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and Philbrick, "and Kuyat and co-workers" have ob-
served many elastic resonances, including one at 23.82
eV. If one assumes additional He formation associated
with the upper excited states and subsequent O'D2 ex-
citation, one has a partial qualitative explanation of
the observed effect. The relatively greater effect for the
lower states can be explained in this manner. The fact
that the polarization remains depressed to approxi-
mately 40 eV and the intensity of I& is nearly constant
through this energy range are less understandable, al-
though the doubly excited configuration 2p' has been
observed" at 59.5 eU.

"G. J. Schulz and J. W. Philbrick, Phys. Rev. Letters 13,
477 (1964)."C. W. Kuyatt, J. A. Simpson, and S. R. Mielczarek, Phys.
Rev. 138, A385 l1965l.

'4 Atomic Energy Levels, edited by C. E. Moore, Natl. Bur. Std.

In summary, the near-threshold minimum polariza-
tion effect previously observed for several lines in
helium has been observed for He 4922 A, under experi-
mental conditions which are believed to rule out the
possibility of its being an experimental or instrumental
error. Also, high-energy pressure-independent negative
polarization has been observed. Although some scatter
is measured in the experimental polarization values,
nothing indicative of resolved structure has been
observed.

The described observations agree with threshold and
high-energy polarization theory, but current theory does
not predict the near-threshold minimum, as observed.

U.S., Circ. 467 (U. S. Government Printing and Publishing
Once, Washington, D. C., 1949), p. 6.
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A new and simple method is developed for calculating eRective interactions produced by interaction
between electronic configurations. Also, a classification of the eRective-interaction operators is performed,
which both generalizes and corrects the previous classification made by Bacher and Goudsmit.

I. INTRODUCTION AND DISCUSSION
OF RESULTS

TOMIC energy levels are generally classified into

~ ~

~

configurations, corresponding to independent
particle motions for the atomic electrons. In fact, dif-
ferent con6gurations "interact" as a result of the
Coulomb repulsion between any two electrons, which
is not consistent with independent particle motion.
This interaction can often be treated by perturbation
theory. In 6rst order, different configurations do not
interact; in second order, only those con6gurations
interact which differ in the quantum numbers of at
most two electrons.

Bacher and Goudsmit' have shown in a classical paper
that this second-order effect may be replaced, under
certain circumstances, by an effective interaction
operator acting only within the perturbed configuration.
That is, one can diagonalize the energy matrix including
the operator V,ff within the con6guration, as an
alternative to setting up the larger matrix of the true
interaction U between all states of both configurations.

The structure of this operator V,ff depends on the

*Work supported in part by the U. S. National Bureau of
Standards, Washington, D. C.

t Deceased 28 August 1965.' R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934).

two configurations. Bacher and Goudsmit showed that
when the perturbing configuration has two excited
electrons, i.e., if two electron states differ from those of
the original configuration, then V,ff has the structure of
a two-body interaction; whereas a perturbing configura-
tion differing in only ore electron state leads to a V.ff
with the structure of a three-particle interaction.

Explicit calculations of these operators have been
performed by Rajnak and Kybourne' for con6gurations
of E electrons, all of the same l and e, outside closed
shells (P configurations). Their final results have a
very simple form, but the calculations involved in
their derivation are fairly complicated. In the present
paper, we first develop a different method which makes
the calculations as simple as the results, ' and which
exhibits the physical reasons for the form of the effective
interactions. Furthermore, we can now both generalize
and correct the statements of Bacher and Goudsmit.
It turns out that the structure of V,ff depends not only
on the elmber of "excited electrons, "but on the precise
nature of their excitation. The method is not limited to
P con6gurations, but can be applied to any configura-
tion and to any interaction.

2 K. Rajnak and B. G. Wybourne, Phys. Rev. 132, 280 (1963).
'As a byproduct, we have been able to check the work of

Rajnak and %'ybourne (Ref. 2) and to correct a number of minor
calculational errors.
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If the perturbing con6guration 8 is well separated
from the perturbed configuration A, the matrix elements
of the second-order perturbation produced by 8 on
A are given by

(Ae
f
W, [Ae') = —P,-(A~ [Gfm"')

X(M"
f
G f

A+')/&E. , (1)

where G is the Coulomb interaction and AE, is the
distance between the centers of gravity of the two
configurations. Rajnak and Wybourne wrote the
expressions for the matrix elements appearing on the
right-hand side of (1) and performed the summation
over 4"by using the recoupling identity of Biedenharn.

The fundamental idea of our method is to "curtail"
the operator G: In the first factor of the sum (1) we shall
substitute for 6 a "curtailed" operator g whose matrix
elements (A%

f g f

8'4") are equal to the matrix
elements of 6 if A'=A and 8'=8, and vanish in any
other case; in the second factor of the sum (1) we shall
substitute for G a similarly "curtailed" operator g. YVe

then have

(A+f ~.[
A+') = ZB'4" (A—+f g f&'+")

X(&'+"
I g[A+')/!». ; (2)

but now the summation over 4"need not be limited to
the states of the configuration 8, and may be extended
to all states of the system. It then follows from the
matrix multiplication law that

(Ae f W2 [
Ae') = —(Ae [ gg f

Ae')/»„(3)
and the eGective interaction is simply given by

W2= gg/hE„—
without any summation over intermediate states. The
calculation of the product gg will still need some recou-
pling identities; but these identities will be much sim-
pler than the identity of Biedenharn, because we need
to recouple only products of operators and not products
of matrix elements, which are themselves products of
operators and of eigenfunctions.

A. Results

In order to be able to describe our results clearly we
have to de6ne a "new electronic state. "

A state of one electron (in the perturbing configura, —

tion) which has quantum numbers (nl) will be called
"a new electronic state" if there is no one-electron state
in the perturbed configuration with the same n and l;
e.g., if the perturbed configuration is (n/)~(n'E') then
the state n"l" (or n'l) is "new, "while the states nl and
n'l' are "old."

The results may be stated as: (1) If two excited
electrons are in a new electronic state, then V,gg is a
two-body interaction. (2) If only one excited electron is
in a new electronic state, then V, fq is a three-body inter-
action. (3) Otherwise, V,« is a four-body interaction.

For these rules, a "new hole state" is equivalent to a
"new electronic state"; e.g., if the perturbed configura-
tion is pbd~ (a closed shell p, and N electrons d) and
the perturbing configuration is pbd~ f, then we have one
"new electron" and one "new hole"; therefore, V, fg

is a two-body interaction.
These simple rules also have a simple interpretation:

The effective interaction is described by Kq. (1). The
right side of this equation describes how two electrons
jump from configuration A to configuration 8, and then
two from 8 to A; therefore, in general, four electrons
"jump" during the interaction process. But if an
electron from A jumps to a new state in 8, the same
electron must jump back to A. Therefore the number
of jumping electrons is reduced to three if 8 contains
one new state, and to two if 8 contains two new states.

The remainder of the paper contains technical
details, organized as follows: IIA: Perturbation pro-
duced by l '/" IIB:perturbation caused by /~ 'l'l";
IIC: perturbation produced by / 'l'; IID: perturba-
tion produced by l"'+'l +'; IIE:perturbation produced
by l' '/ +') IIF:perturbation produced by /"'+'/ l".

In IID, results differ from (2); check calculations
were performed by a different method4 with identical
results.

g=Q X(k;//E'E') Q (x;(" z, ("'), (8a)

g=p X(k'/ll'/') p (z„('&r z, (b'&r) (8b)

and that

Wg= —Q P(kk';l/l'/') Q Q (z, ('& z,'"&)
x&j r&s

(x„(b ) r 'z (b )T) (9))

The operator (x;(b& z, ("') acts only on states where
the electrons i and j are in the shell /'; since the con-

4 J. Stein, Ph.D. Thesis, The Hebrew University, Jerusalem,
1967 (unpublished).

II. EFFECTIVE INTERACTIONS IN THE
CONFIGURATIONS t~

A. Perturbations produced by /~ 'l"

If we define the tensor operators u(~', z&~', and z&~)~

as the tensor operators of order k whose only nonvanish-
ing elements of the reduced matrices are

(n/[fu(")
f fn/) = (nE[ fs'"'

f
fn'E') = (n'E'[[s("& f[n/) = 1, (5)

and also define, following Rajnak and Wybourne, the
two quantities

x(k; E./b, /. /d) = (E.llc(") Il/. ) (/bllc'"ll/d)~b(E. /b, /. /d) (6)

arid

P(kk j /a/b)/c/d) X(k j Ec/b)/c/d)X(k j Ea/b)/c/d)/»c (/)

then we immediately see that
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figuration l does not contain electrons in the shell l',
that operator will give a nonvanishing contribution
only if the electrons i and j have been brought to the
shell l' by the operator (z,(k')r x, k') ). This means
that the only nonvanishing terms of the sum (9) are
those for whichi =r and j=s, and therefore

Ws= —Q P(kk'; ill'l') Q (z;&").z, &'&)

z;&k~) z;(v) r) . (10

This expression already shows that the effective
interaction is a two-body interaction; but we may still
simplify the result by recoupling the product of scalar
products according to the identity

(g(k) . Pj(k)) (g(k') .D(k'))

=P([A(k) x g(k')](t). [g(k) x D(k')$(t)) (11)

which follows immediately from the definition of
irreducible product and from the orthogonality of the
Wigner coeflicients, when 8(k) and C(k') are commuta-
tive. It follows moreover from the definitions (5) and
from Eq. (15.15) of Pano and Racah' that

and proceeding in the same way as before we get

Ws= —P(2t+1)M(t ill'l") g (u &'& u &'&)

= —2 P(2t+1)M(t ill'l") g (u &'&.u, &'&). (17)

The factor 2 is not mentioned by Rajnak and Wybourne.
It seems that they overlooked the fact that when we
substitute 1'1" for l", their Eq. (9) should be multiplied
by %2, according to Eq. (6'17) of Condon and Shortie y.r

C. Perturbations produced by l~ 'l'

In this case,

g=P X(k;till') P (u, ("& x, &")),

but it is more convenient to write

g=g X(k;lilt')(g(u;(k) z, (k') g—(u/(k) z, &k&)), (19a)

—Z(x.""u."')) (19b)

[z(k) x z(k )T](t)= (—1.)t(2t+1) i/2 u(t) (12)
l'

If we define, according to Rajnak and Wybourne,

M (t; l,lk, l,le)

»' / ly I, l, ly lg
E(kk'; l,le, l,4), (13)

then Eq. (10) reduces to

Ws= —Q(2t+1)iV(t; ill'l') Q (u &'& u, &'&)

B. Perturbations produced by l~ 'l'l"

In this case we also need the tensor y(') whose only
nonvanishing element of the reduced matrix is

in agreement with Eq. (14) of Rajnak and Wybou
The difference in the phase factor (—1)' depends only
on a diferent convention in the de6nition of the scalar
product. Rajnak and Wybourne use the old definition
of Racah, while we are using throughout the phase
conventions of Fano and Racah, ' and in this particular
case their Eq. (6.5).

Now the nonvanishing terms of the product gg will
only have to satisfy the requirement j= r, and therefore,
the effective interaction will contain three-body
interactions

Ws ———P I'(kk', till')(P(u;(k) z;&'&)(z, &'&" u, &"'))
zJ8

u, (") x, (k))(z, &"'&" u. (k')) —g(u;(k) z, &k))

)&' (z.(k') r .u.(k'))+P (u '(k) ' z '(k)) (z (k') T .u. (k')))

(20)
The convenient recoupling formula is now

(A(k) .g(k)) (C(k') .D(k'))

—Q ( 1)k+k'+k" (2ktt+ 1)I/2

X[A(k) X [g(k) X C(k') j(k") X D(k') j&o) (21)

Taking into account (12) and the fact that k and k' are
even, we get

k k' k"
Ws= —Q P(kk'; llll')(2k"+1)

»'I&:"

X (p [u,"& x u, &""& x u, (k')](o&
ZJ8

—P [u, &'& xu, &k"& xu, &k'&j&'&

then
(«II3'(")ll~"i")=1'

g=Q X(k;ill'l") P (z, &'& y;&"&),i' (16)
P [u.&k& x u.&k"& x u (k &]&o&

+.p [u &"& xu (")x u (k )j(o)) (22)

' U. Fano and G. Racah, Irreducible Tettsort'al Sets (Academic
Press Inc., Neer York, 1959).' G. Racah, Phys. Rev. 62, 438 (1942).

7 E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, New York, 1935).



The last three terms in the brackets may still besimplified

by

performin the products [u;(» xn (~"&j(~'&

and [u;{""xu;(~'&j(» by formulas like (12), and then
summing over k" with the help of the orthogonality
relations of the 6j symbols. In the last term we may also
take into account the relation

(u"'u'") = (—1)"l(2/+1).

D. Perturbations yroduced by /'4'+'P+'

In this case,

g= + X(k N/') P (n &'& x {»r)

+P X(k /'/'/'/) P (u {» x (»r) (28)

If we define, as usual,

U(»=P u.(»
where u'(k) is the tensor whose only nonvanishing

(24) element of the reduced matrix is

then the Gnal result is
k k'

W2= —Q P(kk'; //E/') (2k"+1)
kk'k"

X[U&'& x U&") x U{~'&){'&+&(E/')/(2/+1)

XP P(kk' N/')[(U&') U&'))

+ (U&'& U&'&)—E/(2/+1) j, (25)

in agreement with Rajnak and %ybourne.
In these summations, k and k' are restricted to even

values only~ but, k QlRy assume both cvcn Rnd odd
values. It should be remarked, however, that for
k+k'+k" odd the triple scalar products are antisym-
metric, while on the other hand, owing to the symmetry
of P(kk', /EE/') with respect to k and k', they always
RPPcRI' ln PR11S '

[U(» x U(&") x U(&')j(0)+[U(P) x U(&") x U(»j(0) (26)

If the U{» were commutative, the contribution of
these pairs would vanish for odd k', since the U'» are
not commutative, it may be shown that the expressions
(26) do not vanish, but reduce for odd k" to

It can be easily shown that the second term of (28)
is a scalar proportional to X(o)~, and therefore its
contribution to Wmis of the form 2++)) B~(U{~& U{»),
where k is restricted to even values, and A, Bk are em
radial parameters (functions of X(k; /'E'/'/)). The coeK-
cients of these parameters are proportional to those of
the usual Slater parameters and therefore cannot be
distinguished from them empirically. Ke shall not
consider them further in this work.

Since (u;(» x {»r) vanishes identically also for
E=/' (if, of course, nAe'), the first term of g can be
written

g'=Q X(k;/E//')Q(u;(~& x;{»r)

=Q X(k; /E//') (U{'& Z(»r), (30a)

Rnd slmllarlyq

g'=P X(k'///E')g(x (~'& n &'&)

=Q X(k'; E/EE')(Z&'& U&')). (30b)

2 [(U(» .U(AI))+ (U(a') .U(li'))

+ (U(&") .U(&"))j (27)

Therefore the only terms in (25) which actually give
e6ective three-body interactions are those for which k,
k

q
Rnd k RI'c Rll even.

The assumption that the perturbed configuration
does not contain electrons in the P shell was an essential
step in our calculation. Although the calcu1ation of
Bacher and Goudsmit is not explicitly limited to this
case, the same limitation is implicitly contained in their
paper. Their Eqs. (47) and (48) do not hold, for m =A
or e=A, and their Eqs. (46) and (49) do not hold for
n=A or n=8. This oversight is the reason for the
difference in the general rules concerning the structure
of the CBective interaction between their paper and the
present one.

In the following sections the essential assumption
will be that the l' shell is completely full, and we shall
therefore use techniques which are similar to those
used in the theory of holes.

It follows that

Wm ———g P(kk'N/')(U&") Z(»~)(Z(~'& U{'&)

P(kk'; ////') (—1)~"(2k"+1)'i2
kk'k"

X[U(» x [Z(»F xZ(k'))(k") x U(k')g(0) (31)

In order to evaluate this expression, we shall exchange
the order of Z{~&r and Z'"'&. It follows from the sym-
metry of the tensor product that

x (»r xx (i')g()")= (—1))"[x ().") xz (»rj(a

(i«), (32)

but this relation does not hold for j=r, because the
two factors do not commute. In this case we have from
(12) that

[x.(»F x x .{k')](k")
—( 1)))"[x.(ih') )cx.(»F]{0"}+x.(k") (33)
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x&""&= —(2k"+1)'" u(")
l l

complementary con6gurations l"+' ~ and l"+' ~l' and
using the results of Sec. IIC. In this case one has only
to remember that x&0}(22/,22'/) transforms like a tensor
and not like a scalar (Ref. 6, Eq. /4).

+ ( 1)k"{2/0«+ ] )1/2 nr (k") (34)
P P

From (32), (33), and (34) we get

E. Perturbations yrojIIuced by /"'l +'

In this case,

g=g X(k ill'/') Q (x '"T x &"&T) (40)

with

[Z(k) T x Z&k'))(k") Jg i&j

=( 1/ [X "Z j + 1 {3 ) and since again (x,'"&T.x, &k)T) vanishes identically, we

may write

I&"& = —(2k"+1)'" U(k")
l

g=-', P X(/;///'/')(X&»'Z&k}T), (41)

+ (—1)""(2k"+1)'"
l' l' l

and (31) becomes

rr, = —g r&1a' mr)I&21"+1) ~ [0t'&
kk'k"

x [7&k ) x Z(k}T)(k ) x U(k')](0)+ { 1)k"+1

(3()) W2 ———-' P P(kk' ill'l') (Z&"}T.X"& )(Z"& Z&k'). (42)

Using (21) and (35), we get

(7(k)T.7(k)T) (7(k') .7(k'))

= P (2k"+1)"'[X&k)T x [Z("x Z&"&Tj&""}x X&k'))&0)

X(2u"+1) [U(k) x U(k") x U(k') j(o)
l l l'

+.g( 1)k"(2/err+1)l/2[7(k)T x X(k") xZ(k'})(0)
I/, / I (43)

t u'u" Changing again the coupling of the first term and
+ (2k"+1)

l' l
[U ' xU " x U' '3"' changing also the name of the summation variable in

the second term, we have
37

When acting on the con6guration l'4'+'P, the first
term vanishes because the operator X(~)~ wants to
transfer an electron from the l shell into the l' shell
which is already filled. When acting on a closed shell
the operator U"k"& also vanishes unless k"=0; in this
last case it is a scalar and has the value 2(2l'+1)"".We

may therefore write

(Z(k) T .X(k)T) (Z(k') .Z(k'})

—g([Z(k)T xZ(k')g(1}.[Z(k)T xZ(k')g(O)

+g(—1)'(2/+1)'/2[X&k)T x X&'& xZ&k')]&0} (44)

By calculations similar to those which led to Eq, (35)
it may be shown that for k+0' even,

U'&k" }=2 (2/'+1) 1/2l)k "0,

and the final result is

W2= —Q P (kk'; ////') (—1)"+'(2/t"+1)

(38)
[X(1)x 7(k') j(k) ( 1)1[Z(k'}x X(1)j(k) (2P+])1/2

O' I, 2 k
X (2/+ 1)'/2 Z&'&, (45)

P

u Yu"
X [U&k) x U(k") x U(k') j(0)

l l l'

—2 P P(/0/0; ll/l') {U(» U&k))//{24+1). (39)

and therefore,

(7(L)T.X&k)T) {Z(k') .X(k'))

—Q([X(k)T x 7(k') j(1).[X(k)T x X&k')g(1})

This result agrees with Eq. (45) of Rajnak and
Wybourne, if two misprints are corrected: The term
1V/)(%', 1I/')/[lj should be preceded by a plus sign, and
the last P(/0/0', ////') should read P(kk; ill/'). The same
result can be obtained by transforming Eq. (30a) to the

+Z([X(k"x Z'k'1(" X'")—Z(—1)'(2/+1)

l'0' /

xj (7(k)T.7(k)) (46)
/'
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E(—1)'(2/+1)
t

k k' t ' k l l'
= 2 (—1)'(2/+ 1)

l l l'
(47)

k' l

then we get

W, =—', X P(44 ;I))')')('(X'" X"')
kI(." t

For the reasons discussed in Sec. IID, when acting on
the configuration /'4'+'P the tensoriai product [Z'"'T
xZ&"'&](" may be replaced by X&'&, and for very

similar reasons the scalar product (Z&"'T Z"') may be
replaced by (4/+2 —S)/(2/+1). If we also take into
account that

where M(k, k') is defined, according to Rajnak and
Wybourne, by

M(k, k') =X(k; //'/"/)X(k'; //'//")/AP. , (53)

According to (21) and to an equation similar to (12),
the erst term is

k k' t
C (1)= —Q P (kk'; ll'll") (2/+ 1)

kk't l' l' l"

y[U(&& x U~()) x U(&'&](0) (54)

and reduces, because of (38), to

C(1)= —2 Q P(kk; ll'/l") (U&") U"')/(2k+1). (55)

k k' / ' 4l+2 —A')
(48) The second term is

2/+ 1

C(2) = —& P /kk' //'/"/) (—1)'(2l 1)'»
Introducing the expression (36) of X&'& and remember-
ing also (23) and (38), we obtain

[y,(» x [Z(k)T x 7&k')](t) x y
(&4') T] (0) .

WX= —Q (2/+ 1)M (t; ///'/')

2l+1—l)/'

X Z (u"" u&'")-(-1)'
i&j' 2l+ 1

as in Secs. IID and IIE, the product [Z("» xZ()'&]«&

may be replaced by X"&, and because of (36), (24),
and (38), we get

2/+1 —Ar P(kk; ill'l') k k'
C(2)= Q P(kk'; ill'l")( —1)'(2/+1)

2l+1 ) 2k+1 kk't l l l'

which is equivalent to the results of Rajnak and
Wybourne.

F. Perturbations produced by l"'+'l~l"

In this case,

g=Q X(k;//'//")Q(u;("'w, ('&)

+P X(k; //'/"/)P (y, "'z (0) T), (50)

where w(~& is the tensor whose only nonvanishing
element of the reduced matrix is

XQ [y,(» x u, (4) x y, ())')T](0)

—2g P(kk;///'/")P(y (~ y (~& )/(2k+1). (56)

Since for i= j the product [y,'"' xu, ("]'"' vanishes
identically, and for jWi the tensors y,'~' and u, ("
commute, we have

g [y (k) x u(4) x y.(k'),T](0)

[y, (&) x u, (o x y, (&4')T](0)

(~'/'ll«(» ~~N"/") =1. (51) = (—1)' Z Lu"" x yJ'") x y&'"')T](0& (57)

The effective interaction therefore contains three terms;

W0 ———P P(kk'; ll'/l")g (u,'") w, &"') (w,'"'& u, &'&)
i/8

—P P(kk';///'/")P(y, ("& z,'"& )(z, '"' y,
'"'& )

—Q M(k, k')Q [(y, &'& z, &"T)(w, ("'&T u, &")

+ (u, (k') .w .(x') ) (z, ( &t') . y .(x) T)] (5'&)

The tensor product [y, &"& xy &"'&T]&'& is given by a
formula similar to (12), while the scalar product
(y "' y,'"' ) has the value (2/+1) ' therefore,

C(2)=2+(—1)'M(t ill'l") Q (u, &" u &'&)

—2Q Q P(kk; ll/'l")/(2k+1) (2/+1) . (58)
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The third term is

C(3)= —Q M(k k') (—1)'+'(2t+1)'"
kk't

xx([y &4»& [s«»" ««'&~]&'& && U&'&] &'&

+[c&4'»& [&&.&&'»
& s&&&]& »& y. T&&]&)& &(5&&)

acting on the left on such a configuration, we get

C(3)= P M(k, k')(—1)'+'(2t+1)
kk't

k k' t
X Py. (s) )t y, (os'

&& ll(s )](s)
P ~

+[ll(s') )& y. (i& )& y.(s)r](s)
/ )

=2 Q M(k, k')(—1)'+'(2t+1)
By calculations similar to those which led to Eq. (35)
it may be shown that

kk't

k k' t k k' t

(Z(s)T &&W.(ih'&T](t) —( 1)s+tPW (s')T )&Z(s)T](t)

k k' t—(2t+1)'" y/('», (60a)
)r

X (ll(s&) . fl(s&))
P

k'
=2 Q M(k, k') (U&'& U('&). (61)

and

Lw. (s') )&Z(s)](i)—(—1)s+ijZ( ) )&w ( ')](/&

(9t+ 1)1/s
PI
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Z'k'~ vanishes when this operator acts on a configuration
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The hyperfine structure of the 3/t'4ss 'f"I/s, s/s, v/s, a/s and 3d'('L))4s 'Di/s, s/s, s/v, z/s 9/Q levels in Vn has

been studied in detail by the atomic-beam magnetic-resonance technique. Evidence of substantial J, mixing

within each multiplet is found. This paper discusses the experiment itself; the following paper discusses the
theoretical considerations, corrections to the raw data, and the Anal results.

I. INTRODUCTION

A TOMIC ground-state hyperfine-structure (hfs)
studies have been made for many atoms in recent

years, and values of the nuclear moments have been
extracted from the data. While these studies are of

great value, their interpretation is not always so
simple as it might appear; In particular, the composi-
tion of the atomic state (which must be known for the
extraction of nuclear moments) is dificult to estimate
reliably unless several states of the same configuration
are examined and compared. In the case of the nuclear

*Work. performed under the auspices of the U. S. Atomic

Energy Commission.

electric-quadrupole moment, measurement in several
states of at least two different configurations is desirable.

An attractive atom from this point of view is V",
which has a nuclear spin of —,'. Because of the low Z, the
3d electrons involved in the low even-parity configura-
tions behave nonrelativistically, and the departure from
the LS limitis very small. For the purposes of the pres-
ent experiment, the 3d'4s' P3/Q, {j/Q,7/2, 9/2 and 3d'4s
DI/Q 3/2 5/Q 7/2, r1/2 levels were suKciently populated by

thermal excitation alone.
The principal results of the investigation are, in

addition to the many hyperfine-interaction constants
and electronic g factors measured, the value of the
ground. -state nuclear electric-quadrupole moment as


