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FeF; is a simple two-sublattice antiferromagnet and has a rutile crystal structure. Its large anisotropy
can be represented to a good approximation by single-ion crystal-field terms of the type discussed in Paper I.
The purpose of the present paper is, firstly, to analyze relevant high- and low-temperature experimental
data in order to estimate as accurately as possible the important exchange and anisotropy parameters for
FeF: and, secondly, to use this information to test the various theories for transition temperature which
were the subject of Paper I. An adequate spin Hamiltonian for FeF; can be written as

=3 J1S;-S;+ 3 JoS;- Sj—z DS;2,
nn nan £
where 3-nn (X nnn) is over all pairs of nearest (next-nearest) neighbor spins S; and S;, and where Y_; is over
all spins in the system. From an analysis of nuclear-resonance and magnetic-susceptibility data we find
D=6.54+0.3 cm™, J5=3.8540.2 cm™, and J;/J2=0.140.25. The resulting ratio D/J;=1.740.2 takes
FeF; outside the small anisotropy range for which the theory of Paper I was primarily developed. Even so,
use of the above parameter values in that theory results in a theoretical estimate for the Néel temperature
which is in error by only some 129, for FeFs. This estimate is considerably more accurate than those ob-
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tained by use of molecular-field theory or by earlier Green’s-function approximations.

1. INTRODUCTION

ERROUS fluoride is a simple two-sublattice anti-
ferromagnet and has the rutile crystal structure
with Fe?* cations on a body-centered tetragonal lattice.
It is of interest in the present context primarily because
the spin Hamiltonian derived from crystal-field theory,
which can be used to discuss the magnetic properties of
this salt, contains sizeable single-ion crystal-field anisot-
ropy terms of the type discussed in Paper I. The object
of the present paper is to estimate as accurately as
possible the exchange and anisotropy parameters of the
system (by discussing the high- and low-temperature
magnetic properties for which reasonably accurate and
well-tried theoretical procedures are available), and to
use these results to check the as yet completely untested
theories for transition temperature which were the sub-
ject of Paper I. Such a check is particularly important
in view of the widely differing results obtained from the
theories as yet put forward to discuss the effects of
crystal-field anisotropy on transition temperatures.
FeF. is also of interest since, together with MnF, and
CoF;, it forms a series of isomorphic crystals which all
exhibit a simple two-sublattice antiferromagnetism at
low temperatures with spins aligned along the tetragonal
co axis. Earlier papers'~3 on MnF; and CoF; have indi-
cated that for both these salts the nearest-neighbor ex-
change J; (between neighboring spins along the ¢,
axis) is an order of magnitude smaller than the exchange
J2 between next-nearest neighbors. The present in-
vestigation indicates that this surprising feature is
common to the ferrous salt as well. This distinctive
property could make the series Mn?*(3d%), Fe2t(3d°),

* Work performed at Clarendon Laboratory, Oxford University,
Oxford, England.

! G. G. Low, Proc. Phys. Soc. (London) 82, 992 (1963).

2G. G. Low, A. Okazaki, R. W. H. Stevenson, and K. C.
Turberfield, J. Appl. Phys. 35, 998 (1964).

3 M. E. Lines, Phys. Rev. 137, A982 (1965).
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and Co?*(3d") in the rutile-structured diflourides a
profitable source of study for theorists interested in
superexchange mechanisms.

Crystal-field theory for Fe?* in an environment with
rutile crystal symmetry has been adequately discussed
by Tinkham* and by Honma.5 The free-ion ground state
is 5D and the orbital degeneracy is completely lifted by
the rhombic crystal field. Spin-orbit effects are ade-
quately treated by perturbation methods, the effective
Hamiltonian pertaining to the lowest orbital state of a
single ferrous ion being

3e=— DS+ E(S,2—S,?), (1.1)

where z is the ¢, axis (see Fig. 1) and where the coeffici-
ents D and E contain significant contributions from
spin-spin interactions within the Fe?+ ion (Pryce®) and
are therefore not simply related to the spin-orbit cou-
pling constant A. The spin quantum number is S=2,
and small (and almost certainly negligible?) quartic
terms have been omitted from (1.1).

Combining paramagnetic resonance and magnetic
susceptibility experimental results obtained for Fe?t in
ZnF,, Tinkham* was able to show that E~0.1D for that
case. A similar result is almost certain to hold for FeF,
itself because of the isomorphism of ZnF. and FeF,
coupled with their almost identical unit-cell dimensions.
In Sec. 2 we show that the rhombic anisotropy E con-
tributes to bulk magnetic properties as (£/D)? and may
therefore be safely neglected. It follows that a suitable
spin Hamiltonian for the entire lattice of Fe?* ions can
be written in the form

Je= 3 JiS:-S;—2 DS:.2,

<i,7> 2

(1.2)

where J; is the exchange interaction between spins .S;

* M. Tinkham, Proc. Roy. Soc. (London) A236, 535 (1956).
® A. Honma, J. Phys. Soc. Japan 15, 456 (1960).
¢ M. H. L. Pryce, Phys. Rev. 80, 1107 (1950).
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Fic. 1. The rutile crystal structure with axes
x, ¥, 2, as used in the text.

and S; and is summed over all pairs ¢7 in the lattice.
Strictly speaking, we should allow for exchange anisot-
ropy” and for dipole-dipole anisotropy in addition to
the crystal-ficld term. For FeFs, both these terms are
very small compared with the crystal-field anisotropy
and their effects can, to a fair approximation, be assumed
to be contained in the parameter D although, more
exactly, they have a more complicated spin dependence
than that indicated in (1.2). The dipole-dipole contribu-
tion is not difficult to estimate and proves to be ~5%
of D; the exchange anisotropy contribution we have not
assessed and it will remain buried in the parameter D.
However, order of magnitude estimates suggest that it
is likely to be even smaller than the dipolar contribution.
In Sec. 2 we develop a spin-wave theory for FeFz and
use it to interpret antiferromagnetic resonance and sub-
lattice magnetization measurements obtained in the
low-temperature region. The results are analyzed using
Hamiltonian (1.2) assuming all exchange interactions
more remote than next-nearest neighbor to be negligible
(an assumption based on the study of possible super-
exchange paths, coupled with the findings? for MnFy).
In Sec. 3 we calculate magnetic susceptibility and in-
terpret the recent single-crystal susceptibility results of
Foner.® Both for T<< Ty and for T>>T'y (T'v=Néel tem-
perature) the susceptibility results may be interpreted
reliably® by molecular-field theory. Coupling our find-
ings for Sec. 3 with those for Sec. 2, we are able to esti-
mate J 3= (5.5540.30)°K, J1/J>=0.140.25,and D= 6.5
+0.3 cmr?, from which we calculate D/J,=1.7=0.2.
This value for D/J, takes FeF; well outside the small
anisotropy range for which the Green’s-function theory
of Paper I was developed. Nevertheless, in Sec. 4 we
adapt the theory of Paper I for the present case and,

7 J. Kanamori, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc., New York, 1963), Vol. 1.

8S. Foner, in Proceedings of the International Conference on
Magnetism, Nottingham, 1964 (The Institute of Physics and The
Physical Society, London, 1965), p. 438.
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TasLe I. Comparison of predictions of various theories for the
Néel point Ty of FeF, with T'y(expt.)=79°K.

Tn(theory) Txy(theory)/
Theory (°K) Ty (expt.)
Molecular field 98.5 1.25
Green’s function
(i) Narath® decoupling 116 1.47
(i) Anderson-Callen®
decoupling 94 1.19
(iii) Paper I decoupling 88.5 1.12
aSee Ref. 10.
b See Ref. 9.

using the values determined for exchange and anisot-
ropy, compare the theoretical estimate for Ty with
the observed Néel temperature for FeFs. The theoretical
value is too high by some 129, (see Table I) but com-
pares well with the estimates from molecular-field
theory (+25%) and with those of the Green’s-function
theories of Anderson and Callen® (4-19%) and Narath'?
(4+479%). Since all of the Green’s-function theories are
expected to break down for highly anisotropic systems,
predicting transition temperatures which are too high
(see Paper I), overestimates for the present case are not
surprising. It is possible to make some qualitative
allowance for the high anisotropy breakdown of the
Green’s-function theories, and the final indications are
that the theory of Paper I accounts fairly quantitatively
for the sensitivity of 7'y to crystal-field anisotropy in the
intermediate anisotropy region (D/Js~1), although it
may still overestimate the effect by a few percent.

2. SPIN-WAVE THEORY

In this section we shall retain a rhombic crystal-field
term in the spin Hamiltonian and show that it con-
tributes to bulk magnetic properties only as (£/D).?
Thus, if E/D~0.1, this result enables us to establish
the fact that a spin Hamiltonian of the form (1.2) is
sufficient for subsequent use, the rhombic terms affecting
bulk properties by only ~19%. This result is really
evident from symmetry considerations alone, but we
shall report the detailed calculations in order to point
out some common errors which are frequently found in
spin-wave analyses of crystal-field terms.

The basic rutile crystal structure is shown in Fig. 1.
Noting that the corner cations and the body-center
cations have environments which differ by a 90° rota-
tion about the ¢ axis, we write a Hamiltonian for the
complete spin system in the form

3= Z [E(Suzz_Suy2) “'DSuz2:]
+Z [E(deZ_Sdzz) —DSdzz:]
a

+Z Jl(Su' Su'+Sd‘ Sd/)+ Z J2Su' Sd-

nnn

(2.1)

9 F. B. Anderson and H. B. Callen, Phys. Rev. 136, A1068
(1964).
10 A, Narath, Phys. Rev. 140, A854 (1965).
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Here we have separated the system into its two sub-
lattices, the “up” sublattice (#) and the “down’ sub-
lattice (d), noting that nearest-neighbor spins (J1)
are always on the same sublattice, and next-nearest
neighbor spins (J») on different ones.

Since EXD, the ground state of the system will have
an average spin per site which is close to saturation
(contrast this? with the case for CoF. for which E> D)
and may be adequately described in terms of spin devia-
tions from the Néel state. We therefore -introduce
Holstein-Primakoff spin variables for the “up” and the
“down’’ sublattices'* as follows

Suw=S—ata,, S.5=(25)"a.,
Su—= (25)”%,};
Sae=—S+batba, Sit=(25)"%4,
Si=(25)"2g;

where the boson operators @, o, b, b' satisfy the com-
mutation relations

l:auyau’.r:]: Ouw ) [:bd;bd'T]: daqr )

with all other commutators zero.

Equations (2.2) and (2.3) may now be used to express
(2.1) in terms of the boson operators. Some words of
caution are necessary at this juncture, however, con-
cerning the representation of the anisotropy terms.
Firstly, we consider the DS,? axial anisotropy terms.
For the “up” sublattice we find

Sut=82—2Se, e+ a ot a,,

2.2)

2.3)

2.4)

(2.5)

and a common feature of many earlier spin-wave ap-
proximations is the assumption that the term a,fa.0.'a,
is negligible in the noninteracting spin-wave representa-
tion. This is not so; we should write

Su2=82— (25— 1)a, auta, et aua,, (2.6)

where it is the final term on the right-hand side which is
truly a spin-wave interaction or higher-order term, and
which can be omitted in the noninteracting spin-wave
approximation (which we shall use throughout this
section). The neglect of a,fa,a,fa, from (2.5) leads to
spurious anisotropy effects which are particularly
noticeable for S=1 for which case crystal-field terms
give rise to no anisotropy (since S,2=.S,2=.S.?=1).
Now let us consider the rhombic anisotropy
E(S;2—S,?). Direct substitution from (2.2) leads to

Sua:Q-" Suy2 = %(Su+Su++ Su—Su—)
=S(aa+atat). (2.7)

But neither is this a correct representation in terms of
the boson operators. For a satisfactory simple spin-
wave theory, we require that the spin operators should
be related to boson operators in such a way that all the
single-spin operators contained in the Hamiltonian have
the correct matrix elements at least between and within

11 R. Kubo, Phys. Rev. 87, 568 (1952).
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the ground- and first excited single-spin states. Con-
sider, for example, the operator S,.2 In single-spin
states |.S) and |S—1) it has eigenvalues S? and (S—1)?
respectively. It can therefore be represented by
S2—(25S—1)a,'a, in agreement with (2.6). The lowest-
order matrix elements of S,*S,t and S,~S.” are
(S| S +SH|S—2)=(S—2|5.,S.|S)=[4S(2S—1)]"/2.
Since (S|a.a.]|S—2)={(S—2]|a.fa.,t|S)=V2, it follows
that the proper representation for the rhombic term is

Suzz_Suy2=S(1_ 1/25)l/2(auau+aufauf) ) (28)

which is to be compared with (2.7). Similar arguments
obviously apply for the “down” sublattice operators.
The anisotropic contribution to the total Hamiltonian
now reads

Scanis= Z {ES(l_ 1/2S)1/2(auau+au*auf)
—D[S?—(2S-1)a e, [} +2{—ES(1—1/25)'2

X (babatba'bat) — DLS*— (25— 1)ba'dal}. (2.9)
The isotropic exchange terms in (2.1) may be expressed
in terms of the boson operators by direct use of (2.2)
and (2.3) when we find

uu’

3Cex= Z J1[52+ ZS(auTau' - auTa“)]

dd’

+ 2 J1[S*425(b4tba—b4'0a)]

+ Z J2[—52+S(aubd+aufbd1.+au.rau“‘}‘bd.rbd)].
(2.10)

The total Hamiltonian 3C=03Canis+3Cex is readily
diagonalized by the series of canonical transformations
set out in detail in Sec. 4 of Ref. 3. We find eigenvalues

Enyny=Eo+S 3 (mx+nox+1)(axbx—cx?)'?, (2.11)
K

where 71x and nsx are positive integers denoting the
number of magnons present in each of the two degener-
ate spin-wave branches with wave vector K, where >_x
runs over NV points in the first Brillouin zone of the
reciprocal sublattice (IV being the number of spins in
the entire lattice), and where

Ey=3ND—3NS(S+1)[72(0)—J1(0)+2D], (2.12)

dK=J1(K)—]1(0)+]2(0)
+2D(1—1/28)+2E(1—1/25)2, (2.13a)

bK=J1(K)—-J1(0)+f2(0)
+2D(1—1/28)—2E(1—1/2S)!2, (2.13b)

cx=J3(K). (2.14)



546

Here we have written

J1(K)=% J1 exp[iK- (r—ro)],

(2.15)
Jo(K)= 2 J2exp[iK: (r—10)],

nnn

where Y .n(3>nnx) is a sum over all nearest neighbors
(next-nearest neighbors) r of ro. We observe that the
magnon energies contain the parameter E only as E?
and its effects are therefore negligible for FeF,;. We shall
take E=0 in all subsequent calculations of this paper.

Putting K=0in Eq. (2.11) gives us an expression for
the antiferromagnetic resonance frequency in the form

atmr=S{[J2(0)+2D(1—1/25) 12— [J2(0) 12} /2. (2.16)

For FeF, we require S=2, and the above relationship
reduces to

Watme=[12Dz:T 5 +9D?]1/2 (2.17)

where z.=8 is the number of next-nearest neighbors of
any particular ferrous ion. The antiferromagnetic reso-
nance for FeF; has been observed by Ohlmann and
Tinkham!'® who report a frequency 52.740.2 cm™.
Equation (2.17) can now be used to give an accurate
relationship between J, and D; it is shown in Fig. 2.
We shall include in the parameter D that small con-
tribution to the anisotropy field which arises from
dipole-dipole interactions. For FeF, it contributes an
amount ~0.3 cm™! to D, so that neglecting exchange
anisotropy, the crystal-field contribution will be
D—0.3 cm™L.

Recent measurements of nuclear magnetic resonance
for the fluorine anions in antiferromagnetic FeF, have
made available the detailed temperature dependence of

12

D (cm™Y)
(]
[

0 1 ! | ! ! !
) ) 2 3 4 5 6 7

Ja (cm™1)
F1c. 2. The relationship between anisotropy D and exchange

J» as determined for FeF; from the antiferromagnetic resonance
frequency (Ref. 12) by use of Eq. (2.17).

12 R, C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961).
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F1c. 3. Theoretical spin-wave estimates for the deviation of
spin from its value Sy at the absolute zero of temperature,
plotted as a function of temperature. The curves are plotted for
D/J,=1.5 (the absolute magnitudes of D and J being consistent
with Fig. 2) and for various values of J1/Js. Also shown are the
experimental results from nuclear resonance experiments (Ref. 13).

sublattice magnetization in this salt.”® The low-
temperature results are particularly significant because
they should be described quite accurately by the non-
interacting spin-wave theory of this section. Writing
the average value of spin per site on the “up” sub-
lattice in the form S=S—(2/N)% .(a.'a.) (where the
pointed brackets indicate an ensemble average) and
using the same canonical transformations which were
used to diagonalize the Hamiltonian, we find?

. ax
S8=S+3— (/ML ———(nxt3), (2.18)

X (aK2._CK2)1/2

where we have made use of the fact that ex=0bx for
E=0. The ensemble average (nx-+3) for temperature T'
is readily evaluated as

(nx+3)=1% coth[S(ax?—cx®)"?/2kT], (2.19)
giving the final spin-wave expression for sublattice spin

18V, Jaccarino, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc., New York, 1965), Vol. 2A.
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in the form

S=5+

1 ax S(ax2—CK2)1/2
—~ cothI: ]> . (2.20)
2 ((11(2—*61{2)1/2 2kT X

where (---)x is an average for K running over its
allowed values in the first Brillouin zone of the reciprocal
sublattice.

For the Fel'; lattice we may write

ax=2J1 cos(2K ) — 2J,+8J:+3D/2,
cx=8J, cos(K ) cos(K,) cos(K,),

W=

(2.21)

where, in {---)g, the variables K,, K,, K., run in-
dependently between — and .

Using (2.20) and (2.21) we have computed the tem-
perature dependence of sublattice magnetization for
several pairs of values J,, D, consistent with Fig. 2,
and for each pair we have plotted a set of curves for
various values of J1/J. A typical set of results is shown
in Fig. 3. For each value of D/J, it is possible to choose
J1/Je in such a way that the experimental spin devia-
tion results are reproduced up to temperatures ~24°K
(which is T'~0.3Ty). For higher temperatures, the
theoretical spin deviations are smaller than those ob-
tained from nuclear resonance, which is qualitatively
the effect which we should expect to result from a neglect
of spin-wave interactions. The combined results from
antiferromagnetic resonance and from low-temperature
spin deviations are therefore not sufficient to determine
the problem completely. We can, however, use the
latter to relate D/J, and Ji/J, and this is done in
Fig. 4.

5

i1/

F16. 4. The relationship between D/J2 and J,/J., determined
for FeF, by fitting theoretical spin-wave curves of the type shown
in Fig. 3 to the measured temperature dependence of sublattice
spin (Ref. 13).

CRYSTAL-FIELD ANISOTROPY. II.

Fer 547

Figures 2 and 4 supply us with two relationships be-
tween the three variables J1, J5, and D. In order to com-
plete the problem we shall appeal to magnetic suscepti-
bilities for which we now posses detailed single-crystal
experimental results® for temperatures up to 300°K.

3. MAGNETIC SUSCEPTIBILITIES

The magnetic susceptibility of FeF, has been dis-
cussed theoretically in some detail by Honma.? When
his work was done, however, single-crystal experimental
results were not available and it was necessary to
couple powder susceptibility measurements'* (which
did not extend to temperatures much below Ty) with
torque measurements of magnetic anisotropy.!® Also, a
general lack of experimental information for low tem-
peratures necessitated the use of a molecular-field
theory for T'y as part of the procedure for estimating
J1 and J2. Molecular-field theories for transition tem-
peratures are notoriously suspect and, with the extra
experimental results now available, we are able to avoid
transition-temperature theories for use in estimating
the basic parameters of the problem.

Since the rhombic anisotropy is negligible for bulk
properties, our basic Hamiltonian in the presence of an
external magnetic field H may be written®

3(3=3€o+z_ 3Cir, (3.1)

where

3Co=Y.—DS:2 > J1S:-S;4 2 J.Si-S;, (3.2)

i nnn
the sums 2 »n and Y aan running, respectively, over all
pairs of nearest and next-nearest neighbors ¢ and j,

and where

Gcif= _'MB(g.LS'ia;Ha:—i_glsiny+gllSisz)
_ﬂB2(AJ.Hz2+AJ.Hy2+AIIH22) ) (3-3)

where up is the Bohr magneton, and g and A are re-
lated by

2:=2(1—M\A,),
g[[=2(1‘—’M”).

The parameter \ in these equations is the spin-orbit
coupling constant which will be reduced considerably
from its free-ion value's of —103 cm™. Of the param-
eters in JCis, gu is known quite accurately from the
splitting of the antiferromagnetic resonance in an ex-
ternal magnetic field H,. Richards’ finds a value
2.234:0.02. Also, from an analysis of high-temperature
parallel susceptibility (i.e., external field parallel to the
co axis), Foner® finds g,=2.2040.05. In Foner’s

(3.4)

14 H. Bizette and B. Tsai, Compt. Rend. 212, 119 (1941).
( 912 J5 W. Stout and L. M. Matarrese, Rev. Mod. Phys. 25, 339
1953).

16 M. Tinkham, Proc. Roy. Soc. (London) A236, 549 (1956).

17 P, L. Richards (private communication).
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analysis, however, the temperature-independent terms
are neglected and we shall reconsider the interpretation
of susceptibility data below.

The parameter g, is rather less accurately known. A
perpendicular magnetic field does not split the anti-
ferromagnetic resonance frequency and yields little or
no information concerning g,. Foner fits the high-
temperature perpendicular susceptibility to a Curie-
Weiss law to obtain g,=2.044-0.05; temperature-
independent terms are again neglected but the fact
that g, is so close to 2 suggests that their neglect may not
be serious.

We shall use molecular-field theory to analyze the
Hamiltonian (3.1) both in the paramagnetic and the
antiferromagnetic states. Such a theory should be
adequate both for T°>T'y and for 7 Ty.

The Paramagnetic State

Consider first an external field H, parallel to the co
axis. The molecular-field Hamiltonian for this case is

50 = — DSi2+ (317 1+ 2272)SS:.
—gupupH Si—up®A H.2,  (3.5)
(where z:=2 and z,=8) with eigenvalues
Ep=—Dm2+ (2] 14227 2)Sm
—gugH m—up®A H.2, (3.6)

where m is the azimuthal spin quantum number. The
magnetic moment M ; at the site ¢ is now given by

T [~ (0n/aH,) exp(—En/kT)]
' > m exp(— En/kT) '

In the paramagnetic state usH, and S(z1J1+2275) are
both very much smaller than k7 and, expanding the
relevant parts of the exponentials, we obtain the para-
magnetic parallel susceptibility X;; in the form

X NguZMB2Fu(T)
n=
D+ (21]1+Z2]2)F11(T)

where N is the total number of spins in the lattice and
where

Fu(T)=3 Dm? exp(Dm?*/kT)/
kT > exp(Dm*/kT). (3.9)

(3.7)

F2NupAs, (3.8)

In the temperature range of interest (I'y<7'<300°K)
evaluation of F,(T) from (3.9) shows, to a very good
approximation, that

D[F(T)T'=%T—0.6D, (3.10)

with the result that the parallel paramagnetic suscepti-
bility may be expressed in the form

21\731 12#«32

X, =
R T —1.2D 2z 20T )

+2Nup®A,. (3.11)
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To evaluate the perpendicular paramagnetic sus-
ceptibility, we consider a small external magnetic field
in the x direction. The molecular-field Hamiltonian now
reads

3Ci= — DSi.2+ (81714227 2)S0S4z
—glﬂBH:rAS'ia:_ﬂBZAJ_H;;Z, (3.12)

where S, is the average value of spin per site in the pres-
ence of the external field. Let us write this in the form

i=—DSi."—pp’AiH P —aSie, (3.13)
where )
a=giupH — (21J 14227 2)Ss. (3.14)

Treating the @ term in (3.13) by second-order perturba-
tion theory, we obtain eigenvalues E,, in this approxima-
tion as follows:

E:l:2: —4D—uBZAle2——a2/3D 5
Eyi=—D— g H 22— T02/6D,
Eoy=—pup\,H 2+ 3a*/D.

The calculation of perpendicular susceptibility now fol-
lows in a manner analogous to that used for the parallel
case. The magnetic moment M ; at the site 7 is given by
an equation of the form (3.7) but with H, replaced by
H .. The exponentials are expanded for small values of
o and we calculate a paramagnetic perpendicular
susceptibility

(3.15)

1\‘vg1.2,uB2F1(T)
Xi= FONug?Ay,  (3.16)
D+ (21]1+Z2]2)FL(T)
where
F.(T)
(4/3) exp(4D/kT)+(14/3) exp(D/kT)—6 .

2 exp(4D/kT)+-2 exp(D/kT)+1

Computation of (3.17) shows, to a very good approxi-
mation, that

D[F(T) T =%kT+04D,

allowing us to write the perpendicular susceptibility in
the form

(3.18)

2N gi2ug?
X, =
R TH08D+2(21 1507 5)

+2Nup?Ar. (3.19)

Also of interest in passing is the fact that
D[:F“(TN):]‘1=ZZJ2—2;1]1’

a result which allows us to express the molecular-field
parallel susceptibility at the Néel point in a rather simple
form, namely,
Ngi2us
Xit (TN ) =

+2Nup’A., (3.20)

ZoJ 2

which is independent of the parameter D.
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The Antiferromagnetic State

As the temperature goes to zero, the susceptibility
in the direction of spin alignment (co) becomes equal to
the temperature-independent term 2Nugp?A,. We shall
calculate the susceptibilities in the ordered state only
for the case T'— 0. We have therefore!®

X][(O)'—:ZN[JBzA.z. (321)

The molecular-field Hamiltonian for the case of a
perpendicular external field may be written

3C;=—DSi2—aoSi.—aSi—us®A H2,  (3.22)

where
Q= (22]2— Zl]l)s ,

S being the average z component of spin taking a value
S=2 as the temperature goes to zero (molecular-field
approximation), and where « is given by (3.14). Treat-
ing the small aS;, term in (3.22) by perturbation theory,
we may obtain the eigenvalues E,, of 3¢;. At very low
temperatures, only the lowest state with eigenvalue

Ey=—4D—200—a*/ (3D+ag)—usAH.2 (3.23)

is populated. Thus, the # component of magnetic mo-
ment M ;, on the site ¢ is given by

Mia:: - aEg/aH,;
=2g.upa/ (3D4a0)+2ups’AH,. (3.24)

Using (3.14) we find for the zero-temperature per-
pendicular susceptibility the result

2N g 2ug?
XL(O)=3._g_J_'_B;_+2N

us?As. (3.25)
D+422J2

Discussion

It is common practice in theories of antiferromag-
netism to assess the anisotropy in a system by measure-
ment of antiferromagnetic resonance and perpendicular
susceptibility (in the ordered state) and use of the
equation!?1?

ﬁwafmr=gm3(2K/X1)”2, (3.26)

where K is the anisotropy constant of the system. Com-
bining Eqs. (2.17) and (3.25) we obtain such a relation-
ship if A;=0, with the result that K=3ND. This value
for anisotropy constant is in agreement with that ob-
tained by Kanamori and Minatono? who pointed out
an error in the earlier estimate of Ohlmann and
Tinkham.!? It is of interest to note that (3.26) only
holds if temperature-independent contributions are

a ;22) D. Silverstein and I. S. Jacobs, Phys. Rev. Letters 12, 670

(1;9 gj.Kanamori and M. Tachiki, J. Phys. Soc. Japan 17, 1384
62).

(1;" g) Kanamori and H. Minatono, J. Phys. Soc. Japan 17, 1759
62).
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F16. 5. Molecular-field estimates of parallel and perpendicular
magnetic susceptibilities (open circlesg are compared with the
experimental curves given by Foner (Ref. 8). The dashed line
shows the torque data of Stout and Matarrese (Ref. 15), where
Xn—Xy is plotted with respect to the experimental X; data. The
anomalous behavior of x as 7'— 0 is almost certainly due to im-
purities and is discussed in the text.

subtracted from the experimental X,. Such a correction,
however, is likely to be small for most cases.

We are now in a position to complete the determina-
tion of the relevant magnetic parameters for FeF..
Firstly a few words are necessary concerning the meas-
ured susceptibility. The experimental single-crystal
susceptibility measurements of Foner? are shown in
Fig. 5. They indicate, as expected, a nonzero value for
X,1(0); but the magnitude (~1.2X10-% emu/g) almost
certainly includes a sizeable contribution from impuri-
ties. We say this for two reasons. Firstly, such an effect
is clearly present for low-temperature measurements of
X, and, secondly, such a large value for X, (0) is in-
compatible with a description of X;; in the paramagnetic
state unless g;;~2.07. Such a value is out of the question
bearing in mind the result g,,=2.2320.02 obtained from
the splitting of the antiferromagnetic resonance lines
(any possible g shift between the paramagnetic and
ordered states is certainly minute compared with this
discrepancy).

Low-temperature parallel susceptibility for FeF,
has been discussed by Silverstein and Jacobs'® who find

X11(0)= — Nugk(gu—2)/A, 3.27)

where £ is an orbital reduction parameter. Using
Tinkham’s! estimates for £(~0.95), for A\(~ —63 cm™1),
and for g,(2.25), which were obtained for Fet* in
ZnF,, they find X,;(0)~1.0X 105 emu/g. More recent
work?' favors a value k~0.8520.05 for transition-

« 216']5 Owen and J. H. M. Thornley, Rept. Progr. Phys. 29, 675
966).
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metal ions and, anticipating our final result g,;=2.21, we
tend to favor a value X;;(0)~0.7X10~% emu/g for FeFa.

Our task now reduces to the following. We have
seven variables, J1, Jo, D, gi, g1, Au, and A, ,with six
of them independent [since (gu—2)/(gi—2)=A/A;
from Eq. (3.4)]. We hope to be able to choose them in
such a way that we can explain nine separate experi-
mental results which are: antiferromagnetic resonance,
its splitting in an external magnetic field H,, sublattice
magnetization as a function of temperature in the spin-
wave region, X;(0), X,(0), X,,(T>>Ty) and its tem-
perature derivative, X,(T>>Ty) and its temperature
derivative. The problem is therefore comfortably over-
determined and we can avoid having to make use of
results for which the available theory is suspect, e.g.,
Xu(Tw), X.(Tx), and Ty itself.

The best agreement between theory and experiment
for the above properties is obtained for g =2.21, when
we can account for all of them within experimental error
[allowing for the above-mentioned reservations con-
cerning the experimental value of X;;(0)] by putting

D=6.5+03 cm™,
J2=3.8540.2 cm™?,
J1/J2=0.14£0.25,
2:=2.0840.04,
A.~0.0015 cm, A;~0.0005 cm.

(3.28)

These values are consistent with Figs. 2 and 4 for
antiferromagnetic resonance and sublattice magnetiza-
tion, and the theoretical estimates for susceptibility
(as obtained by use of the molecular-field results of the
present section) are compared with experiment in Fig. 5.
Also shown in Fig. 5 is the torque data for X;—X;
as obtained by Stout and Mataresse's which (following
Foner?) we plot with respect to the experimental X,
data.

The value for the anisotropy parameter D is in good
agreement with that obtained earlier by Kanamori and
Minatono.?0 The crystal-field contribution to D is
6.240.3 cm! and is to be compared with the value
7.3£0.7 cm™! found by Tinkham* for Fe?" in ZnF,. It
seems clear that the exchange J is small compared with
J. (a situation which has also been found to exist in
MnF; and CoF;) but the question of its sign must re-
main open.

4. THE NEEL TEMPERATURE

From (3.28) we find a value D/Js=1.74:0.2 which
indicates that FeF, is a salt for which the effects of
anisotropy are quite large; certainly outside the “small
anisotropy”’ range for which the Green’s-function theory
of Paper I was primarily developed. Nevertheless, as
far as transition temperature is concerned, FeFs pro-
vides a good test case for the available theories, be-
cause the anisotropy is sufficiently large to provide a
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Fic. 6. Néel temperature, as calculated from the Green’s-
function theory developed in Paper I, is plotted as a function of
Ja/D for several values of J1/Js.

shift of Néel temperature (from the equivalent iso-
tropic case) which is much greater than the likely error
in theoretical estimates for the isotropic case. This
means that we are able to compare the theories not
only for their absolute estimates of 7'y, but also for the
predicted sensitivity of transition temperature to
crystal-field anisotropy.

The theory of Paper I is readily adapted for use in
the present case. In the absence of an external field,
the Hamiltonian to be used for the magnetic properties
of FeFyis that given in Eq. (3.2). The Néel temperature,
in the Green’s-function approximation of Paper I,
follows from Egs. (5.9) and (5.10) of Paper I, where

A=8J5 cosK ; cosK, cosK ., 4.1)

p=2J1cos2K,—2J+87:+2DT(Tx), (4.2)

where T'(Ty) for the case S=2 is equal to 21/40. All
anisotropy has been included as a crystal-field term;
the error involved in treating the small dipolar con-
tribution in this way is completely insignificant in the
present context. The resulting transition temperature
has been computed as a function of Jo/D for various
values of J1/J» and the details are shown in Fig. 6.
We find that the theoretical transition temperature
is very insensitive to the uncertainty in J1/J [which is
expressed in Eq. (3.28)] provided that the variables
J1, Js, and D, are chosen to be consistent with the very
accurate antiferromagnetic resonance and the sub-
lattice magnetization conditions of Figs. 2 and 4. The
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Fi1c. 7. The ratio Tx(D)/Tw(0), where Tnx(D) is the Néel tem-
perature in the presence of crystal-field anisotropy D, is plotted as
a function of J2/D for highly anisotropic systems. Curves (i), (ii),
and (iii) are calculated from random-phase Green’s-function
theories, where the anisotropy terms are decoupled, respectively,
according to Narath (Ref. 10), Anderson and Callen (Ref. 9), and
the theory of Paper I. Curve (iv) is an interpolation between
molecular-field theory, for extremes of high anisotropy, and curve
(iii), for intermediate to small values of anisotropy. The various
curves are to be compared with the experimental data for FeF,
which are shown for J,/D=0.57.

Néel temperature is therefore determined very domi-
nantly by the spin-wave energy gap and the dependence
of the long-wavelength magnon energies upon wave
vector. This not very surprising result allows us to
determine the theoretical Néel temperature quite pre-
cisely, not only for the theory of Paper I, but also for
the Anderson-Callen® and the Narath!® approximations,
and for molecular-field theory. The numerical results
are displayed in Table I and are to be compared with
the experimentally observed Néel point which, for
FeF,, is%22 Ty~79°K. We find that all the theories
predict a Néel temperature which is too high, but that
the theory of Paper I has the least error. Moreover, we
recall from Paper I that all the Green’s-function esti-
mates break down in the limit of large anisotropy and
are expected to show anomalously high transition
temperatures for highly anisotropic systems. This effect
can be studied in a little more detail as follows.

In Fig. 7 we show the estimates of the various theories
in question for Twn(D)/Twn(0) as a function of J/D
in the large anisotropy range, where T (D) is the Néel
temperature for a system with an axial crystal-field
parameter D. These curves are calculated for a body-
centered tetragonal lattice with nearest-neighbor ex-
change J;=0, and for spin quantum number S=2.
They are directly applicable for FeF; if we put 2./,

2J. W. Stout and E. Catalano, J. Chem. Phys. 23, 1803
(1955).
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=43.5°K and D/J,=1.74. We note that all the Green’s-
function approximations show Ty(D) to diverge as
Js/D— 0. The molecular-field theory, on the other
hand, gives a value Tx(D)/Tx(0) — 2 in this same ex-
treme anisotropy (Ising) limit. Using Eq. (6.4) from
Paper I, we expect the true limiting value to be within
a few percent of 2.14. Thus, for this feature at least,
the molecular-field theory is good.

To compare the various theories with experiment for
Tn(D)/Tx(0) it is necessary to have a fairly reliable
value for the Néel temperature of an isotropic Heisen-
berg antiferromagnet. We have used the estimate
obtained from the random-phase Green’s-function ap-
proximation. For S=2, this theory gives a Curie tem-
perature for the isotropic Heisenberg ferromagnet which
is only some 3%, removed from the generally accepted
“best available” results of Rushbrooke and Wood.2?
Although rather less work has been done on antiferro-
magnetic transition temperatures, indications are that
the latter cannot be very far removed from their
equivalent ferromagnetic transition temperatures; in-
deed, the theories discussed in the present paper all pre-
dict the equality of the two temperatures. Thus, the
§=2 random-phase Green’s-function result for 7Ty (0)
is not likely to be in error by more than ten percent,
in which case we find (for 71=0) Tx(0)=11.57, and,
by substituting that value of J, applicable for FeF,, it
follows that Tx(0)=62.4°K+~109,.

Coupling this result with the measured Néel tem-
perature Tn(D)=79°K for FeF., we find a value
Twn(D)/Tn(0)=1.27+0.12 for anisotropy D/J,=1.74,
and this range of values is shown in Fig. 7. It is clear
that the molecular-field theory underestimates the
sensitivity of transition temperature to crystal-field
anisotropy whereas the Green’s-function approxima-
tions all overestimate it. Since molecular-field theory
badly overestimates transition temperatures for the
isotropic case, its accuracy improves as anisotropy
increases. The theory of Paper I is seen to be the most
satisfactory of the Green’s-function approaches and
in Fig. 7 we have also drawn a curve which interpolates
between the results of the Paper I theory for inter-
mediate values of anisotropy and the molecular-field
theory for highly anisotropic systems. This curve
probably represents fairly accurately the variation of
transition temperature with anisotropy for real systems.
For example, it predicts a Néel temperature of 83°K for
FeF, which is to be compared with the experimental
79°K. It would also indicate that the “small anisot-
ropy” approximation of Paper I is probably quite
good for values of DX Js.

# G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958).



