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The ef'fects of strong coupling and of spin-Qip scattering by magnetic impurities on the electromagnetic
properties of superconductors are discussed. We have found that the surface resistance (R,/Rrr) of lead,
a strong-coupling superconductor, reQects the phonon spectrum and has characteristic peaks ( 1.02) near
frequencies ~8)&10 3 and 11)&10 ' eV, and has a small dip (~0.95) near frequency ~22&10 ' eV. Ex-
tensive calculations of the conductivity and surface impedance for superconductors containing magnetic
impurities at 6nite temperatures, especially in the gapless region, are described.

1. INTRODUCTIO5

GENERAL theory of electromagnetic properties
of superconductors based on a generalized pairing

scheme has been discussed by the author in the previous

paper of this series. '
The main purpose of this paper is to discuss applica-

tions of the theory to a strong-coupling superconductor
Pb and to weak-coupling superconductors containing
magnetic impurities.

For strong-coupling superconductors such as Pb and

Hg, it is necessary to take into account the retarded
nature of electron-phonon interaction, as has been dis-
cussed by Schrieffer er al. ,' and others. ' Schrieffer et al.
calculated the density of states for Pb assuming that the
phonon spectrum is Lorentzian, and obtained excellent
agreement with data from tunneling experiments.

We have here applied a general expression for the
electromagnetic response function given in I to calcu-
late the conductivity and surface resistance of Pb. In
these calculations, we have used the results of Schriefter
et a/. for the frequency-dependent gap parameter A(to)
for Pb. We have found that the surface resistance
(R,/E&) has characteristic peaks near frequencies
~8&(10 ' and ~11X10 ' ev, and has a small dip

( 0.95) near frequency 22&&10 ' eV.
The effect of spin-Qip scattering by impurities with

localized magnetic moments on the superconducting

*This work was supported by the U. S. Army Research OfEce
(Durham) under Contract No. DA-31-124-ARO(D)-11.4. Parts of
the paper are based on a thesis submitted by the author in partial
fulfillment of the requirements for a Ph.D. degree in physics,
University of Illinois, 1966.

f Present address: Department of Physics, Rutgers, The State
University, New Brunswick, New Jersey.

' S. B. Nam, preceding paper, Phys. Rev. 155, 470 (1967). We
refer to this as I. More detailed references can be found here. Sote
added in proof. The upper limit of the 6rst integral in Eq. (4.18)
of I should be ca& instead of —cog.

2 J.R. SchrieGer, D. J.Scalapino, and J.W. Wilkins, Phys. Rev.
Letters 10, 336 (1963); 148, 263 {1966);j. M. Rowell, P. W.
Anderson, and D. E. Thomas, 10, 334 (1963).

s D. J. Scalapino and P. W. Anderson, Phys. Rev. 133, A921
(1964);D. J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev.
Letters 14, 102 {1965);14, 106 {1965);V. Ambegaokar and L.
Tewordt, Phys. Rev. 134, A805 {1964); J. Bardeen and M.
Stephen, ibid. 136, A1485 (1964); M. Fibich, Phys. Rev. Letters
14, 561 (1965).
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properties has been discussed by Abrikosov and Gorkov. ~

They have found that at a certain concentration of
magnetic impurities the effective energy gap vanishes
while the system still remains superconducting, so-
called gapless superconductivity, Reif and Woolf, ' on
the basis of tunneling experiments, have experimentally
demonstrated that there is a diGerence between the
slopes in the transition temperature and in the effective
energy gap as functions of the concentration of magnetic
impurities, in accord with the prediction of the theory.
A similar phenomena also occurs in a superconductor
containing nonmagnetic impurities but in a high static
magnetic Geld. ' Weiss et al.' have carried out more
detailed calculations of the properties of supercon-
ductors with magnetic impurities to determine the
transition temperature T,(I',) and gap parameter
0 (I'„T) as functions of the parameter I"„where 2I', is
the inverse relaxation time resulting from spin-Qip
scattering by magnetic impurities. They have calculated
also the electrical conductivity at zero temperature. The
thermal conductivity of magnetic impure supercon-
ductors has been discussed by Ambegaokar and
Grifhn. '

In this paper we describe results of similar calculations
for T,(1',) and A(l'„T), and in addition calculations of
the conductivity and surface impedance at hnite tem-
peratures. We have found that in the nonzero gap region
conductivities and surface impedances have a behavior
similar to those based on the Mattis and Bardeen
theory. On the other hand, in the gapless region the real
part of the conductivity has a Qnite value near zero
frequency, and approaches the normal-state value at
high frequencies, as one expects.

For convenience, we repeat from I Eqs. (5.7) and
(5.10) which are useful limiting forms for the response

A. A. Abrikosov and L. P. Gorkov, Zh. Eksperim. i Teor. Fiz.
39, 1781 (1960) t English transl. : Soviet Phys. —JETP 12, 1243
(1961)].

~ F. Reif and M. A. Woolf, Phys. Rev. Letters 9, 315 (1962);
Phys. Rev. 137, A557 (1965).

6 A. I.Larkin, Zh. Eksperim. i Teor. Fiz. 48, 232 (1965) 1 English
transl. : Soviet Phys. —JETP 21, 155 (1965)j; K. Maki, Progr.
Theoret. Phys. {Kyoto) 29, 603 (1963);31, 731 (1964).' S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev.
136, A1500 {1964).

s V. Ambegaokar and A. Griff'm, Phys. Rev. 137, A1151 (1965).
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where the normal-state conductivity o-+ is

(1.2)

function and the conductivity in the Pippard (q —& oo)

and London (q —+0, I' —+ do) limits. These limiting ex-
pressions both may be written in the form

K(q, cd) = cr~4zrzcd(cr, (cd) i—cr, (cd) ), (1.1)

The minimum energy required to create a pair of
excitations from the ground state is then 2', .It may be
seen from Eq. (1.5a) that at zero temperature the real
part of the conductivity vanishes for frequency or &2&v„
as one expects.

The surface impedance, neglecting the small displace-
men, t current correction which is one of the order of
(cor)'(u/c)', is given by'

d n= 3zr/4quoA

for the Pippard limit, and

1 1
~N

A. 2F,gg

(1.3a)

(1.3b)

where

8(co)+iX (co) = 4zci cdI (co),

dg

q'+K'(q, cd)

(1.10a)

for the London limit. The latter corresponds to the case
of an effective mean free path I«(o, where $o is the
coherence distance. The London parameter A. is defined

by

for specular reQection, and

dq in[1+K(q,cd)/q'j (1.10b)

for random scattering.
One can in general calculate the surface impedance by

using the general expression for the response function

K(q,co) given in I. For simplicity we use the limiting
form of the response function, Eq. (1.1). Inserting Eq.
(1.1) into Eqs. (1.10), we obtain a single form for both
cases:

where $(0) and uo are the density of states and the
velocity on the Fermi surface in the normal state. The
real and imaginary parts of the ratio of conductivities
cri(cd) and crs(cd) are the same in both limits;

1
o i(co) =— dcd' gi(cd', co+cd') tanh-', p(cd+co')

8,(co)+iX,(co)
(0 i(cd) zlr2(cd))

RN (cd)+zXn (cd)
dcd gi(co, co+co )

0) rog where e= ——', for the Pippard limit, and e= ——,
' for the

London limit. The surface resistance E(co) and reactance
X tanh-', p co+co' —tanh-,'pcd', 1.5a X( )

Q&g

0'2 M

tcog—co,—a g]

dcd gz(co &
co+cd ) tanh&ti(cd+co )

R,/Err = Re(d i—zo z)"
—(X~/Ezz) Im(o i—ioz)", (1.12a)

oo

+— dcd [gz(cd &
co +cd) tanhgp(co+cd )

X,/X~ ——Re(o.,—io z)"

+ (Rii /Xn) Im(cri —id z) ". (1.12b)

+gz(cd+cd') co') tanh-,'pcd'1, (1.5b)

where [coo—cd, —cdo] denotes that the algebraically
larger of the two numbers is to be used. Here the func-

tions g~ and g2 are coherence factors defined by

g, (cd', co+co') = n (co')n(cd+cd')+ p (co')p (cd+co'), (1.6a)

gz(co', co+co') =n(co')n(co+cd')+P(cd')P(co+co'), (1.6b)

The penetration depth X is given by

)i=I(cd=0) (1.13)

from Eqs. (1.10). This can be calculated directly by
using the expression for K'(q, 0) given in I. For siin-

plicity, we give here only the limiting forms valid in the
Pippard and London limits. In both cases, this may be
expressed in the form

where n(co), n(co), P (cd), a,nd P (cd) are defined by

n (cd)+in (co)=co/[co' 6'(co)]"'—,

K(q 0) =4zr'o. "A&(0)$, (1.14)

(1.7a) where 6"(0)= discs(0), and cr~ is given by Eqs. (1.3).
The parameter S is given by

The effective energy gap ~, is defined as the frequency
at which the density of states n(co) first begins to have
finite value;

22 2xT
5=— Re Q

zr 6~(0)»o cd '+6„'
(1.15)

n(cd(cdo) =0.
' G. E.Reuter and E.H. Sondheimer, Proc. Roy. Soc. (London)

(1.8) A195, 336 (1948).



STRONG-COUPLING AND I M PURE SUPE RCON D UCTORS

where cd„= (2ts+1)s T, with I an integer and
=D(ice ).

In the weak-coupling limit without magnetic im-

purities, Eq. (1.15) becomes identical with the corre-
sponding SCS expression:

a(T) Z(T)
5= tanh

a(0) 2T
(1.16)

Inserting Eq. (1.14) into Eqs. (1.10) and (1.13), we
obtain in the Pippard limit

3 I.O
bnl
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FREQUENCY (uI/2pug)

-3~2Xi -»3—5
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FIG. 1. The conductivity ratio, (0 /r ) (co) —0.&(e) s0-&(co), for
lead. The curves of o q, spn =a lcm)j and of p c, sLa =cop] correspond(l.ll a) to the conductivities calculated by using A=~(~) and ~ =or,.

for the random-scattering boundary condition, and

8 3x'Xg -'"—S
9-4 go-

(1.17b)

for specular reflection. In the London limit, both cases
give the same result:

-1/2—= —S
0

(1.18)

$p= vp/s 6"(0) .

In the London limit, L(&)p, 5 corresponds to the
superQuid density of the two-Quid model.

Expressions for the surface impedance and for the
penetration depth simplify in the Pippard limit if )t«fo
and in the London limit if 1.(&)c or $p.

Here the London penetration depth Pg, the effective
mean free path L, and the coherence distance $o are
defined by

),=p./4~]'~',

J.= vo/2r, cc,

at low frequencies. Some indications of such an eGect
have been observed recently by Palmer"; his data are
presented in Fig. 2(b). We see that his data are below
the calculated curve based on 5=co„ that is, the weak-
coupling limit. It is noted that his value of 2', is
22.5+0.5 cm ', which is equivalent to

cp, = (1.39+0.06)X10 ' eV.

On the other hand, at high frequencies the conductivity
is enhanced.

Using these results we have calculated the surface
resistance (R,/R&) from Eq. (1.12). We have used
Xsr/R~=v3 for the Pippard limit ()c&&)o) and Xa/Rtv
=1 for the London limit ()))$p)." Actually for Pb,
neither of these limits is applicable since $p/)cr, (0)
= 2.2."In Fig. 3, we present the theoretical calculation
of surface resistance in the Pippard limit, which should
be more nearly valid.

We observe that R,/RN has characteristic peaks
( 1.02) near frequencies 3.0(2cpp) and 4.3(2M,),
and has a small dip ( 0.95) near frequency 8.5(2cp,).
This dip, which is a reQection of the electron-phonon
interaction, is perhaps large enough to be experimentally
detectable even though it would be dificult to observe.

2. CALCULATIONS FOR LEAD

In this section, we give the results of numerical
calculations of the conductivity and surface resistance
for lead.

In these calculations we have used the results of
Schrieffer et ujI. for the frequency-dependent gap
parameter D(cp). The effective energy gap cp, is

cop=A(cdp) =1.34X10 ' eV.

Numerical calculations of the conductivity of Eq. (1.2)
are presented in Fig. 1. For comparison, we have
calculated also the conductivity assuming h(cp)=co„
corresponding to the weak-coupling limit. The difference
between the calculations made with h=h(cp) and
6,= co~ is illustrated in Fig. 2. It may be seen that taking
6= h(cp) (strong coupling) yields a smaller conductivity

3. CALCULATIONS OF SUPERCONDUCTORS
WITH MAGN'ETIC IMPUMTIES

In this section we give some results of calculations of
the gap parameter h(F„T) and the transition tempera-
ture T,(P,), as well as a few typical results for the
conductivity and surface impedance at 6nite tempera-
tures, especially in the gapless region LO(D(F„T)&2F,

» L. H. Palmer, thesis, University of California, Berkeley, 1966
(unpublished). Ke thank Dr. Palmer for sending us his data.
Pote added i', proof. The recent experiment by S. L. Norman and
D. H. Douglass, lr. LPhys. Rev. Letters 18, 339 (1967)g also
indicates that there is no infrared absorption at frequency below
2'„as does that of Palmer, agreeing with the theory.

"A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953);
Advan Electron. Electron Phys. 6, 1 (1954).

1 See, for example, J.Bardeen and J.R. SchriefFer, in Progressin
I.om Temperature Physics, edited by C. J. Gorter (North-Holland
Publishing Company, Amsterdam, 1961),Vol. 3, p. 170.
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Fxo. 2. (a) The difference between conductivities o C, CLct =A (co)g calculated by using ct = ct (co) and A =coo. The strong-coupling effect

reduces the conductivity at low frequencies, especially, about 5% near frequency 2.5 3.0(2cog). On the other hand, the conductivity is

enhanced at high frequencies, and approaches the normal-state value at very high frequencies. (b) The real part of the conductivity

ratio 0.&(au) from Palmer's data (Ref. 10) for lead. The theoretical curve here is calculated by using A=a, . Here the gap determined

experimentally is co, =-,'(225+06) cm '= (1.39&0 06) &(10 ' eV.

(226(0,0)$. Here the parameter 2I', is the inverse

relaxation time resulting from spin-Aip scattering by
magnetic impurities. We have carried out calculations

of the densities of states and pairs, the conductivity and

surface impedance for various values of I', and T. We
present here only a typical result for 2I', =0.356(0,0).
The more complete calculations for 2I', =0.10, 0.20, 0.35,
0.45, 0.49, etc. are given in the author's thesis. "

Ke 6rst discuss a general description for calculations

of superconducting properties of the system with mag-

netic impurities.
To proceed with the calculation we need to obtain the

effective gap parameter E(co), which is a solution of the

following equation' .

Z(co) =6—2I',iZ(co)/[co2 —52(co)]'" (3.1)

=6—2I',iA/[co2 (co)—62)"2

where the usual gap parameter 6 is a solution of a

I I I I } } I i ( I I I

Q.
1.0

Q

O2
ctI- g
CJI

ca 0
UI
K z .5
UJ 0O
U.

BCS-like integral equation;

&=[X(0)VsCSj dco tanh(22Pco) Re(P(co)},
(3 2)

P (co) g (co)/[co2 +2 (co)31 2 g/[co2 (co) +2)1/2

We have here introduced, for convenience, a renor-

malized frequency co defined by

co(co) =co+2I',ico(co)/[co2(co) —62]''2. (3.3)

When I', =0 then Z(co) =6 and co(co) =co.
We see that all calculations can be done by knowing

E(co) or co(co). The explicit solutions for Z(co) and co(co)

can be written"

~(~)=
2 (~+~2)+2((~+~o)'

—(2/&o)[yo(&+~o)+2» ]}'' (3 4a)

Mo & 07 Mo

—(2/coo) [yo(co+cop)+262co]}"', (3.4b)
where

J4= (ye+&2+ (2I',)2}"2,

(y +g2 (2P )2}I/2

yo= yt+n,
yt

——A~+A, or A~2+A s2, or A+s'+A s,
83= 1

A = (2D+ns&2(Dn'+D')"'}'"

00
I I I

I 2 5 4 5 6 7 8 9 10 I I 12

FREQUENCY (co&2coII)

"S. B.Nam, thesis, University of Illinois, 1966 (unpublished).
'4 Equation (3.6c) in I.

FIG. 3. The surface resistance 8,/RN for lead in the Pippard
limit. The characteristic peaks appear at frequencies 3.0(2u, )
and 4.3(2u,), and a small dip (~0.95) appears at frequency

8.5 (2' g).

"A quartic equation x4+bx'+cx'+dx+e=0 can be solved as
follows: we rearrange (g'+ 2bx)2 = (~b —c)x —ux —e. Ke add

y~+2y(g+2bx) to both sides, and rewrite it as (x'+~bx+y)2
= (-'b'+2y —c)x'+(by —d)x+y' —e. Now we choose y in such a
way that the right-hand side is a square form (Ax+8)'. This
reduces to a cubic equation for y;

y —~~ cy~+ (~i cd' e)y+ xe (4ec b2c d2) 0

This can be solved in the usual way. Once y is known, then x is

obtained.
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PHASE OIAGRAM

D= —e/sos(2r, )s, a=-ss(r9 —(2I',)'—e&s), for Z(e/)

D=sesrg(2r, )s, ts=-s'(a/s+(21' )'—As) for ss(se).

Here y» is to be chosen such that 80, coo/O.
As can be seen from Eqs. (1.7) and (3.3), the density

of states is proportional to the imaginary part of co,.

Imco(a/) = 2I', Re{a(e/)/Lsos(co) —LPj'/s) =2r,ss(a/). (3.5)

FIG. 5. The phase diagram con-
structed by the transition tempera-
ture T,(I',) and the temperature
corresponding to the onset of gap-
less superconductivity, u, (F„T)
=0. There are three regions: non-
zero gap, gapless, and normal
states.

~.8
O
~OP

.6
UJ
K
i-

W

0O, l .2 .3. . .4 .5
PARAMETER |2ls//~(0 0)j

(gs/s (2r )s/s)s/s/I(g 2r ) (3.6)

Here I/(x) is the usual step function and is 1 for
positive x and zero otherwise. The region of gapless
superconductivity is that for

We thus can obtain the effective energy gap ao, as the
frequency at which co 6rst becomes complex. Sy setting
ba//5a/=0 in Eq. (3.3), we find'

equation for I",=0, we obtain the mell-known result

2",(r.)
ln

&.(0)» ss+ss+m ss+ss
(3.1o)

where m=r, /srT, (r,). We expect that since T,(I',) js
monotonically decreasing with increasing I'„at a
certain I'," the transition temperature mill vanish;

o&a(r„r)&2r.

such that co,=O. Superconductivity requires that
different from zero, but it is not necessary that cv, ~O.
To And an upper bound for I', for which the gap
parameter A, vanishes, we study Eq. (3.2). When 6-+ 0,
we find from Eq. (3.1) that Z(ru) becomes

so that

2r cr sg(00)

Thus we obtain the condition for the gapless super-
conductivity6 (~0)= (t0/ (so+2I',s)$h.

(3.7a) 2e&D M

ln =t X{0)Viscsf '= da/ — -=ln
a be ~(0,0) e/s+(2r er)s . 2r ar

Lg (0)p'sea] d/e taIlll (3 9)
e/s+ (2r,)'

Combining this result with the corresponding BCS

I.0
GAP PARAMETER EFFECTIVE ENERGY GAP

o .6

~cO ~

3
sss

0 .2 .4 .6,8 I.O
TEMPERATURE tTl Tc(0)j

0,
0 .2 .4 .6 .8 I.O

TEMPERATURE |T/Tct0)

FIG. 4. (a) The gap parameter h(I'„T). Here 21', is the inverse
relaxation time resulting from spin-Bip scattering by magnetic
impurities. %hen I",=0, the gap parameter d, (O,T}corresponds to
that of the SCS theory, and A(0,0)=Agnes(0). The shady area
corresponds to the gapless region, 0&6(I'„T)&2I',&&6 (0,0).The
temperature T is normalized by the transition temperature
T,(1',=0), that is, the BCS value. (b) The effective energy gap
co~(I'„T) is de6ned by a frequency at which the density of states
6rst begins to have 6nite value;~~(F„T) = (6'/'(I'„T}—(21,)'&)'/'
for 6(F„T}&27„andm~=0 otherwise. The value of cog(O, T} is
equal to rs (O,T), that is, the BCS gap.

Setting &=0 in the integral equation (3.2) for &, we
6nd that thc tlansitlon tcinpcrature satisGCS

0&a(r.,T)&2r.&-,'a(0,0). (3.7b)

Using Eq. {3.4), we carried out calculations of
/s~{r„2') from Eq. (3.2). The results for ss, (r„T) are
presented in Fig. 4(a), and the shady area corresponds
to the gapless region, Eq. (3.7). The eGective gap se,
calculated from Eq. (3.6) is shown in Fig. 4(b).

The transition temperature T,(r,) evaluated from
Eqs. (3.9) and (3.10) is shown in Fig. 5 with a curve
indicating the temperature corresponding to the onset
of gapless superconductivity, se, (r„T)=0. Here the
shady area also corresponds to the gapless region.

The densities of states ss(a/) and pairs p(e&) have been
computed from Eqs. (1.7) as functions of frequency /d

for various values of I', and T. The density of states has
a maximum at a frequency above the effective energy
gap, and has no singularity. YVhen I", goes to zero, the
density of states approaches that of the BCS theory, and
the effective energy gap also approaches the SCS gap.
Finally, when I",=0, they coinride with those of the
BCS theory. On the other hand, when I', increases and
reaches 2r, &6(r„T))0, then the effective energy gap
vanishes and the density of states has a 6nite value at
zero frequency; for large value of I', the density of
states approaches the normal-state value. In Fig. 6, we
give ollly the 1'esults foi' 2r =0356(0,0). Tile curves
3g and 4s in I'ig. 6 COI'icspond to those in the gapless
region.
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FIG 9. T. he surface resistance R=E,/R~ and surface reactance
X=X,/X~ for the parameter 2I', =0.356(0,0).

shown in Fig. 5. For comparison, the results of 5, cv„
and 6 at zero temperature as functions of I", are
gathered with the transition temperature T,(I',) in

Fig. 8(b).
The surface impedance has been evaluated in the same

manner as for Pb. In this case the local-limit values
should be used, and they are presented in Fig. 9. More
complete calculations are given in Ref. 13.

4. DISCUSSION

For the case of lead, we have carried out numerical
calculations of the conductivity and of limiting values
of the surface resistance at zero temperature only. It
would be desirable to extend these calculations to 6nite
temperatures, and to determine the temperature varia-
tions of the penetration depth P. For the latter, it would
be desirable to make a more complete calculation that
includes the proper momentum dependence of E(q,0)
glvcn 1n I.

For superconductors containing magnetic impurities,
our calculations of h(F„T) and T,(I',) agree with the
previous results of gneiss et c/. The additional calcula-

tions for the conductivity and surface impedance at
6nite temperatures may be useful for analysis of experi-
mental results on such materials. The conductivity and
surface impedances for various values of F, and T in the
nonzero gap region [2F,(h(I'„T)j have a behavior
similar to that based on the Mattis and Bardeen theory.
On the other hand, in the gapless region [0(h(F„T)
(2F,(-', A(0,0)j the real part of the conductivity has
6nite value near zero frequency, and approaches the
normal-state value at high frequencies. The temperature
range for gapless superconductivity depends on the
concentration of magnetic impurities. It would be
desirable to have measurements of the conductivity and
the surface impedance that include the gapless region to
compare with the theory.

The limiting case in which there is only spin-Qip
scattering is equivalent to a superconductor containing
only nonmagnetic impurities but in a high static mag-
netic field B. The parameter F, then corresponds to
r(p')B', where (p') and r are the average value of the
square of the magnetic moment and the relaxation
time. '

Again, it would be desirable to make more general
calculations that include the momentum dependence of
the response function, making use of the general ex-
pression for the response function given in I.
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