)

S, 4(T)
y,y{T)

XT

Xp

x(k, T)

Coordination number

Lattice generating function
Expansion coefIicients of F{r) and F(k)
Squared distance between vertices
Position vector and its modulus

Effective range of direct interaction
Remainder after m terms

Spin variables (=+1)
Temperature, critical temperature
Index; temperature variable =v/v,

Configurational energy
Temperature variable = tanh(J/kn T)
Volume of lattice cell (per site)
Label of singularities of x (k)
Exponent of divergence of susceptibility
Normalized lattice generating function
Lattice (spin pair) correlation function
Fourier transform of lattice correlation function
Gamma function of argument s
Increment or shift to n
Nearest-neighbor lattice vector
Coefficient in scattering function

Exponent of correlation decay and scattering at T,
Angles; subscript denoting a theta graph
True inverse range of correlation
Effective inverse range of correlation
Reduced correlation moments and expansion coeiIicients of 1/x(k)
Eftective reduced second moment of correlation

Moments of the correlation function
Exponent of vanishing of x, l~:i at T,
Generalized exponent function for v

Band edges of transfer matrix
Reduced critical-point antiferromagnetic susceptibilities
Density, critical density

(T/T, )—1

Pair potential energy
Component of scattering function
Related to A.2, A2', and g

Isothermal susceptibility
Reduced susceptibility/compressibility
Scattering function {reduced scattering intensity)
Decay factor

2.1
(2.1)
(7 1){74)
(7.10)(7.20)

(6 24), (4.3)-(4 7)
(9.3)
(2 3)

(2.12)
(2 4)
2.1
(3.25)
(3.22)
(2 1)
(2.5)(2.6)(2.11)
(2.10){2.18)

(8.20)
2.1
(63)(6 13)

(3.19){5.29) (10.6)
7.1, Ref. 36
(3.24) (3.27)
(3.20)
(3.14)
(4.16)

(3.7)(3.10)
(3.29) (3.23)
(8.12)
(5.26)
(11.4)
(2.14){2.15)
(4.11)
(2.13)
(6.27) (6.29)
(6.23) (6.25), (6.28) (6.29)

(2.7)(2.16)
(2 8)(2.»)
(2 9)
(4.8)(4.18)
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