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Sensitivity of Curie Temperature to Crystal-Field Anisotropy. II. FeFs
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FeF2 is a simple two-sublattice antiferromagnet and has a rutile crystal structure. Its large anisotropy
can be represented to a good approximation by single-ion crystal-field terms of the type discussed in Paper I.
The purpose of the present paper is, 6rstly, to analyze relevant high- and low-temperature experimental
data in order to estimate as accurately as possible the important exchange and anisotropy parameters «r
FeFg and, secondly, to use this information to test the various theories for transition temperature which
were the subject of Paper I. An adequate spin Hamiltonian for FeFg can be written as

X=+ J)S; S,+p Jss; S,—QDS;,s,
tkss sn'0 s

where P (P ) is over ail pairs of nearest (next-nearest) neighbor spina S, and S;, and where P; is over
all spins in the system. From an analysis of nuclear-resonance and magnetic-susceptibility data we find
a=6.5+0.3 cm ', J2——3.85+0.2 cm ', and J1/J2 ——0.1&0.25. The resulting ratio D/J2=1. 7&0.2 takes
FeF2 outside the small anisotropy range for which the theory of Paper I was primarily developed. Even so,
use of the above parameter values in that theory results in a theoretical estimate for the Noel temperature
which is in error by only some 12% for FeFs. This estimate is considerably more accurate than those ob-
tained by use of molecular-6eld theory or by earlier Green's-function approximations.

1. INTRODUCTION

q
KRROUS fluortde ls a sllTlple two-sublattlce antl-

ferromagnet and has the rutile crystal structure
with Fe'+ cations on a body-centered tetragonal lattice.
It is of interest in the present context primarily because
the spin Hamiltonian derived from crystal-6eld theory,
which can be used to discuss the magnetic properties of
this salt, contains sizeable single-ion crystal-6eld aIiisot-
ropy terms of the type discussed in Paper I.The object
of the present paper is to estimate as accurately as
possible the exchange and anisotropy parameters of the
system (by discussing the high- and low-temperature
magnetic properties for which reasonably accurate and
well-tried theoretical procedures are available), and to
use these results to check the as yet completely untested
theories for transition temperature which were the sub-
ject of Paper I. Such a check is particularly important
in view of the widely di6ering results obtained from the
theories as yet put forward to discuss the effects of
crystal-field anisotropy on transition teInperatures.

FeF2 is also of interest since, together with MnF2 and
CoF2, it forms a series of isomorphic crystals which all
exhibit a simple two-sublattice antiferromagnetism at
low temperatures with spins aligned along the tetragonal
co axis. Earlier papers' ' on MnF2 and CoF2 have indi-
cated that for both these salts the nearest-neighbor ex-
change Jr (between netghbonng sprns along the co
axis) is an order of magnitude smaller than the exchange
J2 between next-nearest neighbors. The present in-
vestigation indicates that this surprising feature is
common to the ferrous salt as well. This distinctive
property could make the series Mn'+(3d'), Fe'+(3d')

*Vilork performed at Clarendon Laboratory, Oxford University,
Oxford, England.' G. G. Low, Proc. Phys. Soc. (London) 82, 992 (1963}.

2 G. G. Low, A. Okazaki, R. W. H. Stevenson, and K. C.
Turberheld, J, Appl. Phys. 35, 998 (1964).' M. E. Lines, Phys. Rev. 137, A982 (1965).

and Co'+(3d") in the rutile-structured diQourides a
profitable source of study for theorists interested in
supeI'exchange mechanisms.

Crystal-6eld theory for Fe'+ in an environment with
rutile crystal symmetry has been adequately discussed
by Tinkham4 and by Honma. s The free-ion ground, state
is 'D and the orbital degeneracy is completely lifted by
the rhombic crystal field. Spin-orbit eGects are ade-
quately treated by perturbation methods, the effective
Hamiltonian pertaining to the low st orbital state of a
single ferrous ion being

5C= —DS,'+E(S,' S„'), (1—.1)

where s is the cs axis (see Fig. 1) and where the coeKci-
ents D and E contain significant contributions from
spin-spin interactions within the Fe'+ ion (Pryce') and
are therefore not simply related to the spin-orbit cou-
pling constant ). The spin quantum number is 5=2,
and small (and almost certainly negligible4) quartic
terms have been omitted from (1.1).

Combining paramagnetic resonance and magnetic
susceptibility experimental results obtained for Fe'+ in
ZnF2, Tinkham' was able to show that E 0.1D for that
case. A similar result is almost certain to hold for FeF2
itself because of the isomorphism of ZnF2 and FeF2
coupled with their almost identical unit-cell dimensions.
In Sec. 2 we show that the rhombic anisotropy E con-
tributes to bulk magnetic properties as (E/D)' and may
therefore be safely neglected. It follows that a suitable
spin Hamiltonian for the entire lattice of Fe'+ ions can
be written in the form

X= P J;;S; S;—QDS;.s,

where Jg is the exchange interaction between spins 5;
' M. Tinkham, Proc. Roy. Soc. (London) A256, 555 (1956).
s A. Honma, J. Phys. Soc. Japan 15, 456 (1960).
s M. H. L. Pryce, Phys. Rev. 80, 1107 (1950).
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156 CRYSTAL —F IF LD AN ISOTROP Y. I I. FeF2

S„,=S—a„ta, 5„+=(25)'~'a„,

5 — (2S)'t'a t. (2.2)

Here we have separated the system into its two sub-

lattices, the "up" sublattice (I) and the "down" sub-

lattice (d), noting that nearest-neighbor spins (Ji)
are always on the same sublattice, and next-nearest
neighbor spins (Jp) on different ones.

Since E«D, the ground- state of the system will have
an average spin per site which is close to saturation
(contrast this' with the case for CoFp for which E)D)
and may be adequately described in terms of spin devia-
tions from the Neel state. We therefore -introduce
Holstein-Primakoff spin variables for the "up" and the
"down" sublattices" as follows

the ground- and 6rst excited single-spin states. Con-

sider, for example, the operator S„,'. In single-spin
states

~
5) and

~
5—1) it has eigenvalues 5' and. (S—1)'

respectively. It can therefore be represented by
S'—(25—1)a ta„ in agreement with (2.6). The lowest-

order matrix elements of S„+S„+ and S„S„are
(5 i

5„+5„+
i
S—2)= (5—2

i
S S i 5)= [4S(2S—1)]'i'.

Since (S [ a„a„)S—2)= (5—2
(
a„ta„t

) 5)=V2, it follows

that the proper representation for the rhombic term is

S„'—S„„'=5(1—1/25)'I'(a a„+a ta t), (2.8)

which is to be compared with (2.'7). Similar arguments
obviously apply for the "down" sublattice operators.
The anisotropic contribution to the total Hamiltonian
now reads

Sg, = 5+bdt—bg, Sg+= (2$) '~'bdt

Sz ——(2S) '~'bd.
(2.3) X„„;,=Q(ES(1—1/25)'"(a„a„+a ta t)

where the boson operators a, at, b, b~ satisfy the com-
mutation relations

—D[5'—(2$—1)a„ta„])+Q (—ES(1—1/2S) '~'

[a,a„t]=b„„, [bd, bd ']= bdg, (2.4) )& (bdbg+bgtbgt) D[S' —(2S 1)—bgtbg]—) . (2.9)

with all other commutators zero.
Equations (2.2) and (2.3) may now be used to express

(2.1) in terms of the boson operators. Some words of
caution are necessary at this juncture, however, con-
cerning the representation of the anisotropy terms.
Firstly, we consider the DS,' axial anisotropy terms.
For the "up" sublattice we find

The isotropic exchange terms in (2.1) may be expressed
in terms of the boson operators by direct use of (2.2)
and (2.3) when we find

X, =Q Jr[5'+25(a„ta —a„ta„)]

S„z =S —25g„g„+a„~a~a„a„, (2.5) dd'

+Q Ji[S'+2$(bgtbd bgtbg)]—
and a common feature of many earlier spin-wave ap-
proximations is the assumption that the term e ta„u„ta„
is negligible in the noninteracting spin-wave representa-
tion. This is not so; we should write

+ Z Jp[ 5'+5(a„by+'a—tbdt+a ta„+bdtbg)].
nnn

(2.10)

5„,'= S'—(2$—1)u„"a„+a„ta„ta„a„, (2.6)

where it is the final term on the right-hand side which is
truly a spin-wave interaction or higher-order term, and
which can be omitted in the noninteracting spin-wave
approximation (which we shall use throughout this
section). The neglect of a„ta„a„ta„from (2.5) leads to
spurious anisotropy eRects which are particularly
noticeable for S=—,'for which case crystal-6eld terms
give rise to no anisotropy (since 5,'=5„'=5.'= 4).

Now let us consider the rhombic anisotropy
E(5,' 5„').Direct subs—titution from (2.2) leads to

(5 +5 ++5 —5 —
)

=S(a„a„+a.'a.'). (2.7)

But neither is this a correct representation in terms of
the boson operators. For a satisfactory simple spin-
wave theory, we require that the spin operators should
be related to boson operators in such a way that all the
single-spin operators contained in the Hamiltonian have
the correct matrix elements at least between ancl. within

The total Hamiltonian X=X,„;,+X,„ is readily
diagonalized by the series of canonical transformations
set out in detail in Sec. 4 of Ref. 3. We find eigenvalues

E„,„,=Ep+5 Q(eix+mpx+1)(axbx —cx')'", (2.11)

E,=-,'XD——;XS($+1)[J,(0)—J,(0)+2D], (2.12)

aK= Ji(K)—Ji(0)+Jp(0)
+2D(1—1/2S)+2E(1—1/2S)'i', (2.13a)

bK Ji(K)—Ji(0)+Jp(0)
+2D(1—1/25) —2E(1—1/2S)'i', (2.13b)

where m~K and m2K are positive integers denoting the
number of magnons present in each of the two degener-
ate spin-wave branches with wave vector K, where PK
runs over 2E points in the erst Brillouin zone of the
reciprocal sublattice (X being the number of spins in
the entire lattice), and where

"R.Kubo, Phys. Rev. 87, 568 (1952). cx——Jp(K) . (2.14)
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Here we have written io 4—

JI(K)=g JI exp[iK (r rs)j,

Js(K) = Q Js exp[i K (r—rs) j,
(2.15)

0.5
0.25
0

whelc Qnn(Qn~~) ls a sum ovcl' ail llearcst llclgllbol's
(next-nearest neighbors) r of rs. We observe that the
magnon energies contain the parameter E only as E2
and its effects are therefore negligible for FeF2. Ke shaH

take E=O in all subsequent calculations of this paper.
Putting K= 0 in Eq. (2.11) gives us an expression for

the antiferromagnetic resonance frequency in the form

Ie.I~,=~([Js(0)+2D(1—1/2~))' —[Js(0)3'}I" (2.16)

Fol FeFg %'e lequlI'e 5=2 and the above relationship
I'educes to

5

IV)

l(A

&1 p-

0.5

eI,I,= [12DssJa+9D']I", (2.17)

where 2'~=8 is the number of next-nearest neighbors of
any particular ferrous ion. The antiferromagnetic reso-
nance for FeF~ has been observed by Ohlmann and
TlllkhaID %'ho l'epoI't a fI'equency 52.7+0.2 clTl

Equation (2.17) can now be used to give an accurate
relationship between J2 and D; it is shown in Fig. 2.
Ke shall include in the parameter D that small con-
tribution to the anisotropy 6eld which arises from
dipole-dipole interactions. For FeF2 it contributes an
amount 0.3 cm ' to D, so that neglecting exchange
anisotropy, the crystal-6eld contribution will be
D—0.3 cm '.

Recent measurements of nuclear magnetic resonance
for the fluorine anions in antiferromagnetic FeF2 have
made available the detailed temperature dependence of

]0
0

I

10
I I I I I

20 30 40 50 60
TEMPERATURE. ( ~)

FIG. 3. Theoretical spin-wave estimates for the deviation of
spin d8 from its value 80 at the absolute zero of temperature,
plotted as a function of temperature. The curves are plotted for
D/Jg= j..5 (the absolute magnitudes of D and J2 being consistent
with Fig. 2) and for various values of J1jJ~. Also shown are the
experimental results from nuclear resonance experiments (Ref. 13).

10—

sublattice magnetization in this salt. " The low-

temperature results are particularly signi6cant because

they should be described quite accurately by the non-

interacting spin-wave theory of this section. Kriting
the average value of spin per site on the "up" sub-

lattice in the form 8=5—(2/X)Q„(u„III„) (where the

pointed brackets Indicate RI1 ensemble avclRgc) Rlld

using the same canonical transformations which were

used to diagonalize the Hamiltonian, we 6nd'

QK
8=~+ s —(2/&)2 («+ s & (2.1g)

x (a '—c ')ll'

I I I l I

0 l 2 3 4 5 6 7

J2 (CV-1)

FIG. 2. The relationship between anisotropy 8 and exchange

J2 as determined for FeP2 from the antiferromagnetic resonance

frequency (Ref. 12) by use of Eq. (2.j.7).

12 R. C. Ohimann and M. Tinkham, Phys. Rev. 123, 423 i1961l.

vvhere we have made use of the fact that ux ——bK for
E=O. The ensemble average (nx+1s) for temperature T
is readily evaluated as

(~ +-,')=-,' cot [S(~ —.) &/2arj, (2.19)

giving the 6nal spin-wave expression for sublattice spin

"V. Jaccarino, in Magnetisns, edited by G. T. Rado and H. Suhl

(Academic Press Inc. , New York, 1965), Vol. 2A.
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in the form

s=s+-',

QK

(g 2 c 2)1/2

S(a'—c'coth, (2.20)
2kT

Figures 2 and 4 supply us with two relationships be-

tween the three variables J~, J2, and D. In order to com-

plete the problem we shall appeal to magnetic suscepti-
bilities for which we now posses detailed single-crystal
experimental results' for temperatures up to 300 K.

3. MAGNETIC SUSCEPTIBILITIES
where ( )rc is an average for K running over its
allowed values in the first Brillouin zone of the reciprocal
sublattice.

For the FeF2 lattice we may write

aic——2Ji cos(21',) 2Ji+8—Js+3D/2,
(2.21)

crc= 8Js cos(E~) cos(Ks) cos(Xg),

where, in ( )I, the variables K„E„,K„run in-
dependently between —x and m. .

Using (2.20) and (2.21) we have computed the tem-
perature dependence of sublattice magnetization for
several pairs of values J~, D, consistent with Fig. 2,
and for each pair we have plotted a set of curves for
various values of Ji/Js. A typical set of results is shown
in Fig. 3. For each value of D/Js it is possible to choose
J&/Js in such a way that the experimental spin devia-
tion results are reproduced up to temperatures 24'K
(which is T 0.3T~). For higher temperatures, the
theoretical spin deviations are smaller than those ob-
tained from nuclear resonance, which is qualitatively
the effect which we should expect to result from a neglect
of spin-wave interactions. The combined results from
antiferromagnetic resonance and from low-temperature
spin deviations are therefore not sufhcient to determine
the problem completely. We can, however, use the
latter to relate D/Js and Ji/Js and this is done in
Fig. 4.

K=Xs+P X,r, (3 1)

where

X,=g DS;, +P J,S,"—S,+P J,S; S;, (3.2)

the sums P„„and P„„running, respectively, over all

pairs of nearest and next-nearest neighbors i and j,
and where

K;r —— IJn(g,S;jl,+g,S,„H—„+guS;,H, )
—pn'(A, H, '+A,H„'+A„H.'), (3.3)

where p~ is the Bohr magneton, and g and A are re-
lated by

The magnetic susceptibility of FeF2 has been dis-

cussed theoretically in some detail by Honma. ' When
his work was done, however, single-crystal experimental
results were not available and it was necessary to
couple powder susceptibility measurements" (which
did not extend to temperatures much below TN) with

torque measurements of magnetic anisotropy. "Also, a
general lack of experimental information for low tem-

peratures necessitated the use of a molecular-field

theory for T~ as part of the procedure for estimating
J~ and J.. Molecular-6eld theories for transition tem-
peratures are notoriously suspect and, with the extra
experimental results now available, we are able to avoid
transition-temperature theories for use in estimating
the basic parameters of the problem.

Since the rhombic anisotropy is negligible for bulk
properties, our basic Hamiltonian in the presence of an
external magnetic 6eld II may be written'

gi= 2(1—XA,),
g)) ——2(1—M))).

(3.4)

0-3 I

—2

The parameter X in these equations is the spin-orbit
coupling constant which will be reduced considerably
from its free-ion value" of —103 cm '. Of the param-
eters in X,;f, g« is known quite accurately from the
splitting of the antiferromagnetic resonance in an ex-
ternal magnetic field II,. Richards'~ finds a value
2.23+0.02. Also, from an analysis of high-temperature
parallel susceptibility (i.e., external field parallel to the
cs axis), Foner' finds g~&=2.20&0.05. In Foner's

J)f'J2
Fro. 4. The relationship between D/J2 and J1/J2, determined

for FeF& by fitting theoretical spin-wave curves of the type shown
in Fig. 3 to the measured temperature dependence of sublattice
spin (Ref. 13).

"H. Bizette and B. Tsai, Compt. Rend. 212, 119 (1941)."J.W. Stout and L. M. Matarrese, Rev. Mod. Phys. 25, 339
(&953).' M. Tinkham, Proc. Roy. Soc. (London) A236, 549 (1956)."P.L. Richards (private communication).
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analysis, however, the temperature-independent terms
are neglected and we shall reconsider the interpretation
of susceptibility data below.

The parameter g& is rather less accurately known. A
perpendicular magnetic fieM does not split the anti-
ferromagnetic resonance frequency and yields little or
no information concerning g&. Foner fits the high-
temperature perpendicular susceptibility to a Curie-
Weiss law to obtain g&= 2.04~0.05; temperature-
independent terms are again neglected but the fact
that g& is so close to 2 suggests that their neglect may not
be serious.

Ke shall use molecular-field theory to analyze the
Hamiltonian (3.1) both in the paramagnetic and the
antiferromagnetic states. Such a theory should be
adequate both for T))T~ and for T&&T~.

where
X = —DS '—pg'A. ,H '—n5

n= g,@AH. (s&J&+—s2J2)8g.

(3.13)

(3.14)

Treating the a term in (3.13) by second-order perturba-
tion theory, we obtain eigenvalues E in this approxima-
tion as follows:

To evaluate the perpendicular paramagnetic sus-
ceptibility, we consider a small external magnetic field
in the x direction. The molecular-field Hamiltonian now
reads

X;=—DS; '+(sgJr+s2Jg)8&;,
g,p—J,H&;, Ijg'—A,H„', (3.12)

where 8, is the average value of spin per site in the pres-
ence of the external 6eM. I.et us write this in the form

The Paramagnetic State

Consider erst an external field H, parallel to the co

axis. The molecular-6eld Hamiltonian for this case is

8~2 —— 4D pp—'A,H—,' n'/3D, —
Eg&= D pg'A—,H, '—70.'/. 6D,—

L'0 ps'A, H —'——+3u'/D.
(3.15)

X;= DS,,'+(—sgJg+sd p)8$, ,
g„psH, S—,, pa'h, H, '—, (3.5. )

(where s~=2 and s2 ——8) with eigenvalues

L', = Dm'+(st—)+s2J2)8m
—

g@~II,m —IJ,~~A.,II,' ) (3.6)

where m is the azimuthal spin quantum number. The
magnetic moment M; at the site i is now given by

P„L—(8F. /8H, ) exp( —E„/kT)]
M, = — . (3.7)

g„exp(—E /kT)

In the paramagnetic state paH, and 8(srJq+s2Ju) are

both very much smaller than kT and, expanding the
relevant parts of the exponentials, we obtain the para-
magnetic parallel susceptibility X« in the form

Ng»'va'F ii(T)
+2Nyg'A„(3. 8)

D+ (srJg+s2J2)F„(T)
where S is the total number of spins in the lattice and
where

F» (T) =P Dm' exp(Dm'/kT)/

kT P exp(Dm'/kT) . (3.9)

The calculation of perpendicular susceptibility now fol-
lows in a manner analogous to that used for the parallel
case. The magnetic moment M; at the site i is given by
an equation of the form (3.7) but with H, replaced by
H„. The exponentials are expanded for small values of
n and we calculate a paramagnetic perpendicular
susceptibility

iV gpIJ /FAN(T)
X,= -+2Nps'h. i, (3.16)

D+ (sdi+s2J2) F.(T)

where

(4/3) exp(4D/kT)+(14/3) exp(D/kT) 6—
(3.17)

2 exp(4D/kT)+2 exp(D/kT)+1

Computation of (3.17) shows, to a very good approxi-
mation, that

D[F (T)] '= 'kT+0.4D, — (3.18)

allowing us to write the perpendicular susceptibility in

the form
2Agy pg

+2'�"pg'hg (3.19)..
k T+0.SD+ 2(zgJg+ sgJg)

In the temperature range of interest (T~(T(300'K)
evaluation of F„(T) from (3.9) shows, to a very good
approximation, that

DP „(T)j- =-;kT—O.6D, (3.10)

with the result that the parallel paramagnetic suscepti-

bility may be expressed in the form

2Plg l l 2P~ 2

X„= — — +21K@~'A, . (3.11)
k T—1.2D+2(sg Jg+sg J2)

Also of interest in passing is the fact that

A gl 1 Pg
Xi i(T~) — +2lY'ps 4

2S'ojg

which is independent of the parameter D.

(3.20)

a result which allows us to express the molecular-6eld
parallel susceptibility at the Neel point in a rather simple

form, namely,
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X„(0)=2Zpn'il. , (3.21)

The molecular-field Hamiltonian for the case of a
perpendicular external field may be written

X,= DS '——S —S —p 'A II ' (3.22)

where

ap ——(ssJp —sift)8,

8 being the average s component of spin taking a value
8=2 as the temperature goes to zero (molecular-field
approximation), and where a is given by (3.14). Treat-
ing the small aS;, term in (3.22) by perturbation theory,
we may obtain the eigenvalues E„ofX;. At very low
temperatures, only the lowest state with eigenvalue

Es —4D—2a——o
—a'/(3D+ao) —pa'AiH~' (3 23)

is populated. Thus, the x component of magnetic mo-
ment M;, on the site i is given by

M;.= BEo/BH, —
=2giljiia/(3D+ap)+21jg 1iiH . (3.24)

Using (3.14) we find for the zero-temperature per-
pendicular susceptibility the result

2Sgg pg
Xi(0)= +21tIIJn'Ai.

3D+4sp Js

D1SCQSS1011

It is common practice in theories of antiferromag-
netism to assess the anisotropy in a system by measure-
ment of antiferromagnetic resonance and perpendicular
susceptibility (in the ordered state) and use of the
equation" "

~arm, =g.ua(2&/xi) "', (3.26)

where E is the anisotropy constant of the system. Com-
bining Eqs. (2.17) and (3.25) we obtain such a relation-
ship if A&= 0, with the result that E=3RD. This value
for anisotropy constant is in agreement with that ob-
tained by Kanamori and Minatono'0 who pointed out
an error in the earlier estimate of Ohlmann and
Tinkham. " It is of interest to note that (3.26) only
holds if temperature-independent contributions are

'8 S. D. Silverstein and I. S. Jacobs, Phys. Rev. Letters 12, 670
(&964)."J.Kanamori and M. Tachiki, J. Phys. Soc. Japan 17, I384
(i96Z)."J.Kanamori and H. Minatono, J. Phys. Soc. Japan 17, 1759
(&96').

The Antiferromagnetit: State

As the temperature goes to zero, the susceptibility
in. the direction of spin alignment (cp) becomes equal to
the temperature-independent term 2'~'A, . We shall
calculate the susceptibilities in the ordered state only
for the case 1'~ 0. %'e have therefore"
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FIG. 5. Molecular-Geld estimates of parallel and perpendicular
magnetic susceptibilities (open circles) are compared with the
experimental curves given by Foner (Ref. 8). The dashed line
shows the torque data of Stout and Matarrese (Ref. 15), where
Xli —XL is plotted with respect to the experimental Xq data. The
anomalous behavior of x as T~ 0 is almost certainly due to im-
purities and is discussed in the text.

' J. Owen and J. H. M. Thornley, Rept. Progr. Phys. 29, 675
(1966).

subtracted from the experimental X&. Such a correction,
however, is likely to be small for most cases.

We are now in a position to complete the determina-
tion of the relevant magnetic parameters for FeF~.
Firstly a few words are necessary concerning the meas-
ured susceptibility. The experimental single-crystal
susceptibility measurements of Foner' are shown in
Fig. 5. They indicate, as expected, a nonzero value for
X„(0);but the magnitude ( 1.2&&10 ' emu/g) almost
certainly includes a sizeable contribution from impuri-
ties. We say this for two reasons. Firstly, such an effect
is clearly present for low-temperature measurements of
X, and, secondly, such a large value for X!&(0) is in-
compatible with a description of Xl& in the paramagnetic
state unless gl 1 2.07. Such a value is out of the question
bearing in mind the result gl &

=2.23+0.02 obtained from
the splitting of the antiferromagnetic resonance lines
(any possible g shift between the paramagnetic and
ordered states is certainly minute compared with this
discrepancy).

I.ow-temperature parallel susceptibility for FeF~
has been discussed by Silverstein and Jacobs' who find

X!!(0)= —1Viin'k(g)! —2)/X, (3.27)

where k is an orbital reduction parameter. Using
Tinkham's" estimates for k( 0.95), for X( —63 cm '),
and for g„(2.25), which were obtained for Fe++ in
ZnFs, they find X„(0) 1.0&(10 ' emu/g. More recent
work" favors a value k~0.85~0.05 for transition-
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FIG. /. The ratio T~(D)/T~(0), where T~(D) is the Neel tem-
perature in the presence of crystal-Geld anisotropy D, is plotted as
a function of J&/D for highly anisotropic systems. Curves (i), (ii),
and (iii) are calculated from random-phase Green's-function
theories, where the anisotropy terms are decoupled, respectively,
according to Narath (Ref. 10), Anderson and Callen (Ref. 9), and
the theory of Paper I. Curve (iv) is an interpolation between
molecular-6eld theory, for extremes of high anisotropy, and curve
(iii), for intermediate to small values of anisotropy, The various
curves are to be compared with the experimental data for FeF2
which are shown for J2/D=0. 57,

"J. W. Stout and E. Catalano, J. Chem. Phys. 23, 1803
(1955).

Neel temperature is therefore determined very domi-
nantly by the spin-wave energy gap and the dependence
of the long-wavelength magnon energies upon wave
vector. This not very surprising result allows us to
determine the theoretical Neel temperature quite pre-
cisely, not only for the theory of Paper I, but also for
the Anderson-Callen' and the Narath" approximations,
and for molecular-Geld theory. The numerical results
are displayed in Table I and are to be compared with
the experimentally observed Neel point which, for
FeF2, is T~ 79 K. We find that all the theories
predict a Neel temperature which is too high, but that
the theory of Paper I has the least error. Moreover, we
recall from Paper I that all the Green's-function esti-
mates break down in the limit of large anisotropy and
are expected to show anomalously high transition
temperatures for highly anisotropic systems. This effect
can be studied in a little more detail as follows.

In Fig. 7 we show the estimates of the various theories
in question for T~(D)/T~(0) as a function of J2/D
in the large anisotropy range, where T~(D) is the Neel
temperature for a system with an axial crystal-field
parameter D. These curves are calculated for a body-
centered tetragonal lattice with nearest-neighbor ex-
change J~=O, and for spin quantum number $=2.
They are directly applicable for FeF2 if we put s2J2

=43.5'K and D/J2= 1.74. We note that all the Green's-
function approximations show T~(D) to diverge as
J2/D —+0. The molecular-field theory, on the other
hand, gives a value T~(D)/T~(0) —+ 2 in this same ex-
treme anisotropy (Ising) limit. Using Eq. (6.4) from
Paper I, we expect the true limiting value to be within
a few percent of 2.j.4. Thus, for this feature at least,
the molecular-held theory is good.

To compare the various theories with experiment for
T&(D)/T~(0) it is necessary to have a fairly reliable
value for the Neel temperature of an isotropic Heisen-
berg antiferromagnet. We have used the estimate
obtained from the random-phase Green's-function ap-
proximation. For 5=2, this theory gives a Curie tem-
perature for the isotropic Heisenberg ferromagnet which
is only some 3%%u~ removed from the generally accepted
"best available" results of Rushbrooke and Wood. "
Although rather less work has been done on antiferro-
magnetic transition temperatures, indications are that
the latter cannot be very far removed from their
equivalent ferromagnetic transition temperatures; in-
deed, the theories discussed in the present paper all pre-
dict the equality of the two temperatures. Thus, the
$=2 random-phase Green's-function result for T~(0)
is not likely to be in error by more than ten percent,
in which case we find (for Ji——0) Tii (0) =11.5J2 and,
by substituting that value of J~ applicable for FeF2, it
follows that T~(0)=62.4'I&& 10%.

Coupling this result with the measured Neel tem-
perature T~(D)=79 K for FeF2, we find a value
T~(D)/T~(0) = 1.27&0.12 for anisotropy D/J2 1.74, ——
and this range of values is shown in Fig. 7. It is clear
that the molecular-Geld theory underestimates the
sensitivity of transition temperature to crystal-field
anisotropy whereas the Green's-function approxima-
tions all overestimate it. Since molecular-field theory
badly overestimates transition temperatures for the
isotropic case, its accuracy improves as anisotropy
increases. The theory of Paper I is seen to be the most
satisfactory of the Green's-function approaches and
in Fig. 7 we have also drawn a curve which interpolates
between the results of the Paper I theory for inter-
mediate values of anisotropy and the molecular-field
theory for highly anisotropic systems. This curve
probably represents fairly accurately the variation of
transition temperature with anisotropy for real systems.
For example, it predicts a Neel temperature of 83'K for
FeF2 which is to be compared with the experimental
79 K. It would also indicate that the "small anisot-
ropy" approximation of Paper I is probably quite
good for values of D+ J2.

"G. S. Rushbrooke and P. J. Wood, Mol. Phys. j., 25$ (1958).


