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Sensitivity of Curie Temperature to Crystal-Field Anisotropy. I. Theory

M. E. LINEs

Bell Telephone Laboratories, 3IIurray Hill, iVem Jersey~

(Received 28 November 1966)

This paper discusses the statistical mechanics of ferromagnetic and antiferromagnetic systems in the
presence of uniaxial anisotropy, which is included both as anisotropic exchange D;,S S and in the form of
single-ion crystal-field terms Do(S )'. Emphasis is given to the calculation of magnetic transition tempera-
tures Tz and particularly to a discussion of the sensitivity of Tz to crystal-Geld anisotropy. Earlier eGorts
in this direction have produced widely varying results, some Green s-function calculations predicting a
sensitivity fully ten times the equivalent molecular-Geld result. A Green s-function theory is developed for
which the decoupling of anisotropy terms is carried out in a manner which is essentially consistent with the
random-phase decoupling of exchange terms, at least in the limit of small anisotropy, As such, the theory
is an improvement on earlier decoupling schemes and. allows, in particular, for a value of ((S')') at T~.,
which differs from the isotropic result —,S(S+1).It indicates a sensitivity of Tz to Do which is smaller than
suggested by earlier Green s-function theories but still considerably larger than given by molecular-Geld

theory. Quantitative calculations are carried out for simple cubic and body-centered cubic lattices and the
detailed results for the different theories are compared. In Paper II the theory is applied to the salt FeF~ for
which the spin Hamiltonian contains a sizeable crystal-field anisotropy of the form D0(S,') .

1. I5'TRODUCTjt. 'ON

" 'N this paper we discuss the statistical mechanics
i ~ of simple ferromagnets and antiferromagnets in the
presence of uniaxial anisotropy, with special emphasis
on the sensitivity of magnetic transition temperatures

T~ to crystal-field anisotropy. The uniaxial anisotropy
is included both as anisotropic exchange D;,S S,' and
in the form ot crystal-field single-spin terms Do(S )'.
The former terms can be accommodated in most of the
well-tried statistical theories of magnetism without
difhculty, and the extension of these theories to include

such terms is readily accomplished. Crystal-field terms,
on the other hand, are generally much more difficult to
treat, except in the limit of very high or very low temper-
atures for which cases high-temperature expansion
methods' and simple spin-wave approximations' can
be used, respectively.

The present paper is concerned primarily with finding

a statistical approximation which is able to describe
the magnetic properties of ordered ferromagnets and
antiferromagnets in the presence of crystal-field anisot-

ropy for temperatures right up to T~. Earlier efforts
in this direction have been made using molecular-field

theory, ' ' cluster approximations, ' and Green's-function
methods'~ and with very widely varying results. For
example, we shall show that the Green's-function

method used by Narath' predicts a sensitivity of T~ to
crystal-field anisotropy which is about ten times greater
than that which is obtained from a molecular-field

calculation.
~ %'ork performed at Clarendon Laboratory, Oxford University,

Oxford, England.
'C. Marquard, thesis, Oxford University, Oxford, England,

1966 (unpublished).' R. Kubo, Phys. Rev. 87, 568 (1952); see also Paper II.
'K. Yosida, Progr. Theoret, Phys. (Kyoto) 6, 691 (1951).
4 E. R. Callen, Phys. Rev. 124, 1373 (1961).
' B. R. Cooper, Phys. Rev. 120, 1171 (1960).
' A. Narath, Phys. Rev, 140, A854 (1965).
'F. B. Anderson and H, B. Callen, Phys. Rev. 136, A1068

i1964}.

In this paper we have used a Green's-function ap-
proach which decouples the exchange terms according
to the random-phase approximation (RPA) and which

allows us to formulate the theory in a manner suKciently
general to allow for a wide range of possible spin pat-
terns. The entire problem centers around the manner
in which the crystal-field anisotropy terms enter the
theory and this, in turn, reduces to the problem of

adequately decoupling the associated "anisotropy
Green's function. "We have devised a procedure which

is essentially consistent with the random-phase de-

coupling of the exchange terms, at least for the limit

of small anisotropy. This decoupling scheme reduces to
that used by Anderson and Callen7 in the low-tempera-
ture limit but it differs quite basically from the latter
at higher temperatures. It removes, in particular, a
deficiency of the Anderson-Callen decoupling approxi-
mation which results in the estimate for the ensemble

average ((S')') at the transition temperature being

always equal to the isotropic result S(S+1)/3.
In general, however, our numerical calculations for

the sensitivity of transition temperature to crystal-field

anisotropy do not differ widely from those which follow

from the decoupling scheme proposed by Anderson and
Callen. ' They do differ very markedly though from
molecular-field estimates and also from results obtained

using the Green's-function decoupling scheme employed

by Narath. ' It would seem likely that molecular-field

theory underestimates this sensitivity whereas the
Narath approach seriously overestimates it. The claim
in Ref. 6 that the decoupling approximation of that
paper is adequate for DD&(kT~ is not correct. The
Narath decoupling also fails by predicting spurious
anisotropy effects for spin —,

' for which case (S*)'=~~ and

the pertinent crystal-field anisotropy vanishes.
In. Sec. 2 we generate relevant molecular-field results

which are used at a later stage for comparison with the
estimates from the various Green's-function theories.
Section 3 constructs the basic Green's-function equa-
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tions and Sec. 4 develops the decoupling scheme to be
used for the crystal-field anisotropy terms. In Sec. 5 we
derive an expression for the transition temperature T~
and compute the sensitivity of TN to Dp for simple
cubic and body-centered cubic ferromagnets and anti-
ferromagnets for values of spin S= 1 and S= ~. These
results are compared with estimates from molecular-
field theory and from the Green's-function approxi-
mations of Refs. 6 and 7.

Finally, in Sec. 6, we discuss the difficulties which are
encountered by all the Green's-f unction approximations
when an attempt is made to extend the results into the
region for which anisotropy is large.

2. MOLECULAR-FIELD THEORY

Consider a Hamiltonian of the form

X= Q $J,;5; 5+D;;S'S'5 +DO(5—,')' (2.1)

where the summations run over all allowed values of
m between —5 and +5, and where

X=P (J;,+D;;)S P(—J;,+D;,)S, (2.3)

kT~= LQ (J,,+D,;) P(J;,+—D;~)5F(kT~), (2.6)

where P," runs only over those values j for which S;
and 5, are on different sublattices, and where P runs
only over values j for which S; and S; are on the same
sublattice. Equation (2.4) is now an implicit relation-
ship for 8 which can be solved numerically for any
specific case of interest.

The transition temperature T~ is derived from (2.4)
by considering the limit 8 —+ 0. Expanding the expo-
nentials ex ~ and retaining only the lowest-order
nonzero terms, we find

where P&, ,;& runs over all pairs of spin S; and S,, and
where g; runs over all spins in the lattice. In this
Hamiltonian we include anisotropy with axial sym-
metry, and allow both for single-spin crystal-field terms
and for two-spin exchange anisotropy terms. The iso-
tropic exchange parameters J;, need not be restricted
as to range or sign, but we shall assume that the anisot-
ropy is such that it gives rise to an ordered state with
a single preferred axis s of spin alignment. The ordered
state will be taken to be antiferromagnetic although
the results for a ferromagnetic lattice are included as a
particular case.

We obtain the molecular-field Hamiltonian for a
spin S, by replacing the various functions of all spins
$,4$, by their average values, thus neglecting all
correlations between the spins. That part of the Hamil-
tonian containing S; then becomes

~ =Z (J +D')5"(5") Do(5'*)' (22)

E,=Q (J;,+D;,)m(S,') Dom', —(2.3)

where nz and m' are, respectively, the eigenvalues of
5;* and (5,')'

We now introduce two sublattices; an "up" sublattice
which includes the spin S;, and a "down" sublattice.
Writing the average value of spin equal to +8 on the
"up" sublattice and equal to —S on the "down" sub-
lattice, we may calculate the ensemble average (5,') in
the form

P m expI Xm+Dom'5/kT
(5')=8=

P e pxL Xm+pD'm5/kT
(2.4)

where the s axis has been singled out as the direction
of spin alignment in the ordered state, and where we
have replaced spins S;by their average values (S,*).The
Hamiltonian (2.2) is already in diagonal form with
eigenvalues

where
m' exp LDpm'/k T~5

F(kT~) =
g. expLD, m'/kT&5

' (2 7)

3F(kT~)
T~(DO) = Ter(0),

S(S+1)
(2.8)

where T~(D,) is the transition temperature in the
presence of crystal-field terms, g; Do(S,')', and where
T~(0) refers to the situation with DO=0. The result
(2.8) remains valid for nonzero values of D,, It is also
interesting to note that F(kT~) is just the average value
of (S')' at the transition temperature so that (2.8) can
also be written in the form

T~(Do)/T~(0) =3((5')')~N/5(5+1) (2 9)

In the limit of very large single spin anisotropy, S' is
effectively restricted to take only the values &S so that
(S*)'—+ 5' for all except extremes of high temperature.
In particular, ((5')')r —+ S' and

T~(Dp)/Tgg(0) ~ 35/(S+1), Do ~~ . (2.10)

' A. Honma, J. Phys. Soc. Japan 15, 456 (1960).

We see that in this approximation the exchange
anisotropy terms behave simply as extra contributions
to the isotropic exchange. Thus, for example, the shape
of sublattice magnetization curves as functions of
temperature will be unaffected in the molecular-field
approximation by the presence of such terms. The
crystal-field Dp terms are more interesting. They do
atIect the magnetization curve shapes (see, for example,
Honma') although it is likely that the molecular-Geld
theory does not give a very quantitative estimate of the
magnitude of the eGect.

In the present discussion we shall concentrate pri-
marily on the transition temperature and its dependence
upon the single spin anisotropy. Using Eqs. (2.6) and
(2.7) we may write
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We verify throughout that the case for spin-~ is
indeed trivial so that the simplest case of interest
is that for spin S= i. We shall calculate the variation
of transition temperature with crystal-field anisotropy
in detail below for the case S=1 and S= ~.

Let us consider simple cubic (sc) and body-centered
cubic (bcc) lattices for which the anisotropic exchange
D;; is zero, and for which we have only a single isotropic
exchange parameter J (for nearest-neighbor interac-
tions). The Hamiltonisn of interest is then

x=p &5,"5,—Q Do(5 )',

where P„„is a sum over all nearest-neighbor pairs. The
results throughout this paper are valid both for ferro-
magnetism and for antiferromagnetism so that we can
take J to be of either sign. Using Eqs. (2.7) and (2.8)
we may calculate the ratio T~(DO)/T~(0) as a function
of Do/J for the sc and the bcc cases. The molecular-field
results for spin-one and spin-ininity are included in the
figures of Sec. 5 and 6 (Figs. 3 to 8), where they may
be compared with the results of the Green's-function
calculations below.

3. GREEN'S-FUNCTION EQUATIONS

Green s-function techniques were initially applied to
statistical problems in ferromagnetism by Bogolyubov
and Tyablikov. ' "The method has since been developed
by a large number of authors for use in ferromag-
netism (see, for example, Tahir-Kheli and ter Haar, "
Callen, " and Tahir-Kheli"), antiferromagnetism, ' "
and ferrimagnetism. "

We de6ne a temperature-dependent Green's function
by the equation

((A(t); B))= —0(t) &[A(t) B3) (3 &)

where the square brackets denote a commutator, the
single pointed brackets denote an average with respect
to the canonical density operator exp[—K/kT], and
where e(t) is the unit step function (zero for negative
argument and unity for positive argument). If we denote
the Fourier transform of the Green's function with
respect to time by ((A; B)), then the equation of motion
satisfied by this function is

&((A B))=(&/2~)([A B3)+(([A &j B)) (3 2)

Knowledge of ((A; B)) is sufFicient to determine the
correlation function (BA (t) ) through the equation (see,

9 N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk
SSSR 126, 53 (1959) LEnglish transl. : Soviet Phys. —Doklady 4,
589 (1959)j."S.V. Tyablikov, Ukrain. Mat. Zh. 11, 287 (1959)."R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88
{1962).

"H. B. Callen, Phys. Rev. 130, 890 (1963)."R.A. Tahir-Kheli, Phys. Rev. 132, 689 (1963).
' M. E. Lines, Phys. Rev. 135, A1336 (1964}."R.E. Mills, R. P. Kenan, and F. J. Milfordp J. Appl. Phys.

36, 1131 (1965).

Zubarev" for details)

(BA(t))= lim i

Xt, '~'dry. (3.3)

F=(L5",f(5 *)5 3) (3.5)

and where J;;=a;,=0. This equation is exact, and the
various approximations used for Green's-function calcu-
lations occur in the relationships assumed to exist
between the more complex Green's functions on the
right-hand side of (3.4) and our basic function of interest
((5,+; Bi,)). Algebraically the simplest decoupling
scheme is the random-phase approximation (RPA), see
for example Tyablikov, "Tahir-Kheli and ter Haar, "
and I.ines'4 which, although possessing certain well-
known limitations, does give a generally acceptable
description of Heisenberg ferromagnetic and antiferro-
magnetic systems over the entire temperature range.
It has the further advantage, over most more sophisti-
cated decoupling procedures, of remaining a tractable
formalism in the presence of exchange interactions
between more than one type of near neighbor.

The RPA approximation proceeds by making the
decoupling

((5 5' B,))=(5 )((5,+; B,)),
«5,+5,'; B„))=(5,')«5,+; B„)),

(3.6)

which, by use of (3.3) for 1=0, implies relationships of
the form

(f(5~")5~ 5.'5')=(5.*)(f(5~') 55'). (3 7)

In general, this approximation represents the neglect
of certain correlations between 5,' and the rest of the
lattice. There is one important exception, however,
which is for h=g= j. In this case, the approximation
(3.7) is a statement concerning the spin averages on a,

single site.
For the Heisenberg Hamiltonian, the coeKcient of

terms with g= j is zero so that the RPA approximation

"D.N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960}LEnglish transl. :
Soviet Phys. —Uspekhi 3, 320 (1960)j.

We shall consider the Hamiltonian (2.1) for which
the anisotropy is such that it gives rise to a single axis
spin pattern in the ordered state. Let us examinethe
motion of the function ((5,+; f(5i')Si, ))—which we
write for economy of notation in the form ((5,+; Bi,))—
where f(5&*) is, for the moment, an arbitrary function
of S' at the site h. The resulting equation of motion is

E((5,+; B,))= (r/2 )3„,+D,((5,+5;+5;5,+; B,))
+g [J.(&5.+5' s 5 +5.s. B ))

-D;,(&5, 5,', B.))j, (34)
where



for this case cannot include terms with h= g= j, and the
total approximation concerns the neglect of certain
inter-spin correlations. Inclusion of single-ion crystal-
field anisotropy terms, however, changes the situation
and raises the problem of decoupling terms for which
g= j.

In principle, the best procedure is probably to write
down the equation of motion for the function ((5,+5,'
+Sp'Sp+; By,&) of Eq. (3.4) and to decouple in the
spirit of the RPA approximation at a later stage. In
practice, this approach introduces severe complications
and one is tempted to look for an acceptable decoupling
of the form

((5'5 .+5 '5-' B.»=~ ((5' B,)) (38)

where 4y, is independent of I': (but not necessarily in-
dependent of B or of g

—h).
)Ve shall reserve the term "random-phase approxi-

mation" for the decoupling (3.6) when it excludes the
case j=g. With such a restriction, we shall show that a
function 4, can bc derived which is consistent with the
RPA approximation for the limit of small anisotropy.
This function C, is not equal to 2(5,*), which is the
result obtained by applying Eq. (3.6) for the case
j=g (and is the decoupling formula used by Narath'),
nor is it equal to the function proposed by Anderson
and Callcn' except in the limit oI very low temperature.

Setting aside for the moment the discussion concern-
ing the most acceptable form for C„and using the de-
coupling approximations of (3.6) and (3.8), the equation
of motion (3.4) becomes

(E D,C,)((5,+; B,))—=(I'S„/2 )

+2 (~.(5.')((5";B )&

—(J .+»p)(5 *&((5.+; B~)&} (3 9)

We now restrict the possible order to one with a unique
axis of spin alignment s and split the lattice into two
sublattices, the "up" and the "down" sublattices, with
average values of spin per site +Sand —8, respectively.
If the two sublattices are translationally invariant wc
may Fouricr transform with respect to the recpirocal
sublattices as follows. When g and h are on the same
sublattice we de6nc G&K by

((5'; Bi»=(2/.'l') Z G«expLiK (g—h)3, (3.10)

where iV is the number of spins in the lattice and whereI is a reciprocal lattice vector which runs over ~Epoints
in the 6rst Brillouin zone of the reciprocal sublattice.
In thc same way wc define 62K for thc case when g Rnd h
are on opposite sublattices. We now write C,= 2(5,')P,
where I' is an as yet undetermined function of tempera-
ture and of B, but which is independent of g

—h (justi-
fication for this step is developed in the following sec-
tion). Choosing h to be on the "up" sublattice, we now

hand equations of motion of the form

(~—
y 8)GiK= {F/2~)+I BGpx,

(&+~8)Gpx=-1 8GiK,
(3.11)

S

~= ~ (J.lexpLiK (j-g)j-11-D;,}

+Q P;,+D,,g+2I"Do, (3.12)

l~ = Q J;, expr iK (.j—g)j, (3.13)

Xexp t iK (g—h) j, (3.14)

Q —
yy/(yap gp) i/p (3.15)

P (&P 1 P)iiP (3.16)

and where Bp ——f(Sy, ')Sy, . Later it will be convenient
for us to choose f(Sq')=(Sy, ')" with n a non-negative
integer.

4. THE DECOUPLING SCHEME

From the decoupling equation (3.8) we find, using
(3.3), the equation

(By,(5 +5 *+5 *5 +))= C' (B 5 +) (4 1)

which relates 4, to ensemble averages, and allows the
crystal-fie1d decoupling parameter to be chosen (at least
in principle) in a manner consistent with the ex-
change decoupling. Consider, in particular, the case
Byi ——Sy, $i.e., f(Sp) =1, n=Oj. For this case the left-
hand side of (4.1) can be written (Syi 5,+(2S,'+1)) and
is readily evaluated in the limit DO~0 by consid-
ering the Green's function ((Si. , B,)), where B,
=5,+(2S,*+1),and by decoupling the exchange terms
using thc RPA RpproxlIQRtlon. Wc 6nd

(S.-B,&=(1/-~)(LS;,B,l& Z LI-~ "th%&/»2') j
XexpLiK (g—h) j, (4.2)

where A and Ep are defined in {3.15) and (3.16).
Putting B, in turn equal to 5,+(25,'+1) and to 5,+,
and eliminating the summation over K between the
resulting two equations, wc have

(5.-5, (». +1))(IX-,S, 3)
=(5.-5,.&(LS;,5, {»,+I)». {4.3)

and where P;,' runs over all values for which j and g
are on the same sublattice, and P;," runs over all
values for which j and g are on diferent sublattices.

Solving the Green's-function equations of motion
for Gix and. using (3.3) and (3.10) we 6nd, for the limit
1~0
(By Sp+&= (P/S) Q (2 coth(Ep8/2k') —1j
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It follows immediately that

(3(5,')' —5(5+1))
C,= (5,') (4.5)

and
F= (3(S')'—S(S+1))/2(8)', (4.6)

which is independent of lattice site (i.e., of g
—h).

This result applies strictly only to the decoupling
for the case Bz——Sz, for which the corresponding equa-
tion (3.14) relates (S(*)') to 8. It enables us to express
the transition temperature in terms of the value of
&(S')') at TN [see Eq. (5.5)], but it completely de-
termines the problem only for the case of spin —,'. For
this case, moreover, the anisotropy problem is trivial
since (5')'=x. This fact is reflected in (4.6) for which
we And I'=0 for S=-', .

In principle, no doubt, a similar argument could be
used to derive the decoupling factors for more compli-
cated forms of B~. In practice, this procedure is pro-
hibitively diKcult and we choose a simpler method of
approach. Putting f(sqz) = (Sqz)n where m=0, 1, 2,
we write

&(S,+S,'+S,'S,+; (S *)"S-))=((S ')"—')
X&(S,+5,'+5,*5,+; (5 ') 5 )), (4.7)

«S,+ (S ')"S-))=&(S ')"-')
x«s,+; (s, ).s,;)),

where 0-=0 for even e and where 0 =1 for odd m. This,
decoupling implies approximations of the form &(S*)'"+')
—((Sz)2n)((sz)2) snd &(Sz)2n+1) —((Sz)2n)((sz)) and is
always qualitatively sound. We avoid, in particular,
apprpximatipns pf the fprm &(Sz)2n+2) —((Sz)2n+ )((Sz))
which break down completely as T—& T~ and which

spell disaster for simple decoupling schemes such as that
used for crystal-6eld terms in Ref. 6.

From (4.7) it follows that the decouplin. g parameter
I' of Eq. (4.6) is good for all even values of e Lwhere

Bq=(Sq')"Sq ]. It also follows that all the "odd-n"
equations of the form (4.1) decouple in the same way
but that the "odd-e" decoupling vill probably differ

from the "even-n" decoupling. It remains to 6nd the
"odd-e" decoupling parameter C,= 4,' for which

&(5,+5,*+5,'S,+; 5 *S ))= C', '((5,+; S *5 )). (4.8)

In order to evaluate T~ it is only necessary to use the
equations for m=o, 1, so that, for this task, the above
approximations are not necessary. However, higher-
order equations are required for any detailed description
of S as a function of temperature for all S&~ and a
decoupling recipe is therefore necessary for the more
general problem.

C,=(LS;,5, (25, +1)~)/&LS;,S, j),
from which, using the familiar commutation relation-
ships for spin components, we have

Calculation of 4 g' by a method analogous to that
used for 4, is not readily accomplished since it requires
the examination of a more complex class of Green's
function, viz. , &(Szzs&, 8,)), for which adequate de-
coupling schemes have not yet been obtained. However,
the theory of Sec. 3 requires only that C,' can be written
in the form 2(5,*)I", where I" is independent of g

—h.
We may verify that this is certainly true for low temper-
atures since, for all spins except S=1, S'S+—+SS+
and 5+Sz ~ (S—1)S+ for an "up" site, and 5'5+ —+

—(S—1)5+ and 5+S' —+ —Ss+ for a "down" site
as T +0. —It follows that 5+5'+S*S+ goes as
(25—1)5+ for an "up" site and as —(25—1)S+ for a
"down" site, giving P'= P = 1—1/25 in the low-ternper-
ature limit in agreement with spin-wave theory and
with Anderson-Callen decoupling, but again in dis-
agreement with the decoupling of Ref. 6.

We shall assume F' to be independent of g
—h at all

temperatures although we have not been able to prove
it as was done for F. A similar assumption is common to
both the other anisotropy decoupling schemes, ' ' but
these require also that I"=I" at all temperatures, a
condition which results in the erroneous prediction of
zero anisotropy at the transition temperature, i.e.,
&(Sz)')-+ S(S+1)/3 as T~ T~. The calculation for
((5')') at T~ depends directly on the assumptions made
concerning 4', ', and since the results obtained in the
present paper for the former are essentially in agree-
ment with molecular-field theory, we feel that the as-
sumption made concerning I" is to some extent justi-
fied a posteriori.

If P' is independent of g
—h, then it follows from (4.8)

and (3.3) that

C,'=2&5, ')I"=(5,*5,—(5,+5„'+5,5,+))/
&Sz'Sz Sz+) (4 9)

which is readily expressed as the quotient of two poly-
nomials in ((5,*)"), and agrees with the result I"—+ 1
—1/25 for low temperatures and for all spins except
S=1.

In the limit of small anisotropy, we may write the
decoupling parameters I' and I" as functions of 8 alone

by making use of a theorem due to Callen and Strick-
man" which states that the higher moments ((S')")
are related to (5') in exactly the same way for all
theories which use a one-particle density operator of the
form p= exp(xsz)/Tr[exp(xs*) J. Our theory is such in
the limit of small anisotropy. As pointed out in Ref. 17,
this means that we can use simple molecular-field theory
to calculate these relationships and, for the case Do —+ 0,
will obtain results which are valid for all renormalized
collective oscillation theories as well.

Ke have obtained, therefore, a decoupling recipe
v hich enables us to treat single-ion anisotropy terms at
least for the cases when these are small compared with

H. B. ( allen and S. Strickman, Solid State CoInmun. 3, 5
(1965).



CRYSTAL —F I ELD AN ISOTROP Y. I. THEORY

the exchange energy of the system. %c shall be inter-
ested in particular in calculating the sensitivity of the
transition temperature to single-ion anisotropy and this
problem will be considered in detail in the following
scctlon.

Meanwhile) lt ls lntcl cstlng to compare thc de-
coupling obtained in the present work with that pro-
posed by Xarath' and by Anderson and Callen. ~ The
latter authors suggest a decoupling

I'= I"=1—(~/25')LS(5+1) —(5')'3 (4 10)

where a = 1.The decoupling used by Narath' is given by
(4.10) with o.=0. If we relate ((5')') to 8, using the
Callen-Strickmann theorem, we may equate the results
(4.6) and (4.10) for I' and calculate n as a function of
8. The result is shown in Fig. 1 where we see that 0;=1
is quite a good approximation, particularly so for smaller
values of spin quantum number. In Fig. 2 we show the
function I' [from Eq. (4.6)$ as a function of 8.

Thc sltuatlon ls vcI'y different when wc consldcI' I
From (4.9) we calculate

{2(5 ) +3(5 *)'-(»'+»—1)(5 *)'-5(5+1)5")
4

((Sg')'+(Sg')' —5(5+1)Sa')
(4.11)

We find, in particular, that for spin--,' C,'=0 (as it
should), and that for spin-1 C', '= —1. For other values
of spin, C,' is temperature-dependent and approaches
the value 25—1 as T —+0 and remains 6nite as 8~
0(T~ T~). The latter feature we find essential if the
theory is to predict any anisotropy at T~. It means that
a (and r') diverge as 8 —+ 0. The Anderson-CaHen de-
coupliiig (tx= 1) is thus unsatisfactory foi tile odd-'s
cquRtlons cxccpt fol vcly low tclTlpclRtuI'cs.

The 6nal solution of our problem may now be set
out formRHy as the solution of the set of equations
(3.14) for which Bi, (Si,')"Si, ——and for which the pa-
rameter I' of (3.12) is given by Eq. (4.6) [Fig. 2$ for
the case when n is even, and is put equal to I" of Eq.
(4.9) for n odd. If we put h = g, then the set of equations
with m=o, 1, 2, 2S—1, are independent and may
be solved for 8 as a function of temperature in the usual
way, "

4"(Tiwj) = ——,'(45'+45 —3) . (5.3)

For small anisotropy, we may readily evaluate it at
T~ by using a one-particle density operator of the form
p= exp(xS')/Tr[exp(xS*)]. Calculating 8 as Tr(pS*)
and ((5')') as Tr[p(5*)'j in the limit x ~ 0, we find

I'(2'iv) = (3/2o)(45'+45 —3)/5(5+1) (3 1)

As mentioned in the previous section, I" diverges as
8 —+ 0 Rnd we therefore concentrate on evaluating C".
From Eq. (4.11) we have

@'(&N)= (2(5')'—(25'+25—1)(5*)')/((5*)') (3.2)

from which, by use of the density operator p in the limit
x —& 0, we calculate

To calculate the transition temperature T~ requires
a knowledge of the decoupling parameters F and I"' as
8 —+ 0. Let us consider the parameter I' of Eq. (4.6).

0.8—

0,6

0,4—

0 1.f—

5 =1/2

0,9
0

l

0.25 0.50 1.0 0,2
I

0.8 1,0

I'IG. 1. The parametel A from Eq. (4.IO) plotted as a function of
8/5, for different values of spin quantum number S.

FIG. 2. The decoupling parameter I' of Eq. I'4.6) plotted as a
function of 8/5, for diferent ~~1»es of spin quantum number S.
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z12
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Consider Eq. (3.14) for the case k=g, n=0 It tak.es
the form

F&G. 3, The ratio T,-& (D0}/T~(0), v here Tz'(00) is the Neel
temperature iri the presence of an axial crystal-field anisotropy
Dp[Eq. (2.I)$, is plotted as a function of D0/J, for a simple cubic
system with isotropic nearest-neighbor exchange J and for spin
5=1. The curves (i), (ii), and (iii) are calculated from random-
phase Green's-function theories where the anisotropy terms are de-
coupled, respectively, according to Narath (Ref. 6), Anderson and
Callen (Ref. 7), and the theory of the present paper. Curve (iv)
shows the results of a molecular-field calculation.

the final expression for the transition temperature as

kT,v(p/(p' —X') )„=5(5+ ] ) (coth&)/(1+3 coth(),
(5.10)

where p and X are given by (5.6) and (5.7).
We see immediately from (5.8) that any theory for

which $ —+ 0 as 8 —+ 0 will give the result that ((5')')
at T~ is 5(5+1)/3. Both the Narath and the Anderson
and Callen decoupling schemes show this property and
hence allow for no anisotropy at the transition tempera-
ture. They therefore give transition temperatures in
the form

kTN(p/(p' —X')) x——5(5+1)/3. (5.11)

They differ only in the value to be taken for I'(T~)

1.6

1.40
z

O
O

z 1.2

5(S+1)—((5')')=8(A coth(Ep8/2kT)) x, (5.4)

where ( )x is an average for the wave vector K run-
ning over ~S values in the first Brillouin zone of the
reciprocal sublattice. For 8 —& 0, Fo remains finite and
(5.4) reduces to

1.0
0 0,4 0.6

Dpi'J
1.2 1.6

FIG. 4. As Fig. 3 but for a body-centered cubic lattice.

where

(5.5)
which is unity for Narath decoupling and (2S—1)/35
for Anderson-Callen decoupling.

Let us now compare the result (5.8) for ((S')') at the
transition temperature with the result of molecular-
field theory for the same quantity. The molecular-field
value is

d 5' ' = m' exp Dpm' kTv+P LJ,,+D, ,]y2Dpr(Z;. ), ( .6)

X= QJ, ,e'

((5*)')(1+3coth$) =-5(5+1)(1+cothf), (5.8)

whpl e
(=Dp(45' '+45 3)/10kT~. -—(5.9)

Substituting ((5')') from (5.8) into (5.5) we obtain

and where ((5')') in (5.5) refers to its value for T= T~
Consider now Eq. (3.14) for g=k, n= i. As 8~ 0,

I"—+~ and hence j.'0 diverges in such a way that
X'.'p8 —+ p8 —+ DpC '(T~) = —(Dp/5) (45'+45 3), and A—
of Eq. (3.15) takes the value unity. For this case, Eq.
(3.14) reduces to

exp(Dpm'/kT~), (5.12)
m=—S

and is readily shown to be identical with (5.8) for spin

~ and for spin I. For higher values of spin, the results
agree to first order in an expansion in powers of Dp/kT, v.

We may now compute T~ for simple cases of interest.
We shall consider the results for simple cubic (sc) and
body-centered cubic (bcc) lattices for which the aniso-
tropic exchange contribution D,, is zero, and for which
we have only a single nearest-neighbor isotropic ex-
change parameter J. We include a crystal-field anisot-
ropy term Do and investigate the sensitivity of the
transition temperature to the ratio Dp/J. For each of
the theories discussed, the results obtained apply both
to ferromagnets and to antiferromagnets, i.e., for either
sign of J.
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sublattice magnetization as S—+ 0. The associated
restriction is estimated below.

In Figs. 7 and 8 we have extended the calculations
of T~ for the sc and bcc lattices to higher values of
anisotropy Do. These results are obtained by use of

Eq. (5.14) with the decoupling parameters I'(Tiv) and

$ given. by Eqs. (5.1) and (5.9), respectively. Also
indicated on these figures are the results obtained from
Ising theory for the extreme anisotropy limit. For spin
5 and for Do —+~ we have from Bomb"

kT~/s J= 0.752S' (sc), kT~/sJ =0.794S' (bcc) . (6.2)

1.0—
0

1

0.4
I l

0.8

Jloo

I

1.2
I

1.6

down when Do& zJS. This we observe is a considerably
stronger condition that merely having Do))J.It implies
a breakdown as S~ 0 even for small anisotropy. Thus,
we do not expect the theories in their present form to
be adequate for the paramagnetic state. The predicted
transition temperatures, however, are probably quite
good provided that the theory is adequate up to temper-
atures for which S S/4 or S/5 (by which time the
temperature is within a few percent of T~) since the
present theory indicates no anomalous behavior of

Pro. 7. The ratio Trr(Dp)/T)r(0) plotted as a function of J/Dp
for highly anisotropic systems and for spin 5=1. Curves are
calculated for both simple cubic (sc) and for body-centered cubic
(bcc) lattices with isotropic nearest-neighbor exchange J. Curves
(i) and (ii) show, respectively, the results as calculated from the
Green's-function theory of the present paper and from the molecu-
lar-Geld theory. Also shown (dashed) are curves which extrapolate
the small anisotropy Green's-function curves so that they go
over smoothly to the correct extreme anisotropy (Ising) limit.

In the absence of anisotropy, the best estimates for
transition temperatures are probably those obtained
from high-temperature series expansions. For spin 5,
Rushbrooke and Wood" give

kT~/J = 5(s—1)[11S(S+I)—1]/192. (6.3)

The Ising results apply to both ferromagnets and anti-
ferromagnets. The Rushbrooke and Wood results were
calculated for ferromagnetic structures but should also
be valid to a good approximation for antiferromagnets.
Indeed, perhaps the best understood antiferromagnetic
compound of all (viz. , MnF&) has a Neel temperature
which is related quite accurately to its dominant ex-

change interaction J by Eq. (6.3). We shall assume the
result (6.3) to be valid to a good approximation for both
signs of exchange.

Combining Eqs. (6.2) and (6.3) we find

T~(D p ~~ ) 192sS'p
(6.4)

Try(Dp= 0) 5(& 1)[11S(S+1)—1]

O
Z

I—

O
Cl

2
Z

0.4
Do

I

0.8 1.2

where p=0.752 for the sc lattice and p=0.794 for the
bcc lattice. For spin unity we 6nd a value Tir(~)/
Tp7(0) =1.65 for both lattices, and for infinite spin we

calculate a value 3.15 again for both lattices. These
values compare quite favorably with the results 1.5
and 3.0 given by molecular-field theory [Eq. (2.10)].

In Fig. 7 we show the molecular-field curves and the
Green's-function results of the present paper as calcu-
lated for S=1 and for highly anisotropic systems. We
have also extrapolated the Green's-function curves so
that they go over smoothly to the correct extreme anisot-

ropy limit. For the spin-1 case, the latter curves
diRer significantly from the large anisotropy Green's-
function estimates for J/Dp&0 5(bcc) and fo.r J/D,
&0.7 (sc). The corresponding numbers for the classical

spin limit, are seen from Fig. 8 to be 0.3 (sc) and 0.2
(bcc). In general it would seem that the Green's-function

theory of this paper is able to give at least semiquanti-
tative estimates for Tpr(Dp) up to values Dp psJ (for
S=1) and to values Dp —,'sJ for large values of spin.

FIG. 8. As I'ig. 7 but for spin quantum number S= ~. "G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 {I958).


