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The effects of strong coupling and of spin-flip scattering by magnetic impurities on the electromagnetic
properties of superconductors are discussed. We have found that the surface resistance (R,/Rw) of lead,
a strong-coupling superconductor, reflects the phonon spectrum and has characteristic peaks (~1.02) near
frequencies ~8X 102 and 111073 eV, and has a small dip (~0.95) near frequency ~22X107% eV. Ex-
tensive calculations of the conductivity and surface impedance for superconductors containing magnetic
impurities at finite temperatures, especially in the gapless region, are described.

1. INTRODUCTION

GENERAL theory of electromagnetic properties

of superconductors based on a generalized pairing
scheme has been discussed by the author in the previous
paper of this series.!

The main purpose of this paper is to discuss applica-
tions of the theory to a strong-coupling superconductor
Pb and to weak-coupling superconductors containing
magnetic impurities.

For strong-coupling superconductors such as Pb and
Hg, it is necessary to take into account the retarded
nature of electron-phonon interaction, as has been dis-
cussed by Schrieffer et al.,> and others.? Schrieffer et al.
calculated the density of states for Pb assuming that the
phonon spectrum is Lorentzian, and obtained excellent
agreement with data from tunneling experiments.

We have here applied a general expression for the
electromagnetic response function given in I to calcu-
late the conductivity and surface resistance of Pb. In
these calculations, we have used the results of Schrieffer
et al. for the frequency-dependent gap parameter A(w)
for Pb. We have found that the surface resistance
(R./Ry) has characteristic peaks near frequencies
~8X10~% and ~11X10"% eV, and has a small dip
(~0.95) near frequency ~22X1073 V.

The effect of spin-flip scattering by impurities with
localized magnetic moments on the superconducting
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properties has been discussed by Abrikosov and Gorkov 4
They have found that at a certain concentration of
magnetic impurities the effective energy gap vanishes
while the system still remains superconducting, so-
called gapless superconductivity. Reif and Woolf,’ on
the basis of tunneling experiments, have experimentally
demonstrated that there is a difference between the
slopes in the transition temperature and in the effective
energy gap as functions of the concentration of magnetic
impurities, in accord with the prediction of the theory.
A similar phenomena also occurs in a superconductor
containing nonmagnetic impurities but in a high static
magnetic field.® Weiss et al.” have carried out more
detailed calculations of the properties of supercon-
ductors with magnetic impurities to determine the
transition temperature 7.(I's) and gap parameter
A(Ts,T) as functions of the parameter T',, where 2T, is
the inverse relaxation time resulting from spin-flip
scattering by magnetic impurities. They have calculated
also the electrical conductivity at zero temperature. The
thermal conductivity of magnetic impure supercon-
ductors has been discussed by Ambegaokar and
Griffin.®

In this paper we describe results of similar calculations
for T.(T's) and A(T's,T), and in addition calculations of
the conductivity and surface impedance at finite tem-
peratures. We have found that in the nonzero gap region
conductivities and surface impedances have a behavior
similar to those based on the Mattis and Bardeen
theory. On the other hand, in the gapless region the real
part of the conductivity has a finite value near zero
frequency, and approaches the normal-state value at
high frequencies, as one expects.

For convenience, we repeat from I Egs. (5.7) and
(5.10) which are useful limiting forms for the response

4A. A. Abrikosov and L. P. Gorkov, Zh. Eksperim. i Teor. Fiz.
%?‘}611';%1 (1960) [English transl.: Soviet Phys.—JETP 12, 1243

5 F. Reif and M. A. Woolf, Phys. Rev. Letters 9, 315 (1962);
Phys. Rev. 137, A557 (1965).

6 A. I. Larkin, Zh. Eksperim. i Teor. Fiz. 48, 232 (1965) [English
transl.: Soviet Phys.—JETP 21, 153 (1965)]; K. Maki, Progr.
Theoret. Phys. (Kyoto) 29, 603 (1963); 31, 731 (1964).

7 S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev.
136, A1500 (1964).

8 V. Ambegaokar and A. Griffin, Phys. Rev. 137, A1151 (1965).
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function and the conductivity in the Pippard (¢ — )
and London (g§— 0, ' — ) limits. These limiting ex-
pressions both may be written in the form

K (g,w) = oVdriw{oi(w) —ios(w)},
(0/o")(w) = 01(w) —ioa(w) ,

where the normal-state conductivity o? is

(1.1)
(1.2)

oV~ 3r/4queA (1.3a)
for the Pippard limit, and
1 1
oVm— (1.3b)
A 2T g

for the London limit. The latter corresponds to the case
of an effective mean free path L%, where & is the
coherence distance. The London parameter A is defined
by

1/A=ne?/m=2N(0)e’vs?, (14)

where N(0) and vy are the density of states and the
velocity on the Fermi surface in the normal state. The
real and imaginary parts of the ratio of conductivities
01(w) and os(w) are the same in both limits;

1 =g

a1(w)=— ] do' g1(0', wtw’) tanhif(w+o')

w
1 0
—}-—-/ do’ g1(0’, w+w’)
© J oy
X [tanhif(w+w’)—tanhife'], (1.5a)

1 poe
oo(w)=— / dw’ g2(0', w+o") tanhif(w+o’)
w {wg—w,—wg]

1 0
+—/ do' [g2(0', 0’ +w) tanh3f(w+w’)
® Jw,

+ g2 (w+o', ') tanhifw’], (1.5b)
where [w,—w, —w,] denotes that the algebraically
larger of the two numbers is to be used. Here the func-
tions g; and ge are coherence factors defined by

&' wto)=n(w)n(wto)+p()plete’), (1.6a)
g2(w’, wto) =7i(w)n(wt)+p()p(wte’), (1.6b)
where 7 (), 7i(w), (), and p(w) are defined by
n(w)+ifi(w)=w/[o*— A% () 7, (1.7a)
p(w)+ip () =Alw)/[o*— (@) ]*.  (1.7b)

The effective energy gap w, is defined as the frequency
at which the density of states 7 (w) first begins to have
finite value;

n(w<w,)=0. (1.8)
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The minimum energy required to create a pair of
excitations from the ground state is then 2w,. It may be
seen from Eq. (1.5a) that at zero temperature the real
part of the conductivity vanishes for frequency w<2w,,
as one expects.

The surface impedance, neglecting the small displace-
ment current correction which is one of the order of
(w7)?(v/c)?, is given by®

R(w)+1X (w) =4min] (w), (1.9)
where ) p
® q
I{w)=— _— 1.10.
© ™ /o P+K (g,») (1102

for specular reflection, and

I<w)=7r{ / i In[1+K(q,w)/qﬂ}~1 (1.10b)

for random scattering.

One can in general calculate the surface impedance by
using the general expression for the response function
K(g,w) given in I. For simplicity we use the limiting
form of the response function, Eq. (1.1). Inserting Eq.
(1.1) into Egs. (1.10), we obtain a single form for both
cases:

R(w)+1X,(w)
Ry (w)+iXn(w)

where n= —1 for the Pippard limit, and »= —3 for the
London limit. The surface resistance R(w) and reactance
X (w) may be rewritten as

Rs/RN= Re(al—iag)"

~{o1(w)—ica(w)}™, (1.11)

—(Xn/Ry) Im(01—i09)™, (1.12a)
X,/ X ny=Re(o1—i09)"
+ (Ry/Xw) Im(o1—ico)™. (1.12b)
The penetration depth X is given by
A=1I(w=0) (1.13)

from Egs. (1.10). This can be calculated directly by
using the expression for K(¢,0) given in I. For sim-
plicity, we give here only the limiting forms valid in the
Pippard and London limits. In both cases, this may be
expressed in the form

K (g,0)=4x%VA?(0)S, (1.14)

where A?(0)=Apcs(0), and ¢V is given by Egs. (1.3).
The parameter S is given by

2 2xT
 AP(0)

A2

€ ’
n>0 w,ﬁ—l—AnZ

(1.15)

9 G. E. Reuter and E. H. Sondheimer, Proc. Roy. Soc. (London)
A195, 336 (1948).
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where w,= (2n+1)xT, with # an integer and A,
= A(iwy).

In the weak-coupling limit without magnetic im-
purities, Eq. (1.15) becomes identical with the corre-
sponding BCS expression:

A
A0)

Inserting Eq. (1.14) into Egs. (1.10) and (1.13), we
obtain in the Pippard limit

A(T)

tanh .
2T

(1.16)

AL [31r2 AL
A

1/3
d
4 &

for the random-scattering boundary condition, and

(1.17a)

Ar 83w
d [—-—L (1.17b)
A9

1/3
s]
4 &

for specular reflection. In the London limit, both cases
give the same result:

AL L 12

=]

A L
Here the London penetration depth Az, the effective

mean free path L, and the coherence distance &, are
defined by

(1.18)

Ap=[A/4r ]2,

L = vo/ZI‘eff y
and
b= vo/rA?’(O) .

In the London limit, ZK£, S corresponds to the
superfluid density of the two-fluid model.

Expressions for the surface impedance and for the
penetration depth simplify in the Pippard limit if A<<&g
and in the London limit if Z<\ or &.

2. CALCULATIONS FOR LEAD

In this section, we give the results of numerical
calculations of the conductivity and surface resistance
for lead.

In these calculations we have used the results of
Schrieffer et al. for the frequency-dependent gap
parameter A(w). The effective energy gap w, is

wo=A(w,)=1.34X10-% ¢V

Numerical calculations of the conductivity of Eq. (1.2)
are presented in Fig. 1. For comparison, we have
calculated also the conductivity assuming A(w)=w,,
corresponding to the weak-coupling limit. The difference
between the calculations made with A=A(w) and
A=uw, is illustrated in Fig. 2. It may be seen that taking
A= A(w) (strong coupling) yields a smaller conductivity
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F16. 1. The conductivity ratio, (¢°/0¥)(w)=01(w)—ics(w), for
lead. The curves of 01,5 A=A(w)] and of ¢1,2[ A=w,] correspond
to the conductivities calculated by using A=A (w) and A=w,,.

at low frequencies. Some indications of such an effect
have been observed recently by Palmer?; his data are
presented in Fig. 2(b). We see that his data are below
the calculated curve based on A=w,, that is, the weak-
coupling limit. It is noted that his value of 2w, is
22.540.5 cm™, which is equivalent to

wp=(1.39:£0.06)X 1073 eV,

On the other hand, at high frequencies the conductivity
is enhanced.

Using these results we have calculated the surface
resistance (R,/Ry) from Eq. (1.12). We have used
Xn/Ry="V3 for the Pippard limit (\&%o) and Xn/Ry
=1 for the London limit (\>>).* Actually for Pb,
neither of these limits is applicable since £/AL(0)
=2,2.2 In Fig. 3, we present the theoretical calculation
of surface resistance in the Pippard limit, which should
be more nearly valid.

We observe that R,/Ry has characteristic peaks
(~1.02) near frequencies ~3.0(2w,) and ~4.3(2w,),
and has a small dip (~0.95) near frequency ~8.5(2w,).
This dip, which is a reflection of the electron-phonon
interaction, is perhaps large enough to be experimentally
detectable even though it would be difficult to observe.

3. CALCULATIONS OF SUPERCONDUCTORS
WITH MAGNETIC IMPURITIES

In this section we give some results of calculations of
the gap parameter A(I',,7) and the transition tempera-
ture T.(T,), as well as a few typical results for the
conductivity and surface impedance at finite tempera-
tures, especially in the gapless region [0<A(T,,T) < 2T,

0 T.. H. Palmer, thesis, University of California, Berkeley, 1966
(unpublished). We thank Dr. Palmer for sending us his data.
Note added in proof. The recent experiment by S. L. Norman and
D. H. Douglass, Jr. [Phys. Rev. Letters 18, 339 (1967)] also
indicates that there is no infrared absorption at frequency below
2wy, as does that of Palmer, agreeing with the theory.

1 A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953);
Advan Electron. Electron Phys. 6, 1 (1954).

12 See, for example, J. Bardeen and J. R. Schrieffer, in Progress in
Low Temperature Physics, edited by C. J. Gorter (North-Holland
Publishing Company, Amsterdam, 1961), Vol. 3, p. 170.
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Fi1c. 2. (a) The difference between conductivities 01,5 A=A (w)] calculated by using A=A(w) and A=w,. The strong-coupling effect
reduces the conductivity at low frequencies, especially, about 5% near frequency 2.5~3.0 (2w,). On the other hand, the conductivity is

enhanced at high frequencies, and approaches the normal-state va

lue at very high frequencies. (b) The real part of the conductivity

ratio ¢1(w) from Palmer’s data (Ref. 10) for lead. The theoretical curve here is calculated by using A=w,. Here the gap determined

experimentally is w,=%(22.5£0.6) cm™!= (1.39::0.06) X 107 eV.

<1A(0,0)]. Here the parameter 2I'; is the inverse
relaxation time resulting from spin-flip scattering by
magnetic impurities. We have carried out calculations
of the densities of states and pairs, the conductivity and
surface impedance for various values of I'; and 7. We
present here only a typical result for 2I's=0.35A(0,0).
The more complete calculations for 2I',=0.10, 0.20, 0.35,
0.45, 0.49, etc. are given in the author’s thesis."

We first discuss a general description for calculations
of superconducting properties of the system with mag-
netic impurities.

To proceed with the calculation we need to obtain the
effective gap parameter A(w), which is a solution of the
following equation:

Aw)=A—2T'GA(w)/[e?— A% (w) ]'?
=A—2TiA/[ & (w)—A¥]V2,

3.1)

where the usual gap parameter A is a solution of a

1 I ! T I I I I [ T ! I

r Xi0

o

SURFACE RESISTANCE FOR Pb
(NON LOCAL LIMIT)

I
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FREQUENCY (m/Zug)

Fic. 3. The surface resistance R,/Ry for lead in the Pippard
limit. The characteristic peaks appear at frequencies ~3.0(2w,)
and 4.3(2w,), and a small dip &0.95) appears at frequency
~8.5(2wy).

1 S, B. Nam, thesis, University of Illinois, 1966 (unpublished).
14 Equation (3.6¢) in I.

BCS-like integral equation;

A=~[N(0) VBcs]/dw tanh (38w) Re{P(w)}, (3.2)

P () = (o) [0~ B ) 12— 4/ [(0)— 7.
We have here introduced, for convenience, a renor-
malized frequency @ defined by
&(w)=w+2Ti6(w) /[ & (w) — A2,
When T',=0 then A(w)=A and &(w)=0w.
We see that all calculations can be done by knowing

A(w) or @(w). The explicit solutions for A(w) and &(w)
can be written!®

Alw)=21(A+A0)+3{(A+A)*

(3.3)

—(2/A))[yo(A+Ag)+ 28T}, (3.4)
&(w) =% (wtw)+3{(0tw)?
— (2/wo)[yo(wtwe)+20% 32, (3.4b)
where
Ao= {yo+A2+ (21112,
wo= {yo+A2— (2I',)%}*2,
Yo=y1ta,
y=A,+A_, or Appt+A P, or AP+Az,
#=1,

A= {2D+32(DaP+ D212},

15 A quartic equation 24+-bad+cat+-dx+e=0 can be solved as
follows: we rearrange (ai-+3bx)2=(;b*—c)a2—ax—e. We add
422y (a2-+3bx) to both sides, and rewrite it as (#2+3bx+y)?
= (&B2y—c)x2+ (by—d)z+y*—e. Now we choose y in such a
way that the right-hand side is a square form (Ax+B)2 This
reduces to a cubic equation for y;

P—scy*+ (2cd—e)y+3% (400—1726—(12) =0.
This can be solved in the usual way. Once y is known, then x is
obtained.
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and

D= —?A2(2T,)2, a=3{A2—(2T,)2—w?}, for A(w)
and

D=w?A2(2T,)?, a=3{w*+ (2T,)—A%}, for o(w).

Here 1 is to be chosen such that Ay, wes%0.
As can be seen from Egs. (1.7) and (3.3), the density
of states is proportional to the imaginary part of &;

Ima(w)= 2T, Re{®(w)/[@*(w)—A* ]2} =2T m(w). (3.5)

We thus can obtain the effective energy gap w, as the
frequency at which @ first becomes complex. By setting
dw/d»>=0 in Eq. (3.3), we find*

wp={AY3— (2T 23y32%9 (A—2T",) . (3.6)

Here 0(x) is the usual step function and is 1 for
positive x and zero otherwise. The region of gapless
superconductivity is that for

0< A(T,,T)< 2T, (3.72)

such that w,=0. Superconductivity requires that A be
different from zero, but it is not necessary that w,>0.
To find an upper bound for T’y for which the gap
parameter A vanishes, we study Eq. (3.2). When A— 0,
we find from Eq. (3.1) that A(w) becomes

A(w)="[w/ (w+2Is)]A.

Setting A=0 in the integral equation (3.2) for A, we
find that the transition temperature satisfies

(3.8

[V (0) Veos T~ / do——— tanh—— . (3.9)

W Q) 2T,
Combining this result with the corresponding BCS

GAP PARAMETER EFFECTIVE ENERGY GAP

1.0 T T T 10 T T T
a1, 21,
A70,0) 0.5
8 N 8f- \ -
00
- 00 5
o -
S o Jo | S. -
N 25 N
= >
= 4 35 ) .
3¢ wg#0 3
< 3
2
o
0 L
o 2 4 6 8 10 ° 2 4 3 8 10
TEMPERATURE [T/ T, (0]] TEMPERATURE  [1/7,(0)]
(a) (b)

F16. 4. (a) The gap parameter A(T's,T). Here 2T, is the inverse
relaxation time resulting from spin-flip scattering by magnetic
impurities. When I',=0, the gap parameter A (0,T) corresponds to
that of the BCS theory, and A(0,0)=Apcs(0). The shady area
corresponds to the gapless region, 0<A (T,7T") <2T', < $A(0,0). The
temperature I' is normalized by the transition temperature
T.(T's=0), that is, the BCS value. (b) The effective energy gap
wy (T, T) is defined by a frequency at which the density of states
first begins to have finite value ; wy (T's,T") = { A23 (T, T) — (2T',)2/3)3/2
for A(Ts,T)>2TI's, and w,=0 otherwise. The value of w,(0,T) is
equal to A(0,T), that is, the BCS gap.
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PHASE DIAGRAM

o
4

F16. 5. The phase diagram con-
structed by the transition tempera-
ture T.(Ts) and the temperature
corresponding to the onset of gap-
less superconductivlty, w,(T's,7")
=0. There are three regions: non-
zero gap, gapless, and normal
states.

@
-

&t

2
'

.y

6 Tlwg=0) 1

TEMPERATURE [T/T¢(0)]
. b
T
b
e 2
S
+
o
1

IS
T
I

! 1
1 2 3 4

PARAMETER  [215/A(0,01)
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equation for I's=0, we obtain the well-known result
To(T's) 1

I {~___

T.(0) =0 ln+3i+m nti

} ) (3.10)

where m=T,/nT.(I's). We expect that since T,(T,) is
monotonically decreasing with increasing T',, at a
certain I',°* the transition temperature will vanish;

2wp w wWp
In ~[N(0)Vges]'= / dw ~In ,
(0,0) w?+ (2T,)2 AN
so that
2I,er=1A(0,0). (3.11)

Thus we obtain the condition for the gapless super-
conductivity

0<A(T,,T)<2T,<3A(0,0). (3.7b)

Using Eq. (34), we carried out calculations of
A(T,,T) from Eq. (3.2). The results for A(T',,7) are
presented in Fig. 4(a), and the shady area corresponds
to the gapless region, Eq. (3.7). The effective gap w,
calculated from Eq. (3.6) is shown in Fig. 4(b).

The transition temperature T.(T',) evaluated from
Egs. (3.9) and (3.10) is shown in Fig. 5 with a curve
indicating the temperature corresponding to the onset
of gapless superconductivity, wy(Ts,7)=0. Here the
shady area also corresponds to the gapless region.

The densities of states #(w) and pairs p(w) have been
computed from Eqs. (1.7) as functions of frequency w
for various values of I', and 7. The density of states has
a maximum at a frequency above the effective energy
gap, and has no singularity. When T, goes to zero, the
density of states approaches that of the BCS theory, and
the effective energy gap also approaches the BCS gap.
Finally, when I',=0, they coincide with those of the
BCS theory. On the other hand, when T, increases and
reaches 2I's> A(T',,7) >0, then the effective energy gap
vanishes and the density of states has a finite value at
zero frequency; for large value of T, the density of
states approaches the normal-state value. In Fig. 6, we
give only the results for 2I',=0.35A(0,0). The curves
3n and 4n in Fig. 6 correspond to those in the gapless
region. co
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Using these results we have carried out calculations
for the conductivity from Eq. (1.2) for various values
of I's and 7. The real part of the conductivity o1(w) in
the gapless region has finite value near zero frequencies,
and approaches the normal-state value at high fre-
quencies as one expects. We present in Fig. 7 only
results for 2I',=0.35A(0,0). The results of 301, 303, 401,
and 4o, are those in the gapless region. In the nonzero
gap region the conductivity has a behavior similar to
that based on the Mattis and Bardeen theory, except
the effective gap w, is given by Eq. (3.6) instead of by A.
The results of 1oy, log, 203, and 203 are in the nonzero
gap region.

I I T T

sk 1 anD enn
21, 00 410,00 20,00
a0 38 | .00 659 133 1
2 30 518 057 4
?‘lg: =457 3 .40 325 000 |
[ © 4 45 o174 000

DENSITIES OF STATES nkw) AND PAIRS plw)

FREQUENCY [w/A(0,01)

F16. 6. The densities of states #(w) and pairs p(w) for the para-
meter 2I',=0.35A (0,0). There is a maximum at frequency above the
effective energy gap, and no singularity. The curves of 3» and 4n
correspond to the density of states in the gapless region, and have
finite value at zero frequency.

We have checked the sum rule for the conductivity

2 0
- / {1—al(w)}dw=£i£%w02(w)

™

K (g,0)
= = 7A7(0)S,

dmo

(3.12)

and have obtained agreement between both sides of
Eq. (3.12); in other words, the value of S from the
conductivity [Eq. (3.12)] agrees with that directly
from Eq. (1.15). In this case Eq. (1.15) can be written as

2 27T

7 A0,0) 7 wlHAL2

Ag?

2 24T A(1,,T)

, (3.13)
7w A(0,0) ™ @244%(T,,T)

where the effective gap parameter A, is

An=A(T,T) =21 Ar/[wnd+ A2 ]2
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T16. 7. The conductivity ratio (¢¢/c¥)(w)=01(w)—ic2(w) for
superconductors containing magnetic impurities [the parameter
2I's=0.35A(0,0)]. The real part of the conductivity in the gapless
region (301 and 401) has finite value near zero frequencies. The
parameter S(T's,T) is obtained from the sum rule:

SruT)=2 ﬁ A [1—01@)]&%% .

from Eq. (3.1), and the renormalized frequency @, is
@n=0n+ 20500/ [ @x>+ A (L5, T) V2

from Eq. (3.3).

When I';=0, then @,=wy, A=A, and Eq. (3.13)
becomes the corresponding BCS expression [Eq. (1.16)]
as it should. The results of calculations of .S presented in
Fig. 8(a) are useful for calculations of the penetration
depth of Egs. (1.17) in the Pippard limit and of Eq.
(1.18) in the London limit. In the London limit, S is
directly proportional to the superfluid density of a two-
fluid model.

The temperature at which .S vanishes is the transition
temperature T.(I's). This is one way to obtain 7.(T',).
These results of 7.(T';) agree with those from Eq. (3.9)
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T16. 8. (a) The parameter S(I's,T") defined by
AT AT, T)

S(I‘D,T) = Z =

300) 35, G+ THT)

where Wn=wn+2Is@n/[@n2+A2(Ts,T) ]2 and wp= 2u+1)=T, n
being integer. In the London limit, S(I's,T) is directly related to
the superfluid density of a two-fluid model; ps(T',T)/ps(T's,0)
=S (I'5,T). (b) The gap parameter A(I',,0), the effective energy
gap wy(T's,0), and the parameter S(I's,0) at zero temperature with
the transition temperature T'(Ts).
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F1c. 9. The surface resistance R=R,/Rx and surface reactance
X=X,/Xuy for the parameter 2T',=0.35A(0,0).

shown in Fig. 5. For comparison, the results of S, w,,
and A at zero temperature as functions of I'; are
gathered with the transition temperature 7'.(Ts) in
Fig. 8(b).

The surface impedance has been evaluated in the same
manner as for Pb. In this case the local-limit values
should be used, and they are presented in Fig. 9. More
complete calculations are given in Ref. 13.

4. DISCUSSION

For the case of lead, we have carried out numerical
calculations of the conductivity and of limiting values
of the surface resistance at zero temperature only. It
would be desirable to extend these calculations to finite
temperatures, and to determine the temperature varia-
tions of the penetration depth A. For the latter, it would
be desirable to make a more complete calculation that
includes the proper momentum dependence of K (¢,0)
given in I.

For superconductors containing magnetic impurities,
our calculations of A(T,,T) and T (T';) agree with the
previous results of Weiss ef al. The additional calcula-
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tions for the conductivity and surface impedance at
finite temperatures may be useful for analysis of experi-
mental results on such materials. The conductivity and
surface impedances for various values of I'; and 7" in the
nonzero gap region [2I',<A(T',,7)] have a behavior
similar to that based on the Mattis and Bardeen theory.
On the other hand, in the gapless region [0<A(T,7T)
<2I',<31A(0,0)] the real part of the conductivity has
finite value near zero frequency, and approaches the
normal-state value at high frequencies. The temperature
range for gapless superconductivity depends on the
concentration of magnetic impurities. It would be
desirable to have measurements of the conductivity and
the surface impedance that include the gapless region to
compare with the theory.

The limiting case in which there is only spin-flip
scattering is equivalent to a superconductor containing
only nonmagnetic impurities but in a high static mag-
netic field H. The parameter T'; then corresponds to
(u)H?, where (u?) and 7 are the average value of the
square of the magnetic moment and the relaxation
time.$

Again, it would be desirable to make more general
calculations that include the momentum dependence of
the response function, making use of the general ex-
pression for the response function given in I.
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