PHYSICAL REVIEW

VOLUME 156,

NUMBER 2 10 APRIL 1967

Correlation Effects and Superconductivity in Dilute Alloys with
Localized States

C. F. Rarro*

Istituto di Fisica, Universitd di Genova, Genova, Italy
Gruppo Nazionale di Struttura della Materia Consiglio Nazionale delle Ricerche

AND

A. BranpIN
Laboratoire de Physique des Solides,t Faculié des Sciences, Orsay, France

(Received 14 November 1966)

We study the effect of transitional impurities on the superconducting critical temperature of normal
metals: we restrict our considerations to the impurities which give rise to virtual bound states (localized
states) but do not have magnetic moments. We use Gor’kov’s method to study the superconducting state
and Anderson’s Hamiltonian to describe the impurity effect. The virtual bound state gives two contributions
to the decrease of the critical temperature. The first one, pointed out by Zuckermann, is due to the resonance
scattering only, and hence depends on the relaxation time of the conduction electrons ; the second one, which
is studied here in detail, is produced by the Coulomb interaction within the localized states. In fact, because
of the admixture of localized and conduction states, a part of this Coulomb repulsion appears in the inter-
action of conduction states and then changes the binding energy of a pair. It is shown that our problem is
connected with the study of Schrieffer and Mattis on correlation effects; in particular, we find that the
same effective Coulomb interaction determines the properties of the system. Finally, we compare our
formulas with the experimental results for Al- and Zn-base alloys. A reasonable agreement is found.

I. INTRODUCTION

MPURITIES have different effects on the properties
of a metal in its superconducting state, depending on
the nature of the impurities themselves.
The two extreme cases are:

(1) magnetic impurities which rapidly destroy super-
conductivity because of the exchange interaction be-
tween the conduction electrons and the magnetic
impurity atoms;

(2) non-transition-metal impurities which have only
a small effect on the critical temperature, due to the
destruction of the anisotropy of the gap.

An intermediary case occurs with alloys containing
transitional impurities which do not have magnetic
moments. It has been suggested by Boato ef al.! that
this effect is due to the existence of a virtual bound state
(or localized state)? on each impurity. Zuckermann? has
calculated the influence of the resonance scattering,
caused by such impurities, on the transition of the alloy
to the superconducting state. Although this calculation
is correct and gives an appreciable change in the critical
temperature, using this model one has to assume, never-
theless, small widths for the localized states, in order to
explain the experimental results.

In this paper, we want to demonstrate that the
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Ratto to the Faculté des Sciences d’Orsay, in partial fulfillment of
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Coulomb interaction between the d states plays a
crucial role in decreasing the critical temperature. In
fact, because of the admixture between localized and
conduction electrons, a part of this repulsion is present
in the interaction of the two electrons of a pair. To
understand this, let us remember that we can build up a
Bardeen-Cooper-Schrieffer (BCS) wave function cou-
pling the one-electron state

¢n=§<nlk>¢k+<nld>¢d

eigenfunction of the one-body part of the Hamiltonian,
with its time-reversed correspondent

b_n=(pn)*= 2k2<n| kYo i+(n|d)*¢_a,

which is also an eigenstate of the one-electron Hamil-
tonian. Here, ¢, and ¢4 are, respectively, the Bloch
functions for the conduction band in the pure metal and
the unperturbed localized d state; we use the shorthand
notation k= (%,1), —k=(—*k,|), d=(d,1), —d=(,]).
The matrix elements of the two-body interaction
between these new states are decreased because of the
presence of the Coulomb repulsion, i.e., because of the
admixture of the localized orbitals with the conduction
states.

Let us say a few words about the approach which is
used in treating the virtual bound state. In super-
conductivity problems, one studies the motion of an
electron pair in the average field of all other pairs; for
our problem, this means that we take into account in the
averaging process such terms as

Ulagta_qt).
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Thus, the impurity is treated outside the one-electron
theory (usual Hartree-Fock approximation), and the
correlation between d electrons is partly described.

Recently, many papers have appeared studying the
correlation between d electrons in a d band or on an
impurity atom, mainly to discuss the conditions under
which the atom can have a magnetic moment. It is
evident that our results should be connected @ priori
with their conclusions. In fact, we find that the change
in the critical temperature depends not on the Coulomb
potential U itself, because of the admixture of conduc-
tion and localized electrons, but on an effective potential
Uess. This is the same effective potential found by
Schrieffer and Mattis in their paper on the effect of
correlation on localized states.

In Sec. II, we discuss the method of approach which
is an application of Gor’kov’s method’ to Anderson’s
Hamiltonian? (without orbital degeneracy). The prob-
lem with one impurity is discussed in Sec. III.

In Sec. IV, an expression for the critical temperature
T. of an isotropic dilute alloy is derived, and the ap-
proximations made in calculating this result are dis-
cussed. It is found that the decrease in 7'c can be de-
composed into two parts: the first one, due to the
resonance scattering, depends on the relaxation time of
the conduction electrons (Zuckermann’s result); the
second one is due to the Coulomb repulsion between the
electrons when they are in the localized states.

In Sec. V, we compare our formula with experimental
results for Al and Zn alloys by Boato, Gallinaro, and
Rizzuto,® and by Aoki and Ohtsuka,” obtaining a good
order of magnitude agreement for parameters describing
the resonant state.

In the Appendix, we generalize our results to the case
of orbitally degenerate states.

II. THE HAMILTONIAN AND THE METHOD

For the sake of simplicity, we begin by studying a
single transition-metal atom imbedded in a nontran-
sition metal in its superconducting state; here we limit
our considerations to the case of an impurity which has
a single nondegenerate “d” level. Later, we shall treat
the problem of dilute alloys (Sec. IV) and extend the
calculations to the case of an orbitally degenerate
d level (Appendix).

We shall study this problem using Anderson’s Hamil-
tonian,? to which we have added the BCS interaction
among conduction electrons:

H=Hy+H,+Hs,,

47. R. Schrieffer and D. C. Mattis, Phys. Rev. 140, A1412
(1965).

81.. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
[English transl.: Soviet Phys.—JETP 2, 1364 (1959)].

6 G. Boato, G. Gallinaro, and C. Rizzuto, Phys. Rev. Letters 5,
20 (1963); Rev. Mod. Phys. 36, 162 (1964} ; Phys. Rev. 148, 353
(1966).

7 A. Aoki and T. Ohtsuka, Phys. Letters 19, 456 (1965).
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where, in second-quantized notation,
Ho=z 5k”k+z €dald ,
) d
Hy=3" (Varaatar+Viaartaqd) , 1

k,d

Ho=Ungn_g+3% > Mewarla_rla_pay .
Tk’

Here, €, and €4 are the energies of the Bloch states in the
conduction band of the pure metal and of the un-
perturbed localized d state, respectively. The energies
are measured from the Fermi level. As usual, we assume
that the matrix elements \xxr of the superconducting
interaction have nonvanishing values only when both
lex| and |ex| are less than the Debye frequency wp of
the pure metal.

We neglect the one-body terms which describe the
nonresonance scattering of conduction electrons,

H=3 Virartar,

k,k’

since their effect should be small in comparison with the
effect due to the resonance scattering.?

We start by writing down the equations of motion for
the various unperturbed creation operators:

[H,a" = exart+ Varaa ™2 Nowaw oy ta_y,
k!

(2)
[H,ast )= eata™+2 Viaart+ Uaata_qta_q.
k

We linearize these equations, obtaining the usual
Hartree-Fock terms, and terms which take into account
the condensation in pairs of the one-electron states, i.e.,

[H,a:']= exart+ Varaa™+2 N {awfa_pas,
m

)
[H,adT]= EadH—Z V}cddﬂ-}— U(adTa?dWa_d y
k

where
E= 5d+ <ﬁ> U ;

with (n)=(ng)= (n_4) the average number of the d (and
—d) electrons. In the first equation, we have not written
explicitly the other terms arising by the linearization,
since they lead only to a correction in the one-electron
energies.

The expectation values {(a:fa_i!) and (a4la_qt) are
taken between the condensed states ¥x and ¥as, with
N and N2 electrons, respectively. Later, we shall
demonstrate, by means of self-consistent equations, that
the term {aqta_.") is indeed nonvanishing; it means that
the number of d electrons may fluctuate, since the
number of electrons in the condensed state may
fluctuate. In this way, some aspects of the correlation
between d electrons are treated in a simple manner.

In the equations of motion, we do not have, explicitly,
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terms like {a;fa_4"), since our Hamiltonian has no two-
body interactions mixing free and d states.

Let us go on with Gor’kov’s method.5:8 Since we shall
study physical properties of our system at finite tem-
perature later, we use thermodynamic Green’s functions.

Let us define

G(kk'; {)=—(T[ar(t)ar1(0)]),

Fi(kE'; ) ={(T[a_s!(Har1(0)]),
G(k,d; )= —(T[ax(t)aq'(0)]),
Fi(k,d; )= (TLa_s'(D)aq'(0)]),

and so one, where (- --) is the statistical average for a
grand canonical ensemble and 7" is Dyson’s time-order-
ing operator; the operators a(f) and at(f) are in a
Heisenberg-like representation.

Equations for the G and FT functions can be obtained
from Egs. (3), since d4/dt=[H,A]. Finally, taking the
Fourier components of these equations, one obtains
Gor’kov’s equations:

(iw—H)G,+AF, =1,
(iw+H)F ,HA*G,=0,

(4a)
(5a)

where A is the “gap function” and A the Hartree-Fock
Hamiltonian for the normal metal. The frequency w
has only discrete values, i.e.,

w=w,=2n+1)=T,

where 7 is an integer and T the temperature of the
system. The Fourier components are defined as

GRE;)=T% e™Gu(kE),

and so on, for the other functions.
For our case, the Hartree-Fock Hamiltonian is

H=Y emt+EY nat+ Y (Vaaatar+ Viaartas), (6)
k d k,d

and the matrix elements of the “gap” are
Ay= ——% Mew{awa_y),
Ad=—Ulaqa_y),
A= —:L:, New{a_ptapt),
A= —Ua_qtaqt).
Then, Egs. (4a) and (5a) can be written
(tw—€x)Go (kR — ViaGo, (d, k')
+ArF L (kR) = br

8A. A. Abrikosov, L. P. Gor’kov, and J. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1963).
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(iw—€x)Go(k,d) — ViaGo(d,d)
+AxF ot (k,d)=0,
(iw—E)Gw(d,k)—Zl VawGo.(F'k) (4b)
‘ L AL (dR)=0,
(lo— E)G,(d,d)—2 VarGo(k,d)
k +AdF1(d,d)=1;
(iwte) F ot (kR )+ ViaF ot (k)
+A*G,(k,E)=0,
(lote) .1 (k,d)+ Vial 1 (d,d)
FAFGa(Bd)=0,
(lw+E)F ! (d,k)—{-zk; VawF (k' k) (5b)

+A*Go(d,F) =0,
(iw_!"]g)FwT(d;d)'i—z deFwT(k;d)
k
+44%G.(d,d)=0.

We want to point out that |A4|2 does not have the
usual meaning of energy needed for breaking a pair, but,
as we have already said, that it represents the possibility
for d electrons to flucutate in number.

III. DISCUSSION OF THE ONE
IMPURITY PROBLEM

The Green’s functions G for the electrons in the
normal metal satisfy, in the Hartree-Fock approxima-
tion, Eqs. (4) with vanishing Ft (and A):

(lo—H)Go=1. )

These equations are given by Anderson.> We have
also, for G_,:

(—iw—e)Gou(—F, —k)
- deG~w(_ K, —d)=bs )
(—iw—e)G-u(—d, —k)
~ViaG_o(—d, —d)=0,
(—iw—E)G_,(—k, —d) (8)
~Z VarG_o(—k, —&)=0,

(—iw—E)G_o(—d, —d)
=2 ValG_(—d, —k)=1.

Comparing Eqgs. (4) and (5) with Eqgs. (7) and (8), we
find the usual integral equations
G=G.—G.AF, 1,

~ 9
Ft=G_,A*G. ©)
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These equations have, in our problem, the explicit
form

Go(k k) =G (k,k)— 2 Gu(kk")Aw Ful (B',1)
o

—Go(kd)AdF ot (d}'),
wa(k,kl) = Z G—-w (_~ kl,; - k)Ak"*Gw (k”:k,)
kl’

+Go(—d, —B)AFG.(dF),

and similarly for the other matrix elements.
Substituting the expression for F,i(d,d) into the
relation

AF=—UT Y F,Hd,d), (10)

we get
Ad¥=—UT > {A*G_o(—d, —d)G,(d,d)
+X AFGoo(—k, —d)Gu(k,d)} ,
k

which can be written

AF=—TY > A*G_o(—k, —d)G,(kd)ta, (11)
w k

where #; represents the ¢ matrix relative to the inter-
action between the two d electrons and satisfies

ta=U+UT Y. G_o(—d, —d)Go(d,d)la, (122)

where
Gw(d;d) = 1/(1MX—E) )

X=14T/|w]|.

Let us limit our considerations to the case in which
the half-width T' of the resonance is much greater than
the gap, i.e.,

>T.

(this is the case which is physically interesting). The
equation for 7 at the critical temperature is then the
same as in the paper of Schrieffer and Mattis?:

(o(T)=U+U(1/27) / 4o G_o(—d, —d)G.(d,d)ta(T.) .
(12b)

The diagrammatic series described by Eq. (12b) is
shown in Fig. 1. If we close one of the electron lines into
itself in each diagram of the series, we find, in the low-
density limit, the self-energy of the localized state, i.e.,
just the quantity treated by Schrieffer and Mattis.

Thus, t4(7T.) is equal to the effective interaction of

!+B+ *

I'16. 1. Diagrammatic series for the 7 matrix relative to the
interaction of the localized states with opposite spin. The Green’s
functions are_those relative to the normal state.

4+ etc
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Schrieffer and Mattis:
ta(To)=Uess=

U
14 (U/=E) tan— (E/T)

The presence of ¢4 is not surprising, and, in fact, it has
to appear in the set of diagrams in which two electrons
multiply scatter each other. The normal state is un-
stable with respect to bound-pair formation and, when
we arrive at this instability (from the normal state),
the { matrix between the exact one-electron states (¢, of
our Introduction) becomes singular.

Now, Eq. (11) has a clear physical meaning: the
localized electron coupling (Ag*) is induced by the
condensation of the conduction electrons (As*), owing
to the admixture of the two kinds of states
[G_o(—k, —d)Gu(k,d)]. Tt obviously depends on the
effective potential between the localized electrons them-
selves, i.e., t4.

IV. DILUTE ALLOYS

One can calculate the transition temperature of
alloys with a small concentration of impurities gen-
eralizing our Hamiltonian (1) by adding, as in Zucker-
mann’s paper, a sum over the impurities which are taken
to be randomly distributed with #; per unit volume.

We still consider nondegenerate localized states in
order to simplify our demonstration. In the Appendix
we carry out the calculation relative to degenerate d
orbitals.

With obvious generalizations of the definitions of G
and F functions and of the “gaps” A* we get a system
of equations identical to (4) and (5) with an integral
representation as in (9).

To calculate the critical temperature, we use the
method developed by Abrikosov and Gor’kov.?8?

When the system is in its normal state (i.e., at a
temperature greater than the critical temperature 7'
at which the alloy becomes superconducting), these
equations do not have solutions with nonvanishing F1
(and A). At the critical temperature, we can write,
retaining only the terms linear in Ff and A,

G ~G.),

Fi~G_A*G,.
Using the definition of the A functions, we get
immediately
A=—T, 2 T NeilS Aw*Go (B NG _o(— k', —F)

w K 384
+3 AFGL(GE)G_o(— ], —E)},
’ (14)
AF=—UT. ZAE A*Golk,/)G-o(—k, — )
W k

+‘ZAi*Cw(irj)G~w(_'f7_j)} )
where j refers to the impurity at the site R;.

' C. (:‘ér_oli, P. G. deGennes, and J. Matricon, J. Phys. Radium
13, 707 (1962).
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We must average this system over the position of the
impurity atoms. As usual, we take independently the
average of A* and of the product of the two Green’s
functions.

As long as we consider an isotropic superconductor,
we can take the superconducting interaction parameter
Mex constant; when both |e;| and |ex| are less than
the Debye frequency wp, we assume

>\/ck’ =\ y
A= A¥,
After these simplifications, the system (14) gives the

following equation:

1

LYYy [sw ()= s
Nk

U
1HUT. T 5 S.0,j)

X Tc Z Sw’ (k77‘)Sw (iyk,)] ) (15)

where 3P means summing only over momenta % with
|ex| <wp. With S, we have indicated the average of the
product of two Green’s functions, i.e., for example,

Sa(lk)=(Gaolle,k)G-u(—k, —k))uv.

The evaluation of S,(k,k") can be reduced, as usual,
to a summation of “ladder diagrams”®

So(k,k) =G (k)G —o(— E) 0,1 +11 :2 [ Via|?
XGo(@)G-o(=d) | Var|2Su(R",K)], (16)

where G, (k) and G,(d) are the averaged Green’s func-
tions for electrons in the alloy in its normal state,?

Gw(k) =1/(iun—ey) , (17a)
G.(d)=1/(iwX—E), (17b)
with
nr I'x
p
7g(0) w?X2+ E?
and
X=14T/|w|,

where g(0) is the density of states at the Fermi energy
in the pure metal.

To simplify the solution of Eq. (15), we substitute
for | Via|? its average | V|2 over the electron momenta ;
summing over k£ we obtain >_, S, (k%) and hence

So(k,E) =5w<k)[ak,kr+nzsw(d)l Vit
S (%
x ®) ] (18)
1—nS,(d)|V]* :; S, (k")

where S, (k) =G, (k)G _.,(—F), etc.
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All other S functions are related to S,(k,k"); for

instance, )
Sw(],k)=§ Su(@|V[2Su (¥ E),

and so on, in a similar way.
These expressions can be evaluated, remembering
that

“p e

D 2g(0) wp
> 5.0)=5(0) -2

nlw|

The sum over w in Eq. (15) does not diverge, owing
to the cut at n|w|~wp provided by tan~[wp/(n|w|)].
Since the position of the cut is not greatly affected by
the value of 5, we can simply write tan™(wp/|w|).
When this cut is not important for the convergence of
the sum, we completely neglect it (this approximation
does not greatly affect the result when wp>T,, as it is
always the case).

We are interested in the low impurity concentration
range; thus, we retain in formula (15) for the critical
temperature only the terms linear in the concentration,
using the following expressions:

D D 2¢(0) @
55 Su(b k)~ tan—
k

K’ w |w]

(nI 2) )

—ns +0
|| (£ (|| +T)2]

' O(”I) )

ZD:Sw(k>d)~ T
k lo| £+ (|| +1)2]

2 Sw(%])'\’

——————+0(m).
i 24 (Jo|+1)?

These sums can be evaluated introducing the di-
gamma function ¥(z):

1
>
>0 (2n+1)[ (2n+14-2)24y?]

_ _i Iln{z[¢(f;—l>—¢(%>]} ,

1 1 z+1
B=2Y —— = Inn/z(—) s
n>0 2n+14x)24+92 y 2

where g=x-4y. In our case, x=T/7T, and y=E/xT..
As x>>1, we can use the asymptotic expressions for
¥ to get

A~

In2 ( 2 2 __x -ly
iy n2vyy/ (x*+y?) ;tan ;J,
B>~(1/y) tan™'(y/x),

where v is Euler’s constant.
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Let us come back to Eq. (15). The expression

appears when summing S, (k,k") over w, k, and &’; from
BCS theory, we have

1 2ey wp
=n—7—,
[\ £(0) T Te

where T is the critical temperature of the pure metal.
With the help of these relations, one immediately
obtains

Tc AT: 8a (0)
In—o~ = —njo [:1-|—agd(0) Ugtf:l s (19)
Tw T g (0)
where
A/ (EH4T?\ T E
a= ln<2'y—————>——— tan—l—
xT. E T

and gq(0) is the density of the d state for a given spin
direction at the Fermi energy,

1 T

2a(0)=— .
T B2+

(20)

The final result is the expression obtained by Zucker-
mann multiplied by the factor

1+aga(0)Uess. (21)

We see that there are two distinct contributions to
the critical temperature change. The first one—which
has been previously studied by Zuckermann—depends
only on the resonance scattering. The relaxation time of
the conduction electrons at the Fermi level due to this
process is 7(0) with

1 nr P2
2r2(0) mg(0) E2HT?

7r(w) is related to the parameter 5 of G, (k) by
1

n:H-Qm(w)lwl .

Introducing the lifetime 74 of the virtual state

T4=1/2T,

one can write this first term

AT”I Td
=—g—. (22)
TcO R TR (0)

The second contribution, due to the Coulomb inter-
action which we have discussed in this paper, can be

C. F. RATTO AND A. BLANDIN
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written
AT, nr

= —a2—gd2 (0) Ueff .
Tole £(0)

As shown in the Appendix, expression (22) is not
changed when one takes into account the orbital
degeneracy of the d states, if we define

1 nr(2l4+1) T2
2rr(0)  wg(0) E*H4I1?
and expression (23) has to be multiplied by (2/+1).

(23)

V. COMPARISON WITH EXPERIMENTS

A. Experimental Results

The variation of the critical temperature 7°; has been
measured in dilute alloys of Al &7 and Zn.® Experimental
results have been analyzed by the same authors within
the theory of Markowitz and Kadanoff.? The decrease
of T, is due to two mechanisms: (1) the destruction of
anisotropy of the gap; (2) a ‘“valence effect” which, in
this case, is due to the presence of localized states. From
a theoretical point of view, there seems to be little
interference between the two effects, as has been shown
recently by Zuckermann and Singh! and Nagashima
and Soda.?

1. Aluminum Alloys

Figure 2 shows the observed initial decrease of 7'
for the transition series. From these data, taking into
account the destruction of the anisotropy of the gap,
one obtains the effect of the resonant state. The results
are given in Fig. 3 (taken from Ref. 6), where p is the
residual resistivity ratio p=7e3/[72(0)] (7213 is the
relaxation time at room temperature). The value rela-
tive to Al-Fe alloys is very doubtful (Ie has a very small
solubility in Al).

2. Zinc Alloys

In Zn, Cr and Mn impurities are magnetic. On the
other hand, Fe, Co, and Niimpurities are nonmagnetic.

15 [-ATe/c (initial)
/'A\
SN

0L AN

4 N,

/ \,

A .
5| - T
0 . . A . .
Ti v Cr Mn Fe Co Ni

Fi16. 2. Observed initial decrease of the transition temperature (¢ is
the impurity concentration in at.%) (Refs. 6 and 7).

© ], Markowitz and L. P. Kadanoff, Phys. Rev. 131, 563
(1963).

11 M. J. Zuckermann and A. D. Singh (to be published).

12 T, Nagashima and T. Soda, Progr. Theoret. Phys. (Kyoto) 36,
1 (1966).
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'r /
0 L " L "

Ti v cr Mn  Fe| Co Ni

F16. 3. Effect of the resonant state on the transition temperature
as deduced from the experimental data by using a Markowitz-
Kadanoff type of plot.

These results are in agreement with the discussion of
Friedel®> and show that the width of the virtual state
should be smaller in Zn than in Al. For the nonmagnetic
impurities with the same analysis, one obtains the
following values of —AT./p (taken from Ref. 6): 2.0 for
Fe, 1.3 for Co, and 1.7 for Ni.

B. Theoretical Interpretation

Equation (23) can be written introducing the residual
resistivity ratio:

AT, Td
- =0£‘—Tco[1+agd(0) Ueff]'

Y T213

(24)

For numerical calculations, the Coulomb integral U has
been taken equal to 10 eV (Anderson?). The width I' of
the state has been varied from 0.2 to 1 eV. Fig. 4 gives
the ratio Uers/U versus the number #4 of d electrons per
state for different values of I'. One can calculate
1+ags(0)Uess. The results are given in Fig. 5 for
I'=1 eV. The corresponding curves for other values of
T have not been plotted for the sake of clarity; for T’
varying between 0.2 and 1 eV, the curves are similar
(value equal to 1 for #,=0 or 1; for #4=0.5 there is a
variation of a few percent). The factor 14aga(0)Ues
has small variations with T, but large variations with
the occupation number 4. This shows that the effect

0 02 04 06 08 10

F16. 4. Ratio of the effective potential Uess and the Coulomb
potential U versus the number of d electrons in each state nq4;
itis U=10¢eV.
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s _1'*gd(o)u,"
71
6 |
Fie. 5. 14aga@Uetr  ° [

for U=10 eV and I'=1 4L

eV. 3l
2
1
0 R . A A

0 Q2 04 ny 06 08 1

of Coulomb interaction can be very large (a factor 7.4
when 7,=0.5)

From this, one can calculate — (AT/p) as a function
of ng for various values of I'. The results are plotted
in Fig. 6 (solid lines). For comparison, the dashed
curves represent the results without Coulomb inter-
actions (Zuckermann’s result):

AT, Td
=a—7T .
C T213

The variation of the factor 1+ags(0)Ues drastically
changes the results (by an order of magnitude).’® One
sees in Fig. 6 that there is a peak in the middle of the
series for 74~0.5. The order of magnitude of — (AT./p)
is controlled by the value of T.
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Fi16. 6. Theoretical values of —AT./p as a function of #4. Solid
line: with Coulomb interaction (our result). Broken line: without
Coulomb interaction (Zuckermann’s result).

18 When 74 is very small or very near unity, —AT./p becomes
infinite. This is due to the coeflicient a which diverges as a conse-
quence of the Lorentzian shape of the resonant state. This is a
spurious effect which occurs only in the tail of gg.
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1. Aluminum Alloys

Without Coulomb interaction, one needs a value of
T of the order of 0.1 eV and with large variations going
from Ti to Mn and Ni. Such a small width cannot agree
with the fact that these impurities are nonmagnetic.

On the contrary, if one takes into account Coulomb
interaction, one explains the existence of the experi-
mental peak (Fig. 3) for Mn (#4~0.5) with values of
T of the order of 1 to 1.5 eV. Such values agree with
other estimations of the width and with the fact that
all transitional impurities are nonmagnetic in Al. The
experimental peak of Fig. 3 is narrower than the peak
of Fig. 6. One cannot make a detailed comparison: The
scattering problem is oversimplified by the model of
localized states; the number 74 is roughly determined;
the treatment of correlation through Ues is valid only
when 74 is sufficiently small or close to 1, and is not very
good when 74>0.5.

2. Zinc Alloys
For these alloys, we have only three points (Fe, Co,
Ni). One can estimate the width: I is of the order of 0.2
to 0.4 eV. This smaller width (compared to the case of
Al alloys) agrees with the occurrence of magnetism for
impurities in the middle of the transitional series
(Cr and Mn).
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APPENDIX: GENERALIZATION TO THE
DEGENERATE d LEVEL CASE

Anderson’s Hamiltonian for a degenerate d level is

H,= Z Eknk“l"z €qllq
k a

H1= Z (szkaafa’k"- Vkaakfaa) )
ka

Hy=3U % nan_p+3(U—J) Zﬁ Maltp
«B a7

+3 2 Mwartoitowar,
e

where J is the exchange integral and o, 8=1, 2+ - -2I41,
I being the d-state angular moment (ie., I=2 for
transition-metal impurities).

We are still treating the nonmagnetic case and,
therefore, because of the perturbation, each level is
shifted to the energy

E=e+m)[Q+DU+2(U-T)]

and spread out into a virtual level of half-width I'.
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We will not work out all the details of the various
calculations, but simply give a few results and com-
ments. First of all, we want to point out that we cannot
take into account the correlation of electrons with the
same spin, i.e., we have to treat the part of the Hamil-
tonian relative to electrons with parallel spin completely
in the framework of the Hartree-Fock approximation.

This feature arises since we are studying a super-
conductivity problem and hence the pairing of states
with opposite spin.

In other words, when linearizing the equations of
motion, we can make the following factorization for
antiparallel spins:

3U(aala—sNa_s+(a—sla_g)aa’);
however, for the parallel spins, we get only
3(U—J)(astag)ast.

In the ladder approximation used by Schrieffer and
Mattis, the repeated exchange interaction between
electrons of the same spin is included in the calculation
of the self-energy, and these correlation effects are taken
into account.

In this topic, Vi, are different for different « and
different % directions. We can choose the localized
orbitals in such a way that the average of V, over the
modulus of £ may be written

14 (47!‘)1/2 Yla(0’¢) )

where ¥ is a spherical harmonic and 6 and ¢ give the
direction of k.
Because of this structure, we have

(VarVig) =85 V|2,
2 ViaVar ViesVery= (2+1)| V|4,
aBf

where the average is made with respect to the electron
momenta. Using these properties, we can generalize all
our results, substituting, for the products of the ad-
mixture parameters, their averages.
In particular,
I=mg(0)| V|*

is the half-width of every virtual level, and
w
2 VarGO(R)V yp= bapi—T,
2 ol
Gw (O‘;B) = 6aﬂcw ().
In the normal alloy, the averaged Green’s functions are
éw (k) = 1/ (iwﬂl-ék) 3
gw(d) = 1/(1:(.0X—E) )
| V]2

m=14ng (2U+1)—o.
O)ZX2+E2

with
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and
X=14T1/

In the same way, we obtain

Gw(k)a)é—w(_‘k: —5) = aaﬁsw(k:a)

w|.

and

! ryy [Sw(k,k’)—m(Zl-!-l)

[A] w kk'

1+ UT. X S.0.j)

XTo ¥ Sur (i), (i,k’)] .

Now, we have

D D 2¢(0) wp
£ 5 Sulb#n st QD

k' w w

X ; 0(12)1’5,
lw| [E*4- (|| +T)?]
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f: Sw(kyd)'\' O(ﬂ]) ’

|| [E*+ (Jo|+T)7]

2 Su(i,5)~ +0(n1).

j B4 (|| +T)?
In that case, the relaxation time 7£(0) is given by

1 nr(21+1) T2
22(0)  wg(0) EPAT?

We can write, exactly as in the nondegenerate case,

e e Maga(0) U]
— aga off |+
Tc() TR(O)
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Sublattice Magnetization in Yttrium and Lutetium Iron Garnets*
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(Received 27 October 1966)

The temperature dependence of the ¢ and d sublattice magnetization in yttrium iron garnet (YIG) and
lutetium iron garnet (LuIG) has been observed by means of the NMR of Feb” between 4 and 373°K, with
special emphasis on the temperature range where the spin-wave theory is expected to hold. An analysis of
these results in terms of the spin reversals due to acoustical and optical spin-wave modes has been carried
out. From a comparison of theory and experiment in YIG, the value of the dispersion parameter D=30.0
0.6 cm™ is obtained. A reasonable estimate of the separate exchange parameters is Joa=22.54+1 cm™,
J4a=2.040.5 cm™, and Jaa=0.540.5 cm™, subject to the constraint that their linear combination gives
D=30 cm™. The agreement between experiment and theory is improved when a small transferred hyper-
fine interaction from the d sites to the a sites (and vice versa) is postulated. For LulG one obtains a value
D=27.3 cm™. The values of D and of the exchange parameters J;; for YIG and LulG are compared with
those from other experiments. In YIG, the magnetic field dependence of the sublattice magnetizations
has been observed up to 10 kG at 63 and 77°K, and there is good agreement with the results from spin-
wave theory. It is believed that this is the first such investigation in a ferrimagnet. In the course of these
experiments, the gyromagnetic ratio of Fe®” was determined to be vy/2r=137.440.2 Hz/G. In LulG a
broad spectrum of resonances between about 40 and 76 MHz was observed at 4.2°K. This is attributed to
the resonance of Lu'”® and Lu'"® in a transferred hyperfine field (~100 kG) broadened by quadrupole inter-
action. In Y® in YIG, this transferred field seems to be smaller than ~10 kG, from NMR and specific-heat

evidence.

I. INTRODUCTION

IN recent years there have been several accurate
investigations of the sublattice and total mag-
netizations in ordered magnetic materials at low tem-

* Research supported by a contract from the U. S. Office’ of
Naval Research. A more detailed presentation is given in the
Ph.D. thesis by R. Gonano, Duke University, 1966 (unpublished).

t Present address: University of Florida, Gainesville, Florida.

peratures.'”® The purpose was to test the spin-wave
theory and to derive the respective exchange parame-
ters in the material under investigation. In this paper

'H. L. Davis and A. Narath, Phys. Rev. 134, A433 (1964);
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