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Phase Transition of Perovskite-Type Ferroelectrics*
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Using the Hartree and time-dependent Hartree approximations, static and dynamic properties of a model
for a perovskite-type ferroelectric near its transition temperature are calculated. In this model only one ion
per unit cell is treated dynamically. The influence of the rigid frame of the other ions is idealized by an
essentially anharmonic single-particle potential. The ions in diAerent cells interact via the dipole-dipole
force plus a repulsive force of shorter range. This model gives a phase transition of second order. The tem-
perature dependence of the "soft" modes, of the Debye-Wa11er factor, of the displacement correlation
functions, and of the specific heat is calculated, and the connection with static properties, such as the Curie
constants, is established. The critical transverse modes are split in the presence of the spontaneous or an
externally induced polarization. Finally, the model and the results are discussed.

I. INTRODUCTION

'HERE are mainly two different approaches
for a microscopic description of the strongly

temperature-dependent properties near the critical
temperature of a displacement-type ferroelectric like
BaTi03.

In the first one, based on the work of Devonshire, ' an
essentially anharmonic potential well for the motion of
the Ti ion is assumed. By calculating the free energy,
equilibrium quantities such as the static dielectric
constant and the spontaneous polarization are expressed
in terms of the potential parameters. In the second one,
following Anderson and Cochran, 2 the connection of the
phase transition with an instability of the lattice is
pointed out. It is assumed that the coupling parameters
are temperature-dependent, leading at a finite tempera-
ture to a vanishing transverse-optical frequency in the
harmonic approximation, which is still taken to be valid.
Then the consequences of this "soft mode" on other
quantities near T, are considered.

A microscopic theory of the phase transition, of

course, should describe the static as well as the dynamic

properties in a unified and consistent way. It should

especially show how the temperature dependence occurs
as a result of the anharmonic terms in the temperature-
independent Hamiltonian. The calculation of lattice
vibrations in the presence of essential anharmonicities is
diflicult, and the harmonic approximation is, perhaps,
not the appropriate starting point. '

We have investigated a very simple —in fact an
oversimplified —model which a11ows in the molecular-
field approximation a unified quantum-mechanical
description of a ferroelectric phase transition of second
order. In the present paper we report the results.
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2 P. W. Anderson, Phys. Rev. 78, 341 (1950);W. Cochran, Phys.
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In Sec. II we give the formulation of the model: one
dynamical ion per unit cell, in the rigid frame of the
other ions, which acts as an anharmonic potential. The
interaction is taken to be quadratic in the displace-
ments. Section III contains the calculation of equilib-
rium properties in Hartree approximation. The spon-
taneous polarization, the static dielectric constant, and
the specific heat are primarily considered. This section
does not give any essentially new results. It is only a
slight modification of Slater s calculation, so as to in-
clude quantum effects. In Sec. IV we consider response
functions of this model on both sides of the transition
temperature. They are used to give expressions for the
displacement correlation function, the Debye-%aller
factor, and the singularity of the specific heat. All
explicit calculations are performed for the high-
temperature side of the phase transition. Section V con-
tains a critical discussion of the model and the results.

II. FORMULATION OF THE MODEL

The most simple crystals showing ferroelectricity, for
example, BaTi03, have the perovskite structure. In the
nonpolar phase the Ba'+ ions form a simple cubic lattice
having the 0 ions at the centers of its faces and the
Ti4+ ions at the centers of its cubes. Thus every lattice
site is a center of reAection symmetry.

At about 120 C a phase transition into a ferroelectric
state occurs: The Ti ion moves out of the center of the
cell parallel to one of the edges of the cube. This change
in position of the Ti ion with respect to the Ba frame is
accompanied by a sudden tetragonal deformation of the
entire lattice, thus leading to a phase transition of first
order. Similar transitions occur in other perovskites.

In our calculations we shall neglect the deformation of
the cell and all electronic polarizations of the ions. In
fact, we shall treat only one ion (Ti) per cell dynamically
in the rigid frame of the others. The eBective interaction
between these ions is taken to be the usual dipole-
dipole force and an additional harmonic two-body
interaction of shorter range. Ke neglect the coupling of
the charged particles with the photons.

'For a review of ferroelectrics see F. Jona and G. Shirane,
Iierroelectric Crystals (Pergamon Press, Inc. , New York, 1962}.
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PEROVSKITE —TYPE FERROELECTRICS

The Hamiltonian of the system is thus

H=Z E—(h'/2m)V;2+W(X;)]

+-,' P V;;(X;,X;),

3

V,,= P T„,(R;;)X;,X,„ iAj (2.2)

where X; describes the position of the dynamical ion
with respect to the center of the ith cell, m is its mass,
and W(X;) is the single-particle potential acting on the
ion. It is produced by the interaction with those ions
which constitute the rigid frame. So it contains the re-
pulsive short-range forces between the nearest neigh-
bors and is therefore essentially anharmonic. The inter-
action between the dynamical ions is assumed to be a
quadratic form of the displacement components:

long as the sublattice of the dynamical ions remains un-
distorted, no matter whether the crystal is in a nonpolar
or a ferroelectric state. They are, however, important
for stabilizing the cubic sublattice, and therefore for
the question of whether antiferroelectricity or an even
more complicated lattice structure occurs.

III. HARTREE APPROXIMATION FOR
EQUILIBRIUM PROPERTIES

A. Hartree Equations

For the calculation of the equilibrium properties we
use the Hartree approximation for the density ma-
trix, i.e.,

P(Xg X~, Xg' . XN')=g p, (X;,X ), (3.1)

y, 8=1

(3 2)

From the equation of motionT=T'+T'

where pi is the single-particle density matrix of the ith
with R;,=R;—R, , where R, is the position of the center ion and is normalized to

of the ith cell. The interaction tensor consists of two Tlpi= f .
parts:

where T' describes the dipole-dipole interaction

(2 3)

(J„,is the Qronecker delta function and e is the effective
charge of the ion. ) The residual effective short-range
interactions between the dynamical ions are contained
in T'. We assume that these forces are invariant with
respect to translations of the sublattice. Because of the
periodicity of the whole lattice it is convenient to use
instead of T its Fourier transform

LH, Pl=0,
we get the Hartree equations

with
[H;,p,]=0,

H;= —(h'/2m) 6,+W(X;)+V;(p)

(3.3)

V;(p) = P d'X; p, (X;,X,)V;,(X;,X~) .
(3.4)

As is well known, the solution of Eq. (3.3) with the least
free energy has the form

(2,4) with
p;=e ~~*/fTr(e ~~*I),

P= (ksT)—'

(3.5)

(v is the volume of the unit cell). The Fourier transform
F' of T' is nonanalytic at &=0,' whereas the corre-
sponding F' vanishes at K=O as a consequence of the
assumed invariance of this part under translations of
the sublattice, which means

(4=Boltzmann's constant, T= temperature). Equa-
tion (3.3) has always solutions, where p; is independent
of i. We assume that the equilibrium state has this form
and therefore drop the index i wherever it is convenient.
In this case the Hartree potential corresponds to the
local Geld of a simple cubic lattice of dipoles with the
moment vP and is thus given by

V(X)= —e*p X, e*=4vre/3.
whenever the displacements X;„are independent of the
cell number i. Therefore we obtain The polarization P is dehned as

(3.6)

5
J '(0) =—P r„,'(R„)=0.

m

P= (e/v) Tr(pX). (3.7)

Thus the equation for the self-consistent determination
of P can be written

The two-body forces contained in T' do not change
their contribution to the total energy of the crystal as

' M. H. Cohen and F. KeRer, Phys. Rev. 99, I128 (1955).

e Tr fX expL —p(HO —e"p X)j}P=-
Tr(expt —p(H, —e*p X)j}

(3.8)
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This equation abvays has the trivial solution P=o,
which describes the nonpolar state. It is easy to include
an external electric 6eld E in the Hamiltonian. Then
we have to replace Ho by Ho eE—X, making the equa-
tion of self-consistency

At the critical temperature T„defined by

1—(4~/3)n(T, )=0, (3.16)

the dielectric constant has a pole, indicating an insta-
bility of this phase. In the vicinity of T, the dielectric
constants are described by a Curie-gneiss lavr:

(3 9) e(T) = C/(T T,)—, T)T,
e,(T)=C,/(T, T), —T& T,

(3.17)

(E+ & p) X)]) {310) with the Curie constants

B. Dielectric Constant

The dielectric tensor e is dehned by

P'= (1/4sr) (e—1)E, (3.11)

where P' is the change of the polarization induced by
the field E. We determine P' by the change p' of the
density matrix

P'= (%) Tr(p'X).

In order to determine the temperature at which a
phase transition into a ferroelectric state may occur,
we consider the response of the system to a small macro-
scopic electric held K.

C= —{9/4sr)(dn/dT)r. ',
C,= (9/4sr)(dn, /dT)r, '. (3.18)

&o=Boo+&s,

&so= —&'/(2sss) &s+ (s'ssses) X'. (3.19)

The calculation of the static properties is thus reduced
to a single-particle problem, namely, the solution of
Eq. (3.12) and the subsequent determination of the
tensor of polarizabihty for the unit cell. These problems
are already treated by Slater and Triebvnsser for
classical models and partly by Barrett for a quantum
system. '

To get an explicit expression for P(T) and n(T) we use
the single-particle Hamiltonian

Taking
bH= —eX K

IIj is the essential anharmonic term

= br(Xs'+Xs'+Xss)
+2bs(Xr'Xs'+Xi'Xs'+Xs'Xs') (3 20)into account, we get from Eq. (3.3) the linearized

equation
PI,p']—p*[P X, p]= p[X E, p].

For a Geld K parallel to an axles of the tensor of polanza-

bility for the unit cell,
E'=E+(4 /3)P, {3.21)

me transform to coordinates

X'= X—(p/~o )E'.

Then ere obtain up to erst order in H~

es fp f. —
X p'Xp '.

ap g~ —Ep

(3 12) which will be treated as a perturbation. In calculatiilg«f Eq. {3.10) as a function of

The solution of Eq. (3 9) is

n„(T)
E"

1—(4sr/3) n, (T)
(3.14)

Z(E') =Zo(E') —Tr(exp[ —@ho(X')]EX,(X)),
=Z(0)+ [-',sno —2(o'/p')no'(3br+2bs)(Xi')o]E"

—(o'/p')no'[bs(Ei"1 Es'4+Es")
+2bs(R"&s"+&i"~s"+K"&s")]) (3 22)

In (3 13) g and f are the eigenvalues of H and p,

respectively, and J ~" is the matrix element of X"
etvreen the corresponding states. 0'„ is the eigenvalue of

n for the r djrectjon. Compariilg Eq. (3.14) aild Eq.
(3 11) we get the usual Lorentz-Lorenz formula for the

eigenvalues of the dielectric tensor:

1+(grr/3) n, {T)

1—(4sr/3) n, {T)
(3.15)

Because of the cubic symmetry of the perovskites in the

nonpolar phase, all a, are equal:

sphere 0.0 is the temperature-independent polarizability
of the harmonic oscillator of Eq. (3.19).

Ao= e MS@ (3.23)

(Xis)o
——A/(2me) coths'Plass (3.24)

is the mean-square displacement of a harmonic oscilla-
tor. In 6rst-order perturbation theory it is only in this

' J. C. Slater, Ref. 1; S. Triebwasser, J. Phys. Chem. Solids 3,
53 (1957); J. H. Barrett, Phys. Rev. 86, 118 I', 1952). See also:
P. K.. Kozlovsk. ii, Zh. Eksperim. i Teor. Fiz. 30, 766 (1956)
t English trsrrsl. : Soviet Phys. —JETP S, 661 (1956)g; Fis. Tver.
Tela 2, 1733 (1960} t English transl. : Soviet Phys. —Solid State
2, 1566 (1961)g.



quantity that a quantitative difference between the
clRsslcal ancl. thc quRQtuQl systelns appears ln thc cal-
culation of the static properties. Apart from that, the
basic equations, (3.9) and (3.22) are exactly the same
as in the classical case. For T&T, we get three solu-
tions for the spontaneous polarization in the absence
of an external Geld —in the directions (1,0,0), (1,1,0),
and (1,1,1). If b2&bg, the solution with the highest
spontaneous polarization at a given temperature, and
therefor"- -as'we shall se"- -the stable one, is the 6rst
one) vvhich is observed, for example, in BRTi03, Using
Eqs. (3.22) and (3.9) we obtain the polarization

P'(T) = ( 3/4') '(8'/45'n(('b]) Pn 3/(—47r)j, (3.25)

%'here 0'. ls thc poIRllzRblllty of thc unpolarized unit
cell. :

~(T)=no—4(v/e')ao'(34+2b2) {XP)0. (3.26)

From Eqs. (3.22), (3.10), (3.9) and the definition

%'herc Fo ls thc frcc energy of the system without inter
action and, therefore, a smooth function of the tem-
perature. Thc cxpcctatlon value of thc iIlteraction
energy is to be taken with the Hamiltonian of Eq. (3.30).
Using Eq. (2.2) we get

x(x.,x,.+&(x., x—.„)(x„x—„))„), (3.32)

x„„=&x„„)),.
In thc Hartree approximation we neglect the correla-
tion bet%'een thc dlsplRccIQcnts of dlGercnt partlclesq
described by the second term in Eq. (3.32). The re-
Inaining 6rst term is just the static energy of a lattice
of dipoles. This contribution Py to the fI'cc energy thus
vanishes beyond the critical temperature. Helot T, it is

E 4' ' dX
~~(T) =—— —P P„T),

ge (T'}
(3.33)

yg2g'Pp T,' h~
C= -- slnh'

(1+24/3S )h'ih 2kaT.)
(3.28)

C.=L~./(b. b)jC. -

we get the polarizability for T& T„where the unit cell
ls polarized.

n„=—2m+ 9/(4s.),
-,=-Db -b.)/b. ]-+3b./(4-b. )

(3.27)

(The subscripts
~~

and J denote the directions parallel
and perpendicular, respectively, to the spontaneous
polarization. ) The Curie constants of Eq. (3.18) have,
then, the values

+here X, is the coupling constant at which the spon-
taneous polarization vanishes:

1—X.(T)(4~/3)n(T) =0. (3.34)

Equation (3.33) shows that the free energy and its
temperature derivative are continuous at T,. Thc phase
transition thus is of second order. The phase with the
highest spontaneous polarization gives the least free
energy and therefore is the staMC one. The second deriva-
tive of Jig, however, and consequently the speci6c heat,
has a 6nite discontinuity at T,. Using Eqs. (3.33) and
(3.34), we get the discontinuity

T, d(P')
hC„= —T, -Fi= Ev2m ——

8T~ C dT

F This expression agrees with the result of the phe-
(3.25) is nomenological theory of ferroelectrics. '

3 ~ 3e'
P„2(T)= — — (T,—T) for T,&T. (3.29)

4x' 4v 0!0 byC

C. Thermodynamic Quantities

In order to cakulate the free energy E near the transi-
tion temperature it is convenient to introduce R cou-
pling constant X Rnd to use the Hamiltonian

Ai TUxle DepeMCQt Hartree EguatloQ aQd,
the General Solution

We now consider the reaction of the system to small
external 6elds, described by the contribution X(t) to
thc Hamiltonian:

Bc(t)=+8 (&),

'dP
~(T)=~o(T)+ —&~)~

X

~-(r)=.+'.(~). (4.2)

Herc p ls the equlhbrluIQ density vrhlch vms the sub-

which for j =1 agrees with Eq. (2.1).The free energy is where 8 acts only upon the mth particie. ~e write the
then given by density Inatrlx
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ject of the last section, and p is the deviation caused

by the external Geld. The linearized equation of motion
fO1 pgg 1S

B. Critic, 1 Modes

From Eqs. (4.7) and (4.9) we find the secular equa-
tion for the resonant frequenciess to(K):—s~ p =[p, j -]+[8-,&]+[pA]. (43)

I B„)+Qn„,(co(K))F,((K) I

=0. (4.11&0 is the change of the Hartree potential of Eq. (3.4)
due to the change of all densities j;.Fourier transforma-
tion of all quantities with respect to time

g(&) =— d~ e '"g(~)
2' F„(K)= fiP„,'+f,P„,' (4.12)

The tensor 0.„, is diagonal in the cubic as well as in the
tetragonal phase. For long waves (k —+ 0) the tensor F
consists of a longitudinal and a transverse part:

(4.4)

p enc Rmg(K)
g x

(4 5)
and

P„,' =K,K,/Ks, P„'=8„—E„E,/K', (4.13)

f( 87r/3——, f,= —4m-/3. (4.14)
yield ln the representation ln which p and B are
dlagoIlal

(Ep E-+—~)(nl p(K ~) I &&+(f- fp)—
to 2

&&
—P F„,(K)X p" P Xvs'{VIP(K,to) I ti&

If K js parallel to one of the edges of the unjt cell, the
decomposition [Eq. (4.13)] of F is possible even for
finite K, with ft and ff, now depending on. K'. For the
sake of simplicity w'c shall 1cstrlct thc dlscusslon to thcsc
cases. The secular equation for longitudinal and trans-
verse waves, respectively, then reads

=(fp—f-){nl~(K~) IP& (46)

The simple structure of the harmonic interaction makes

it possible to give the general solution of Kq. (4.6):

1+n„{T,to„')f~(Ks) =0,

1+n, (T,(o,')f((K') = 0,

{4.15)

(4 16)

&nl p(K,~) IP&=- — ( II~{K,~& I&&

Ep E~+M——
+—P X.p"I'„t xK, (K, )to. (4.7)

where K is chosen along the r axis and r~s.
Comparison of Eq. (4,16) with the crjtjcal equation

[Eq. (3;:16)]shows that at, T and K=() the frequency
of transverse waves vanishes. The temperature de-
pendence riear T, of the critical mode at K=o is easily
derived from Eq. (4.16):

Here the 3-dimensional vector X is defined by

X(K,co) =P(pl p(K, to)
I b&Xs, {'" w~ere

(4.17)
Bc(8

to,s(K=. O) = —— (T T,), —
AgT g, „o

and, as is seen from Kq. (4.6), it is the solution of

Z B.t+2 n-(~)F.~(K)]«%',~)

=P Xp " {nlII(K,(o)IP&, (4.9)
ap Ep E~+07—

Bn, e' (fp f)—
Ix-p I' (4»)

t)(to ) r„ra=o s ~P (Ea—Ep) s

is independent of s. Approaching T, from higher tem-
peratures, there is just one critical frequency. Using the
expression Eq. (3.18) for the Curie constant C, its tem-
perature dependence can be written as

where we have introduced the frequency- and tempera-

ture-dependent polarizability of the unit ceH oo'= 9(T T.)/{4ttCA), T)T,—. (4.19)

e' f,—f.
n„,(to) =—P — X p"Xp '.

'0 E E~p Go

(4.10)

n(0) cojncjdes with tlM defilljtton [Kq. (3.1/)] of the

static polarizability.

7 The time-dependent Hartree equations mere previously used in
connection with lattice vibrations by W. Brenig j Z. Physik 171,
60 (1963)]and D. R. Fredkin and N. R. Werthamer LPhys. Rev.

138, A1527 (1965)g. For an application to a ferroelectric model

see R. Brout, K. A. Muller, and H. Thomas (to be published).

For temperatures below T, and for those directions of K,
which we consider here, we get two different frequencies
of the critical transverse modes, according to whether
the polarization of the wave is parallel (toi&) or normal
(to,) to the spontaneous polarization. As in the nonpolar
phase [Eq. (4.19)]we write the frequencies in terms of
the corresponding Curie constants in the ferroelectric

8 The e1genfrequenc~es of a cubic array of harmonic dIpoles at
T=0 are discussed in U. Fano, Phys. Rev. 118, 45I I,'1960).



state (3.28):

co) P =9(T, T—)/(47rC(iA), T(T, (4.20)
ar, '= 9(T.—T)/(47rC, A),

with the same constant A as in Eq. (4.19).
The K dependence of the resonance frequencies fol-

lows from the secular Eq. (4.16):

nance frequencies, since the polarizability 0. is changed
by the induced polarization. In the secular equation,
Eq. (4.16), we have to replace n(T, ~') by n(T, (02,E).
For ~'=0 this function is easily calculated in the case
of the model Hamiltonian LEq. (3.19)] using Eqs.
(3.22), (3.10), (3.9) and the definition

n, (E)= BP„(E)/BE,

df (o)
co,2(K') =(e,'(0)—K'

dE

Bn,(o) 2(0))
&«.{~.'(0)) fi(o)

8(~')

As an example we consider the case of a nonpolar crystal.
There the external 6eld causes a splitting of the other-
wise degenerate critical mode. At a temperature where
the frequency of the critical mode is low enough to

(4.21) justify the static approximation for the derivatives of
the polarizability, we obtain from Eq. (4.16)

In the limit T-+ T, the K dependence of all critical
modes becomes the same:

cv, '(K2) = —K'f, '(0)n(T„(0=0)/f, (0)A . (4.22)

Ke consider
df, (K')

fi'(o) =
dK' x=0

as another adjustable parameter. Its actual calculation
requires knowledge of the effective two-body forces,
which act in addition to the Coulomb forces. In fact,
the dipole-dipole forces alone would give a negative
value for f, (0), indicating that the critical mode for a
dipole lattice has a finite E value. That means that a
simple cubic dipole lattice shows antiferroelectricity
rather than ferroelectricity no matter what the an-
harmonicities of the single-particle potential are. '

For crystals, where the anharmonicity of the single-
particle potential and hence the temperature dependence
of the polarizability of the unit cell are small, it seems
suKcient to use for n(co') and its derivatives with respect
to the frequency the values for the harmonic oscillator.
Ke then obtain

A R =QOE 6 —N

( )
an( ')/8(~') =

6 —M

Pll't'tlllg tllcsc cxpI'csslolls lllto Eq. (4.21) wc find tllc E
dependence of the "soft mode":

(0,'(K') =(o,'(T, K=O)
—K'(fi'/f, )l e'—(0,'(T, K=0)j, (4.24)

where the value of ra, ' at K=O is given by Eq. (4.20)
with

cf =no/e

Bn„(T, (d =0, E) Bn„(T,(o',0)

a(E') a(E') 8((d )

8(M.')

which gives, in terms of the potential parameters,

8(~i(') = 12m'n04bI/(e'A),
8(E')

8(&OI ) '

=4e'no'b2/(e'A ) .
8(E') K,r

(4.25)

Using

)(»" (&
—~') =8(~-) /ag-(&')

5(A „)i ——TrLA p„(t)),
we get for the Fourier transform of X

8(Plp(K, (o)ln)
X»(&,~) =Z(nl~ I&& (42&)

aP Bg(K,co)

The Fourier transform of the correlation function of
the unperturbed system

C. Resyonse Functions

Prom P(E,&v) of Eq. (4.8) it is easy to obtain the usual
response functions. %e take the external perturbation
8(t) LEq. (4.1)] to be of the form

II-(~)=~-(~)&-,

where 8„is a single-particle operator acting on the mth
particle, and g is a c number. Then we have

(nl&(K,~) IP)=g(K,~)(nl&IP&

Let A„be any other single-particle operator and (A„&i
its expectation value at the time I,. Then the response
function X~~"" is defined by

So far we have only discussed the frequencies of the
system without external 6elds. Application of an (A (t)B (/)) =
external static electric field, however, changes the reso-

9 Compare: J. M. Luttinger and L. Tisza, Phys. Rev. 70, N4
(1946).

ge iar(i—i~) P e—ac (R~-R~)g (K +) (4 28)
X
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is known to be connected with the analytic continua-
tion of the response function by'0

gAe(It. ,(o) = 2i/(1 —e-e )
X{XAe(K, 10+zrl) —XAe(K118—zzt) }& (4.29)

In this way we do not neglect the whole anisotropy of the
polarizability but only the mixing between longitudinal
and transverse waves.

Equation (4.30) now reads

with zt =+0.

f. Dzspiacezzzerzt Correlatioiz

We set A=(2:"—x") and 8=(2."—z'). Then

n;
x (K(u)= —p P

e' '=o 1+n, ;

with f3 fi, f——i f2 ——f„—a—nd finally we get

(4.33)

x„(K,(8) =xAe(K, M)

describes the change of polarization induced by an ex-
ternal electric field, whereas the corresponding g„.(K,a&)

of Eq. (4.29) gives the frequency spectrum of the
fluctuations of the spontaneous polarization with wave
vector K. From Eqs. (4.9) and (4.27) we obtain

x„,(,Kco) = (2/82){n—nF(F+—FnF) 'Fn}„, (430)

where n and F are the matrices defined in Eqs. (4.10)
and (4.12). In order to calculate the expression in curly
brackets we have to invert the matrix (F+FnF). This
is particularly simple if K has the direction of a principal
axis of a, the result being

(F+FnF) '= P'+ P'
l t&&1 E t t&& t

In the general case, below T, the matrices Ii and 0. do
not commute. For the sake of simplicity we shall, how-

ever, neglect this complication by using instead of 0.

2' v

8-(K,~)=,
e'(1—e &") 3 n,'fee;„

X {b((o+a&,„)—5((o—(8 )}P &"(K) (4 34))

The quantities f, are functions of K', and the n; de-
pend on T, io2, and the direction of K. In Eq. (4.34)~

we have used the abbreviation

n''= L~/~(~')]n'.

The positive frequencies co;„depend on I and are the
roots of

1+m, (co2)f;(K') =0.
We have discussed them for special directions in the
previous section.

Debye Wailer Fa-ctor. We now use the function g„,
LEq. (4.34)] to calculate the temperature dependence
of the Debye-&aller factor. It is usually written in the
form exp( —2W). W is a function of the momentum
transfer x and is given by

n= P'nP'+P'nP'

which can be written as

n =n'3P "'+niP '"+n2P &" .

(4.31) W=((u u)2)=g zz,2(u„2),

where I is the displacement of any ion:

(4.35)

-O 0 0-
p(»= p

'-0 e2es e~'

(e2'+e3'),

ay= o,2e3' nae2 e2 e3

P (2) y y (0) y (j)

Here 0.0 is the nontrivial eigenvalue of I' o.I"and 6&,62
are those of I"nP' while P") E"(" and P(" are the
corresponding projection operators. Choosing the
system of coordinates so that the spontaneous polariza-
tion —if any —is in the (1,0,0) direction, we give

explicit expressions for these quantities in terms of

K/(&[ = (ei,e2,83):

~)g =cree) &0=~ &rer )
n (0)

I =S —X

The definition Eq. (4.28) of g together with Eq. (4.34)
yields

(u„')= — der Q g„(K,18)
2+AY

'V CXs

ge x i, v ~~ f&4v
coth —P„„&'&(K).

2T

This expression is a decomposition of the mean-square
displacement into the contributions of the normal
modes. As we are interested only in the strongly
temperature-dependent part near T„we pick out the
contribution of the critical modes with frequencies ~;o,
which is

n2= Lnl(81' —83')+n281 82 +n381 83 ]/
t (82 83 ) +81'(e2 +83')j.

I V. L. Bonch-Bruevich and S.V. Tyablikov, The Green's FiInc-
tion Method in Statistical Mechanics (North-Holland Publishing
Company, Amsterdam, 1962).

b((u„)2)=—
v 2 cx'2T

, ZZ
E82 x '-in f, ;oi32

X coth P„„"&(K). (4.36)
2T 2T
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The calculation of this part still essentially involves a
summation over the whole Brillouin zone, whereas we
have discussed the spectrum only for small K. For a
rough estimate of b(u, ') for T)T, we take the spectrum

4Z'
g K (4.37)

which is valid for small K near T, throughout the whole
Brillouin zone, a volume which we mill approximate by a
sphere of radius K= (6rrs/v)'ts. For simplicity we fur-
thermore replace in Eq. (4.36) the expression in curly
brackets by its low-frequency limit 1. Doing the same
with a; and n and neglecting the K dependence of f;
Gnally leads to the result

A(u, s)= (2v'krr TK/3rr'e'f ')(1—y arctany ') (4 38)

Again we restrict the explicit calculation of g„, to the
case T& T, and use the spectrum given by Eq. (4.37)
throughout the whole Brillouin zone. It is convenient
to use coordinates where R= (R,0,0).Then g is diagonal:

g„(R)= g,b„
There are no correlations between diferent components.
Because of the axial symmetry the correlations between.
components perpendicular to R are equal:

g».=gS= g3

The result of straightforward integration in Eq. (4.41) is

g„(R)=2 const)& (1+2/KoR)e ~on

with

4~C g'E'

Equation (4.38) yields at T. a peak of finite height:

(1 e—Kon)

(KoR)'

52Tc
const. =

4rr esfr'

E, (4.42)

h(u„s) =2vskeTg'/ 3rrsefs, '. (4.39)
The quantity Eo vanishes at T, and so does the expres-

Our approximations are restricted to the case that the s;on Fq
temperature is near T„so we can write the displacement components parallel to the distance

(4 40) vector R. The corresponding result for the components
perpelldlcula1 to E is

We see that h(u„s) decreases with an infinite slope as
the temperature increases. According to Eq. (4.35),
this gives rise to a dip in the Debye-%aller factor in the
vicinity of the critical temperature. In the ferroelectric
state this dip depends on whether x is parallel or normal
to the axis of spontaneous polarization.

Static Disptacement Correlatiors. The essentially col-
lective behavior of the system near the critical tem-
perature is shown more clearly in the displacement cor-
relation function than in the Debye-%aller factor. We
consider the static correlation function, deGned by

g (R )=((X "—X ")(Xo'—Xo'))

From Eq. (4.28) we find

g„,(R)= Q e'K'n dM g„,(K,(o) .
2m% ~

gg(R) = const. X --',g„(R) .
E.

(4.43)

Because of the transverse character of the critical modes,
there is a strong correlation between the perpendicular
components of the displacements. The range of this
correlation becomes infinite at T,.

Z. DieLectric Tensor

The frequency- and wave-vector dependent dielectric
tensor connects the change P' of the polarization with
the change K' of the macroscopic electric field:

P'(K, oo) = (1/4rr) Le(K,&o)—11E'(K,ro) . (4.44)

Neglecting retardation effects the macroscopic Geld is
given b

E'= E, ,—4rrP'P'.The long-range part is mainly determined by the con-
tributions of small K and co. Thus, near T, we only take
the critical modes into account: Using Eq. (4.9) we can write

2 2

g„,(R)= d'K e'~'" Q
Pes(2rr) ' i=I Q'g 0

pro'o pro* o
coth P„,~'~(K) . (4.41)

So we get
P'=n(1+Fn) 'E, g.

F=rrE1+ f&a+ (f& f& 4rr)P'a j-rE', — —
»» M. Born and K. Huang, Dyeomic@ Theory of CrysIa/ I.attics

(Clarendon Press, Oxford, England, 1954).
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s 1+(f,+4~)~;
p io

I+
1+fin'. pIt- @ (0)

1+(fi-4s.)np

(4.46)

(4.47)

e, has poles at the frequencies of the transverse modes
and off vanishes at the frequencies of the longitudinal
ones. " For K=O Eq. (4.46) reduces to the usual
Lorentz-Lorenz formula.

and finally

e(K,pp) = 1+4~a(1+f(n+ (f& f—g 4—7r) P'a) '. (4.45)

We note that the expression in curly brackets vanishes
for &=0. Therefore the dielectric tensor does not de-
pend on the direction in which K goes to the origin.
In the approximation (4.31) for n it is possible to de-
compose t. into a transverse and a longitudinal part:

s=e +e

Here or;,(K) are, as before, the resonance frequencies of
the actual system, that is, for X=1, whereas in Eq.
(4.49) the eigenfrequencies u&„still depend on the cou-
pling constant )i. In the form of Eq. (4.50), Fs(T) no
longer contains any X-dependent quantity. The cor-
respondence between the indices (n, P) and (v) is, for
X=O,

O)iv= ~n L'p ~

In the expression Eq. (4.50) for the contribution of the
correlations to the free energy, the temperature enters
through the polarizability cx, the resonance frequencies
pp;„, and explicitly through P. Because of the critical-
temperature dependence of the low-frequency spectrum,
F~ leads to a singularity in the specific heat as the critical
temperature is approached from either side. Using the
spectrum of Eq. (4.37) we find the singularity of
—TB'Fs/BTs on the high-temperature side of T, :

2 ~ C 1/2

AC„= 1Vks(2+sr) — — — . (4.51)
C fP" T T—

This singularity is quite analogous to the square-root
singularity in the specific heat of a ferromagnet, de-
scribed in molecular-field approximation. "

D. Thermodynamic Quantities

In the vicinity of T, the spectrum of the transverse
collective modes is strongly temperature-dependent.
The corresponding long-range correlations give a con-
tribution to the free energy, which is contained in the
second term of Eq. (3.32) and was neglected in the
Hartree approximation. By means of Eqs. (2.4) and

(4.28) this part can be written as

V. DISCUSSION OF THE MODEL
AND THE RESULTS

Ke have described a microscopic model for the phase
transition of perovskite-type ferroelectrics. The Hartree
approximation for the static properties is merely a
quantum-mechanical derivation of some results of
Devonshire and Slater for the most simple version of
their model. Using the random-phase approximation we
were able to express the frequencies of the "soft"
transverse-optical modes, as well as displacement cor-
relation functions, in terms of those parameters which
were already used in the static theory, except for one
additional parameter, which determines the dependence
of the resonant frequencies on the wavelength.

This model is in several respect insufhcient to give a
realistic description of a ferroelectric crystal: We treat
only one ion per unit cell dynamically, thereby assuming
a completely clamped crystal. The model therefore
showers a phase transition of second order rather than of
first order, as observed, for example, in BaTi03. Vile

neglect all electronic polarizabilities, which are known
to be quantitatively important. '

Despite these shortcomings of the model some of its
features are expected to appear also in a more sophisti-
cated and more realistic theory:

e2: dko i
(I )up~= —2 P — &«(K)

p rs K. 27ri —e &"

X(x„(K,M+irl) —X„,(K, pp —ig)). (4.48)

Using Eq. (4.33) we obtain the corresponding part of
the free energy:

de
Ps(T) =Z

2m' —e t'"

We perform the 'A integration with the aid of the
relation

6(1+)f.a ((us)) = [2)if,n (pp')pp] ' Q b((a —pp„) (4.49)

and get

Ps(T)= E Z
(1) The temperature dependences of the critical

modes in the nonpolar and the ferroelectric phase are
strongly correlated. Their ratio is given by the ratio of
the Curie constants [Eqs. (4.19) and (4.20)]. For the

dGD Coth

XLf,(K) '( ')3-'T V""(K)) (450)
' V. M. Agranovich and V. L. Ginzburg, Usp. Fiz. Nauk 76,

643 (1962) /English transL: Soviet Phys. —Usp. 5, 323 (1962)g.
"R. H. Brout, Phase Transitions (W. A. Benjamin, Inc. ,

New York, 1965).

' dl.
XP Tr

p ) 1+)f;n, (pi+i')) 1+)f,n, (oi i')—
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ferroelectric state this means especially a splitting of
the soft mode according to the ratio of the Curie con-
stants t Eq. (4.20)], which in BaTiOs is C„/C, =3."
This effect has not yet been observed.

(2) The K' dependence of &o,
' is expected to vary only

slightly with temperature LEq. (4.24)] and to be the
same for all critical modes below and above the transi-
tion point LEq. (4.22)]. For BaTiOs the K dependence
of the soft modes is not yet determined experimentally.
For SrTiQg the spectra are measured by neutron scat-
tering" for different temperatures. Using the tempera-
ture dependence of the K=O frequency we obtain by
means of Eqs. (4.19) and (4.25), taking ere ——3/4rr,
&=930 cm '. The dispersion curve for T=90 K to-
gether with Eq. (4.22) gives f,'=0 526 .A'. From Eq.
(4.24) we then Gnd, for 296'K and It =0, d t'o(E')/de'
=7.65)&10 ", in good agreement with the experi-
mental result, which is 7.75)& IO ".

(3) A splitting of the lowest transverse-optical mode
is also expected at temperatures above T, if an external
electric Geld is applied LEq. (4.25)]. This would give
information about the anisotropy of the single-particle
potential t the difference between bt and bs in Eq.
(4.25)] in cases where only the nonpolar phase is
accessable, as in SrTi03.

The result for the Debye-%aller factor is in qualita-
tive agreement with the measurements of the Mossbauer
effect" "of Fe'"' and Sn'" impurities in BaTi03 insofar
as it gives the dip at the phase transition point which
was predicted by Muzikar et al. '8 There are, however,
two reasons why our result is not reliable. Firstly, the
calculation of this quantity involves essentially the spec-
trum in the entire Srillouin zone. Even within this model
we calculated only the long-wavelength part of the

'4%. J. Merz, Phys. Rev. 76, j.221 (1949}."R.A. Cowley, Phys. Rev. Letters 9, 159 (1962}."V. G. Bhide and M. S. Multani, Phys. Rev. 159, A1983 (1965).' V. V. Chekin, V. P. Romanov, B.I. Verkin, and V. A. Sokov,
JET'P Pis'ma V Redaktsiyn 2, 186 (1965} I English transl. :
JETP Letters 2, 11'I (1965)j."C.Muzikar, V. Janovec, and V. Dvorak, Phys. Status Solidi
3, K.9 (&963}.

spectrum and made crude assumptions concerning the
rest of it. Secondly, the Debye-Wailer factor is deter-
mined by the total displacement of the particle —not
only by the displacement with respect to the other ions
of the same unit cell—which gives its polarization. So,
for a complete calculation, we have to take the acoustic
modes into account and, therefore, have to go beyond
a model which keeps the centers of all units cells
completely 6xed."

It might be of interest to compare the discontinuity
of Eq. (3.35) and the singularity LEq. (4.51)] of the
specific heat at the temperature T,. This gives an
indication of the importance of the fluctuations in
the polarization, which give rise to the singularity,
for the thermodynamic quantities. We use for BaTi03,
T,=390'K, C= 1.IDIO' K,

dJ"/dT=2)&10 "C'/cm"I,
and f~' as before in the case of SrTiOs. Then we Gnd
that we have to go as close as 1 C to the Curie point in
order to Inake AC„as large as hC.. The first-order
phase transition, however, has already occurred at
roughly IO'C above this temperature, so that the
fluctuations, in this case, actually never become im-
portant. In fact, an attempt by Brophy and Webb"
to measure critical Quctuations of the polarization in the
case of BaTi03 exhibited only thermal Barkhausen
noise.
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