PHYSICAL REVIEW

VOLUME 156, NUMBER 2
Theory of Electromagnetic Properties of Superconducting and
Normal Systems. I*

Sane Boo Namf
Department of Physics, University of Illinois, Urbana, Illinois
(Received 28 October 1966)

General expressions for the current density for superconductors in a transverse electromagnetic field are
derived from a Green’s-function formulation. They are sufficiently general to apply to cases of strong
coupling, to superconductors with magnetic impurities, and to anisotropic materials. It is explicitly shown
that the response function satisfies

lim lim K (g,w) =K (0,0) =lim lim K (g,w).
7—0 w—0 @0 q—0

The condition for superconductivity is that K (0,0) be nonvanishing. An expression for the current density
in real space in a form similar to that of Mattis and Bardeen is obtained. Various limiting forms of the ex-
pressions are derived to facilitate applications to various problems. An expression for the Josephson tunelling
current which can be applied to strong-coupling and impure superconductors is derived under the assump-
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tion that the tunnelling matrix element is constant.

1. INTRODUCTION

HE main purpose of this paper is to discuss the

electromagnetic properties of strong-coupling and

impure superconductors based on generalized pairing
schemes.

On the basis of the theory of Bardeen, Cooper, and
Schrieffer (BCS),! the electromagnetic properties of
isotropic weak-coupling superconductors have been dis-
cussed by Mattis and Bardeen.? Miller® applied the
theory to calculate the surface impedance of aluminum
and tin, and also to determine the effect of a finite-
scattering mean free path on the penetration depth A,
generally in good agreement with experiment. He has
given limiting forms of the response function that apply
in the Pippard (\<<§) and London (A>>&) limits. Here
& is the coherence length. Waldram* has measured the
surface impedance of superconducting tin and tin alloys,
and has obtained good agreement with the theory,
except for anisotropic effects not described by the
theory.

The electromagnetic properties of pure and impure
isotropic weak-coupling superconductors have been dis-
cussed by Abrikosov, Gor’kov, and Khalatnikov® by
deriving the response function K(g,w) from a Green’s-
function formulation. Rickayzen and others® have given

* This work was supported by the U. S. Army Research Office
(Durham) under Contract No. DA-31-124-ARO(D)-114.
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rather general derivations and shown that they reduce
to those of Mattis and Bardeen in appropriate limits.
Effects of collective excitations on the electromagnetic
response have been discussed by Anderson, Rickayzen,
Tsuneto, Larkin, and others.”8 Abrikosov and Gor’kov
have discussed the electromagnetic properties of an
isotropic weak-coupling superconductor containing mag-
netic impurities.” More detailed calculations, particu-
larly for the limit ¢=0, have been given by Skalski,
Betbeder-Matibet, and Weiss.!?

A general formulation for the response functions
for many-body systems obtained by Martin and
Schwinger!! has been applied to superconductors in the
weak-coupling limit by Kandanoff and Martin.!? By
using a field-theoretical viewpoint Nambu'®14 was able
to show the gauge invariance of the pairing scheme, and
helped justify calculations of the electromagnetic prop-
erties of superconductors based on the BCS wave
functions.

For a general treatment of the electromagnetic proper-
ties of superconductors, a generalization of the original
BCS pairing scheme is necessary. In the original BCS
theory, an energy-gap parameter A was introduced to
describe pairing the ground state. In the later Green’s-
edited by C. Fronsdal (W. A. Benjamin, Inc., New York, 1962),
p. 85; G. Rickayzen, Theory of Superconductivity (John Wiley &
Sons, Inc., New York, 1965).
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function calculations of Gor’kov and others,'® the gap
parameter is in general a function of both momentum k
and energy w, A(k,w). In an isotropic system the momen-
tum dependence is unimportant, and may be neglected.
However for strong-coupling superconductors, such as
Pb, Hg, etc., it is necessary to take the frequency
dependence into account in order to treat properly the
retarded nature of the electron-phonon interaction.!¢
This is also true for a superconductor containing mag-
netic impurities. In the anisotropic systems, the angular
dependence on k must be included, but the magnitude
of k may be replaced by the value on the Fermi surface
in the same direction.

It should be noted that a gap in the energy spectrum
is not necessarily a characteristic of the superconducting
state. In fact, the superconducting state is in general
characterized by infinite dc conductivity (zero dc
resistivity), and perfect diamagnetism (the Meissner
effect). To describe the above phenomena we require a
general relation between the current density and field.
Following the usual field-theoretical treatment the ex-
pectation value of the current operator in the presence
of the vector potential A (x) can be written [we choose
the gauge in such a way that the scalar field is zero, that
is, the transverse field is described by the vector po-
tential 4 (x)]

Julx)= 1/d4’K( A (x 11
,,(ac)——4—1r ¥ Kp(ea)A (). (1.1)

Here the response functionX ,, can be described in terms
of a four-point function, a two-particle Green’s func-
tion, or a current-current correlation function. Through-
out this paper we use the units #=c=%kp=1. In the
momentum space the current density may be written
in a form"

1
Ju(g)= —Z—Kw(q,w)A”(q,w) . (1.2)

T

For thesystem to be perfectly conducting and perfectly
diamagnetic, Maxwell’s equations require that the re-
sponse function K, (q,w) have a finite value K,,(0,0)
in two distinct limits: w— 0, ¢— 0 and ¢ — 0, w — 0.
This finite value is directly related to the superfluid
density of a two-fluid model, and may be taken as one
of the essential parameters to describe the supercon-
ducting state. For the case of so-called gapless super-
conductivity, the effective energy gap vanishes in that

11, P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
[English transl.: Soviet Phys.—JETP 7, 505 (1958)7.

16 D. J. Scalapino, J. R. Schrieffer, and J. W. Walkins, Phys.
Rev. Letters 10, 336 (1963); Phys. Rev. 148, 263 (1966).

17 For the anisotropic system, we assume that the interaction
potential, spectrum, etc. are anisotropic. In most cases the
penetration depth and the coherence distance are large compared
with the lattice constant, and then the field 4 and the gap parame-
ter A are not much changed within the periodic distance. We then
use the Fourier transform of A(g), disregarding the fact that a
quasimomentum but not a real momentum exists in the lattice.

ELECTROMAGNETIC PROPERTIES

471

there are excitations of abritrarily low energy, but
K ,,(0,0) does not. It will be made clear later that this
limiting value is finite if the gap parameter A is different
from zero. Thus it is fair to say that a nonzero gap
parameter is essential for superconductivity and super-
fluidity, but an energy gap in the excitation spectrum is
not required.

It is our main object, based on the generalized pairing
scheme, to obtain an explicit form for the response
function K ,,(q,«) sufficiently general for strong-coupling
and impure superconductors. We show explicitly that
the response function satisfies the important condition

lim limK ,,(q,w) = K ,,(0,0) =1lim limK ,,(q,»)  (1.3)
-0 w—>0 w—>0 g0

for the theory of superconductivity and superfluidity.
We also obtain an expression for the current density in
real space that can be applied to strong-coupling and
impure systems.

There are two contributions to K ,,(q,») : the paramag-
netic K,,? and the diamagnetic K, parts. The diamag-
netic term is proportional to the density of electrons,
and thus is not different from that in the normal state.
In the normal state the total current induced by a
static field is negligibly small, so that

K,,,,”(q,O) = K#vnp(q)0)+vad= 0

Thus we can write the current density in the supercon-
ducting state as'®

1
Ju(gw)= ~Z{Knv“’(q,w)—Kw"”(q,O)}A’(q,w) . (14

We see that only the paramagnetic part need be calcu-
lated for our purpose. An alternative way is to write the
current density as

Jpa(q,w)‘Jan(‘Lw)

1
=— ;{Kms(q)w) —Ku"(q,) } 4 (g,0)

1
== KW 7(00) = K (00)) 4°(00). - (L5)

After the calculations we can identify the parts corre-
sponding to the superconducting and normal states.

In Sec. 2 the response function in terms of the
Green’s functions is discussed. The Green’s functions
for strong-coupling and impure superconductors are
discussed in Sec. 3. In Sec. 4, an explicit calculation of
the response function is carried out. We have obtained
an expression for the current density in real space, which
can be applied to strong-coupling and impure systems,

18 J. Bardeen has pointed out to the author that Eq. (1.4) is

valid within an approximation in which the Landau diamagnetism
is neglected.
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in a form similar to that of Mattis and Bardeen:

R[R-A,(r)]

J,)=CY eiot / W——"IWRT), (19)

where R=r—r/, and C=N(0)e?o/2n%. Here N(0)
and vy are the normal-state density of states and the
velocity averaged appropriately on the Fermi surface.
In the weak-coupling isotropic systems the effect of
scattering by nonmagnetic impurities is to multiply the
kernel by exp[ — R/I], where /is the mean free path. We
show that more generally the mean-free-path effect
(lifetime effect) is to introduce a factor exp[—R/L]

with L= (T(k)+T ()} /[0, .

where the variables k1 and k; stand for (2;,0’) and
(Q2, wt+o'), respectively. Here @, and Q, are angular
variables in appropriate directions. The function I'(k)
is directly related to the cut (imaginary part) of the
self-energy resulting from the various scatterings;

T'(k) =Im{Z(k)[ko>— A2(E)]V/2}. (1.8)
The velocity » on the Fermi surface is given by'?
1.9

The wave-function renormalization Z(k) and the gap
parameter A(k) are solutions of integral equations dis-
cussed in Sec. 3. For the isotropic weak-coupling system
but with magnetic impurities the effective mean-free-
path Lis

V= Vkek.

’

1 11
————
L 1l

where I and [, are the effective mean free paths resulting
from non-spin-flip (ordinary impurity) and spin-flip
(magnetic impurity) scatterings, respectively. In Sec.
5 we discuss the various limiting values of the response
function, especially

2w A2

Ko (00)=" /'M ReY (1.10)
,0,0)=— [ —1v2,Re Y —————, (L.
k x2J o # (@n2+An2)¥2Z,,

"8

where w, = (21n41)7/B, n being an integer, Z,=Z(Q,iwy),
An=A(Qiw,), and f=1/T. Here dA donates the area
element on the Fermi surface. For the isotropic system
the Q@ dependence drops out; we then obtain

T ps 4w 2T A2

K(0,0)=——=—Re > — —, (1.11)
00 p A W B [w+An]z,’
where the London parameter A is
ne?
A t=—=32N(0)e%,?, (1.12)
m

19 We neglect the interband transitions. The double band effect
on the transition temperature is discussed by V. A. Moskalenko
and M. E. Palistrant, Zh. Eksperim. i Teor. Fiz. 49, 770 (1965)
[English transl.: Soviet Phys.—JETP 22, 536 (1966) J.
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and p, is the superfluid density in a two-fluid model. In
the appropriate limits, that is, the weak coupling, the
result of Eq. (1.11) reduces to those of Mattis and
Bardeen, Abrikosov et al.,20 and Rickayzen® for the
case of a superconductor with nonmagnetic impurities,
and to those of Abrikosov and Gor’kov?!' and Weiss
et al.l for the case of a superconductor with magnetic
impurities.

Some useful normal-state response-function and con-
ductivity formulas can be obtained from those in the
superconducting state by setting the gap parameter
A(k) to be zero. We have rederived known formulas for
the normal-state response as well as some new ones.

Finally in the last section we discuss various features
of the calculations and possible extensions of them. In
the Appendix an expression for the Josephson tunneling
current which can be applied to strong-coupling and
impure superconductors is derived under the assumption
that the tunneling matrix element is constant.

2. RESPONSE FUNCTION

As pointed out in the previous section, the para-
magnetic response function is needed for our purpose.
In this section we discuss a brief review of a derivation
of the response function as discussed formally by many
authors.?2

The paramagnetic response function in general can
be expressed in terms of a four-point function, that is, a
two-particle Green’s function.

It is convenient to express the paramagnetic response
function K,,?(x,x") in terms of a time-ordered current-
current correlation function defined by

P (,0") = — 4wi(T j,2(2) »*(x")) , (2.1)

where j? is the usual paramagnetic-current operator.
The Fourier transforms of K ,? and P,, with respect to
time are closely related to each other according to

ReK 2 (w)=ReP,,(w),
ImK ,?(w) =sgn(w) ImP ().

Once P,,(w) is known, then K ,,?(w) is obtained, and vice
versa since they are equal for positive frequencies and
are complex conjugate to each other for the negative fre-
quencies. Hereafter we calculate Py, but refer it to the
response function K,,” assuming that we are working
with positive frequencies.

20 See the last paper in Ref. 5.

21 Tn Ref. 9 they have obtained the result only for " near 7.

22 J, R. Schrieffer, Theory of Superconductivity (W. A. Benjamin,
Inc., New York, 1964), Chap. 8, p. 203; A. A. Abrikosov, L. P.
Gor'’kov, and I. E. Dzyaloshinski, Methods of Quantum Field
Theory in Statistical Physics, translated by R. A. Silverman
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963). L. P.
Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A.
Benjamin, Inc., New York, 1962); R. Kubo, J. Phys. Soc. Japan
12, 570 (1957); T. Matsubara, Progr. Theoret. Phys. (Kyoto)
14, 351 (1955); D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960)
[English transl.: Soviet Phys.—Usp. 3, 320 (1960)]. The general
formulation for the many-body problem is discussed in Ref. 11,



156

In order to take into account the retarded nature of
the electron-phonon interaction, it is convenient to
work in the spinor representation of Nambu'® and
Eliasberg.? In this scheme spinor wave-field operators
¥, (£) and ¥, 7 (¢) are defined by

Vet (1) = @t () e (D),
0
tﬁ,_k;f(t)) '

where Yy, and Y, are the usual field operators. The
current operator 7,7 can be written

Jwrlat)=e X Wil @yulk, kt @) ¥ire(0),

Vi (l)= (

(2.2)

where the bare vertex function v,(k, k+q), with use of
the Pauli matrices 71, 73, and 735, may be written

vulk, k+q)=v,[1—8,,0 ]+ 730, 0. (2.3)
Here the velocity component v, is given by
v,=(1/m)(k+3Q)u (2.4a)
for the isotropic system, and may be written as?
0= (Vi) w3 Vicrqbics-a— Vicer Ju (2.4b)

for the anisotropic system within the approximation in
which interband transitions are neglected.

Inserting the current operator Eq. (2.2) into the re-
sponse function Eq. (2.1), and taking the Fourier trans-
form, we obtain the following gauge-invariant form?:

K,.»(q)=—4rie?
X / Te(yulk, b+G+) T kg, DGR}, (2.5)

We have here used the notation ¢=(q,9,)=(q,»), and
d*k

[0 []a

X2 Z:(koﬁ z.)(T#0), (2.6)

where 2,=#nni/B, n being an odd (even) integer for the
fermion (boson) system. The electronic matrix Green’s

28 G. E. Eliasberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)
[English transl.: Soviet Phys.—JETP 11, 696 (1960)].

24 If one rewrites the current operator of Eq. (2.2) as j.7(¢)
=Yk Vk-q/2"vu(k—3q, k+3q)i1q/2, then the velocity component
Uy i; 9, = (Vkex)u of Eq. (1.9) within the approximation as stated in
Ref. 1

25 One should not confuse the dressed vertex function T, (k1,k2)
here and the cut of self-energy T'=Im{Z (k) (ks>—AZ(k))¥2} later
from Eq. (4.9).
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F1c. 1. The integral equation for the dressed vertex function
T,. The solid and wavy lines stand for electrons and photons,
respectively. The dotted line denotes the interaction.

function is defined by

Gk)=—1i f d@t— )T ()Tt () exp[iko(t—1')]

G F
~<F+ —G)’

where G and F are the Green’s functions introduced by
Gor’kov, and ( ) denotes the usual grand canonical
average. The Fourier transform with respect to time
becomes the usual Fourier-series sum at finite tempera-
tures. The dressed vertex function T, satisfies the inte-
gral equation defined by Fig. 1. As shown by Migdal,?
the vertex correction resulting from the electron-phonon
interaction is of the order of the square root of the
mass ratio of electron and ion, (m/M)'% and thus
can be neglected. The response function can then be
approximated by replacing the dressed vertex func-
tion T, by the bare vertex function v, :

K ,7(q) = —4arie?
X / Tr{y,(k, bHQCE+Drutg BCE). (27)

For the impure system, the randomness of impurities
leads to a similar treatment after averaging all quanti-
ties over random impurity configurations. We omit
vertex corrections resulting from the impurity scatter-
ing. Presumably the only change would be to replace
the relaxation time with an effective relaxation time for
transport. We can then use the above response function
for the impure system with the appropriate Green’s
function. Equation (2.7) is our starting point to calcu-
late explicitly the response function as will be discussed
in Sec. 4. To do this we need to know the formal struc-
ture of the electronic Green’s function which will be
discussed in the next section.

3. GREEN’S FUNCTION

To proceed with the calculation of the repsonse func-
tion, we need the formal structure of the Green’s func-
tions for strong-coupling and impure superconductors.

In this section, we give a brief review of the relevant
expressions as derived by Eliasberg, Abrikosov, Gor’kov,
and others.?18:16,21,22

26 A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
[English transl.: Soviet Phys.—JETP 7, 996 (1958)].
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Following the usual equation-of-motion method, the
electronic matrix Green’s function for a pure strong-
coupling superconductor can be written as

G—l(k) = Z(k)[ko— A(k) Tl:l_‘ €xTs3. (31)
The wave-function renormalization factor Z(), the gap
parameter A(k), and the renormalized quasiparticle
energy &, are solutions of the integral equations

[1—Z(%) Jeo= / 2T, (3.22)

q

&= €k+/ éqT(k,q)—‘—Zg(k)ék, (32]3)
q

Z()AR)= / Z(@)AQT (), (3.20)

and
T(kyq)=[Te—etTep1/{Z%(q)qe*— A% g) ]— &%} .

Here T.. and T, are the kernels representing the
electron-electron and electron-phonon interactions, re-
spectively. In the usual approximation in which the
symmetry between electrons and holes is valid, Z; is
equal to unity. For simplicity, we shall assume this to
be the case in the following. The above integral equa-
tions have been solved numerically, for lead, at zero
temperature by Schrieffer et al.,'s and at finite tempera-
tures by Swihart et al.,?” for the isotropic system. The
anisotropic effects have been discussed by Bennett and
others.?

For the case of the system containing nonmagnetic
and magnetic impurities, the scattering may be de-
scribed by the interaction

V(x)=Y {Vi(x—Ro)+o-S.Vao(x—Rs)}, (3.3)

where S, and R, are the spin and position, respectively,
of the ath impurity atom and ¢ is the electron-spin
operator. After averaging over all impurity configura-
tions, the same procedure as employed for the pure
system leads to the Green’s function

Gr (k)= Zi(k)[ko— Ar(k)T1]— &r7s,

27 J, S. Swihart (private communication); D. J. Scalapino, Y.
Wada, and J. S. Swihart, Phys. Rev. Letters 14, 102 (1965);
14, 106 (1965).

2 A. J. Bennett, Phys. Rev. 140, A1902 (1965) ; V. L. Pokrovskii,
Zh. Eksperim. i Teor. Fiz. 40, 641 (1961); 40, 898 (1961) [English
transls.: Soviet Phys.—JETP 13, 447 (1961); 13, 628 (1961)7;
V. L. Pokrovskii, and M. S. Ryvkin, Zh. Eksperim. i Teor. Fiz.
40, 1859 (1961); 43, 92 (1962) [English transls.: Soviet Phys.—
JETP 13, 1306 (1961); 16, 67 (1963)]; P. Hohenberg, Zh.
Eksperim. i. Teor. Fiz. 45, 1208 (1963) [English transl.: Soviet
Phys.—JETP 18, 834 (1964)]; D. Markowitz and L. P. Kadanoff,
Phys. Rev. 131, 563 (1963); J. R. Clem, ibid. 148, 392 (1966);
M. A. Biondi, M. P. Garfunkel, and W. A. Thompson, zbid. 136,
A1471 (1964); L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 45, 1943
(1963) [English transl.: Soviet Phys.—JETP 18, 1031 (1964)].

(34)

SANG BOO NAM

156

where Z;, Ar, and & are solutions of the integral
equations

(1= Z1(k) Jeom / Zi@aoTr+ (k)

q

(3.5a)

€Ik=6k+/ erglrt(k,q)=Zsr(k)er, (3.5b)
q

Za(k)Ar(R) = / 21 A @) T (o), (3.50)

and

Tli(k>4> = [Te—e+ Tept+T1"+ TIS:]/
{Z12(Q) [902- ‘AI2(Q):|— E[}c2} .

Here 77° and 77% are the kernels representing the
ordinary (non-spin-flip) and magnetic (spin-flip) im-
purity scatterings, respectively. When T3%8=0, that
is, no impurity scattering, the integral equations (3.5)
become those of Eq. (3.2) for the pure system. The re-
normalization factor Zs;(k) for the quasiparticle energy
is introduced in the same manner as that for Z;(k), and
it is nearly unit in the approximation which is used for
Zy(k).

For the isotropic weak-coupling limit, that is, within
the BCS tkeory (Teet+Tep=—7V), the above integral
equations reduce to algebraic equations of Abrikosov
and Gorkov,

Zi(w)w=w+i(T+T)w/[wi— A {w) ]2

=o+i(I'—T)a/[e2— A2]H2, (3.6a)

L= e, (3.6b)
Ar(w) = A—2iT:Ar(w)/ [w2— Ar%(w) ]2

= A— 2T, A /[@'— AZ]V2, (3.6¢)

where

A=N(O)V / do (tanh1fw) Re{Ar(w)/[w*—Arw) 12}
=NO)WV / de (tanhlgw) Ref{A/[&—AZ]V2),  (3.7)

P:nl/dﬂ lvl(kyq) i 2, (38)

To=nrtS.(S.+1) / aQ |va(k,q) 2. (3.9)

We have here assumed that the matrix elements v1(%,q)
and v, (k,g) are dependent only on the angle on the Fermi
surface. For convenience we have introduced the re-
normalized frequency @ as

&(w)=w+2Tid(w)/[&2(w)— AZ]Y2,

In this limit we observe that all calculations can be
carried out by solving Eq. (3.6c), or Eq. (3.10) which

(3.10)
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turns out to be a fourth power algebraic equation. The
explicit solutions of Az(w) of Eq. (3.6c) and of @ of Eq.
(3.10) are given elsewhere.? When T',=0, that is, no
magnetic impurity (spin-flip) scattering, then &(w)=w
and Az(w)=A as one expects.

At zero temperature the solution of Eq. (3.7) can be
written as®

A(P‘,O) T Xo X .
n— = ——x+—+— tan~lx—sinh~lx,,
A(0,0) 4 2x

(3.11)

where &= 2I",/A(T,,0) and x,=0(x—1)[x2—17]"/2
When T — T, that is, A;— 0 or A— 0, then from
Eq. (3.6¢) we obtain
Ar(w)=[w/(w+2:T)]A. (3.12)

Equation (3.7) then leads to the equation of the tran-
sition temperature as

w

[NO)V T = / do——— tanh(38.w). (3.13)
w20

Combining this with the BCS equation (I';=0), we ob-
tain the well-known result of Abrikosov and Gor’kov

T,
Iy (B)—p Gt =% (
T p

¢ n

1
), (3.14)
nti+n nti

where y(x) is the digamma function,® and n=T,/7T..
T, and T.? denote the transition temperatures with and
without magnetic impurity scattering. In other words,
T.=T.T,) and T,»=T,(T:=0).

It is noted that the formal structure of the Green’s
functions for all the cases is the same, so that similar
calculations may be used for the electromagnetic re-
sponse. For this purpose we write the Green’s function
of the system in the following form for all cases:

G(k)={Z (k) ko—A(k)T1]— &3}
-1 NE)+P(E)r1+73 | NE)+PR)T1—73

2 e(k)— ¢, e(B)+& ’
(3.15)
where
e(k)=Z(k)[ko— A2(R) "2, (3.16a)
N(k)=Z(k)ko/ (k)= ko/ ko>~ A2(R) ]2, (3.16b)

P(k)=Z(k)A(R)/ e(k) = A(k)/Tko*— A*(R) ]2, (3.16¢)

Since the dominant contributions come from electrons
near the Fermi surface we expect that the |k| de-
pendence is unimportant, but the dependences of fre-
quencies and of angles on the Fermi surface are impor-
tant for strong-coupling and anisotropic systems. We

2 S. B. Nam, Phys. Rev. (to be published).

30 E. T. Whittakar and G. N. Watson, 4 Course of Modern
Analysix7(Cambridge University Press, London, 1952), Chap.
12, p. 247.
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may then write the variable % in Eq. (3.16) as k= (kyw)
= (Q,w), where Q denotes the angular variables on the
Fermi surface. Hereafter, we use the variable & as (Q,0)
unless otherwise specified.

We introduce the densities of states #(k) and pairs

p(k) as¥

1 1 dA
Im-Y i TrG(l)=—— | —n(k), (3.17a)
T k @m)J Jo|

1
Im-3Y 3 TrriGR)=

a4
/ —p(k), (3.17b)

. Tk @m)3J ||

an
n(k)=Re{N(k)/Zs(k)} ~Re{N(k)}, (3.18a)
p(k)=Re{P(k)/Zs(k)} ~Re{P(k)}. (3.18b)

We have here used the approximation for the integration
on the Fermi surface

5o f a%k 1
v J ©n)3 ()
dey, 1

o[t [, o

where d4 denotes an area element on the Fermi surface.
For an isotropic system, the angular dependence drops
out in Egs. (3.17) and (3.18), and one obtains the usual
results for the densities of states and pairs.

The effective energy gap may be defined as the fre-
quency w, at which the density of states first begins to
have finite value, that is,

n(w<w,)=0. (3.20)

It should be noted that w, is not the same as the gap
parameter A except for the weak-coupling isotropic
system with no magnetic impurities. When magnetic
impurities are present, the density of states is propor-
tional to the imaginary part of & from Eq. (3.10):

Imo=2T, Re{a/[&?— A2]Y?} = 2T n(w).

In other words the density of states first begins to have
finite value when & becomes complex. Thus the effective
energy gap is obtained by setting dw/do=0 in Eq.
(3.10), to give

w,={A¥3—(21,)*/3)3/%9(A—2T,),  (3.21)

where 6(x) is the usual step function, 1 for positive ,
and zero otherwise. The region of gapless superconduc-
tivity3?:33 is that for 0< A(T,,T) < 2T, such that w,=0.

3 Especially in the normal state #(k) =Re{1/Z;¥(%)}.

# Similar phenomena have been discussed by many authors: K.
T. Rogers, Ph.D. thesis, University of Illinois, 1960 (unpublished);
J. Bardeen, Rev. Mod. Phys. 34, 667 (1962); K. Maki, Progr.
Theoret. Phys. (Kyoto) 29, 603 (1963); 31, 731 (1964).

% A. I. Larkin, Zh. Eksperim. i Teor. Fiz. 48, 232 (1965)
[English transl.: Soviet Phys.—JETP 21, 153 (1965)].



476

: - Wy
r—
C,
&
P e —
¢
F16. 2. The contours for the w integration.

Superconductivity requires that A be different from
zero, but not w,.

In closing this section it is noted again that hereafter
we use a Green’s function of the form (3.15) for
all cases (pure, impure, strong-coupling, and weak-
coupling systems), with the appropriate Z(k), A(k),
and Z;(k).

4. CURRENT DENSITY

In this section starting from Eq. (2.7) we calculate
explicitly the response function in the transverse gauge
utilizing the Green’s function of the form Eq. (3.15).
The current density, which can be applied to strong-
coupling and impure superconductors, in a form similar
to that of Mattis and Bardeen, is obtained in the real
space.

Using Egs. (1.4), (1.5), (2.7), and (3.19), we write
the transverse response function

82 dek dw
Kulgon)=—, / i / w0,

{ }={G(k+q, vtwn)G(kw)—Gy(k+g, )Gy (kw)},

where Gy is the normal-state Green’s function. The sub-
traction term corresponds to the diamagnetic term.
We have here used the analytic continuation identity

2

1F dF f
L Fe o / — 1@,

where f(z) is the fermi (boson) function for an odd
(even) integer # from Eq. (2.6). F(3) is an arbitrary
function except for possible poles, assuming that the
poles of F(z) do not coincide with those of f(z). On the
other hand, if zf(3)F(z) — 0 as z2— o, we can distort
the contour in the convenient form depending on the
poles of F(z).

We now need to calculate the following type of
integral :

I= / g% / do f(w) Tr{G(k+4q, o+w.)Gkw)}. (4.2)

We suppose, even though we do not write it down
explicitly, that there is always a subtraction in such
a way that the formally divergent term is eliminated as
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discussed in Sec. 1. We then proceed with all calculations
by interchanging freely the order of integrations with
respect to d* and dw.

For the w integration, we consider the contours
shown in Fig. 2. We can obtain the contribution from
each contour, and write

I=11+Iz+13+14, (43)

where I; is the contribution from the contour C;, and

de,
11—/5;;[0'7(10)]‘((0)
XTr{[G+(kw)—G_(kw)JG-(k+q, otwn)} (44)

and similar terms for I,, I3, and I,. We have here used
the notation
G.(kw)=G(k, w10). 4.5)

Using the Green’s function in the form of Eq. (3.15),
we obtain

Tr{Go(k1)Gp(k2) } =3gas(1,2)+1]

X{T}+-3[ges(1,2)—1{11}, (4.6)

/ 1 1
(1} )
Q-61“+625\€1“+€k1 €P+-€re
1 / 1 1 )

O+ ea*— 62’3\61"“ €1 €P—ep

{(I1}=

— / 1 1
o)
O—ea*—ef\e® e ef—ens

1 / 1 1
J] { > ’
QO+ e+ 62‘3\51"~ e e

where the coherence factor g.s(1,2) is given by

8a5(1,2)=N*(1)NP(2)+P=(1)P?(2),  (4.7)

and
Q= e~ em=~ (ke—ks) - Vier=q-v.

The subscripts 1 and 2 stand for the variables k= (ky,w;)
and ko= (ko,ws), respectively, and the superscripts @ and
B denote (+) or (—) which indicates the upper, or
lower, across the cut on the real axis of the frequency.
We have used the renormalized quasiparticle energy
& as ;. We can put & in place of ¢, in Eq. (4.6), so that
we obtain

Tr{Ga(k1)Gs(ks)} = {same form} (4.8)

Z3“ (k1)23’3(/€2>

replacing e(k) by e(k)/Z3(k). Equation (4.6) can be
also rewritten in terms of e(k) and I'(%) introduced as

e(k)=Z(k)[ko?— A2(k)]V?= eo(k) +iT(E). (4.9)
Inserting this into Eq. (4.6), we obtain a typical term
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in Eq. (4.6) as
1 1

Q+ea*—ef e*—en

1
Q4+ enn— €oe+i[al'1— BT ] e1— err+ialy

where T'y,s=T"(k1,2), €o1,2=€o(k1,2), and so forth.

Using Eq. (4.6), we can carry out the integration with
respect to e in Eq. (4.2). For this it should be mentioned
that the causal requirement eliminates some terms in
Eq. (4.6). Equation (4.10) is helpful for this. We choose
the same causal sign as that of Mattis and Bardeen.
After alittle calculation, we obtain the response function

, (4.10)

et [dA
Kulow)=5 [ Soni@u), @D
™

[v]
where the kernel I(Q,w,T) is given by
wg

1(Qu,T)=

wg—aw

do’ {I} tanh[§8(w+w’)]

+ f d/ [{I} tanh[3B(w+)]— (1T} tanh(26e')],

(4.12)

{I}= 8+ —(1:2)+1 g~H—(1)2)—1
Q4 ecx— €ar—2(I'1+T'2) rQ- co2— €n—1(T'1FTs) ’

(11} = g+-(1,2)+1 g--(1,2)—1

QO+ eor—ear—i(T'1+T'2) l O+ enrteaa—i(T14T5) '

Here the subscripts 1 and 2 stand for k= (Q,w’) and
ka=(Q, w+0w’), respectively. We have here used the
analytic continuation identity, f(w'dwm)= f(v’), with
Wn=2wmi/B.

The conductivity then becomes

11
UFV(q)w) = Z" —Kn"(q:w) . (4-13)

T W

The normal-state response function can be obtained
from Eq. (4.11) by setting the gap parameter A to be
zero;

e? dA
Ko (g0)=— / O %O, T),
=) Tl

z(g,w,T>={ tanh[$8(a-+w)]

3 (4.14)
+ f [tanh[3B(w+e)]

2dw’
O+ eps” — eV — (' ¥+ I‘zN)’

— tanh(26¢') 1}
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where ¢ and I'V are defined for the normal state in a
way similar to Eq. (4.9), that is,

(k) =Z¥(k)ko=e" (B)+iTV (k). (4.15)
The normal-state conductivity becomes
1
U#VN<q:w) = —'—:—KIH'N(q:w) . (416)
4mwiw

For the isotropic systems after an angular integration,
we obtain the current density

1
]ﬂ(q,w) = —'ZrKMP(Q)w)A V(Q)w)
1
== ZK(q;“OA M(q;w) ’ (4'17)

where the response function K(g,w) is
3w ( [ve g
K= [ 4 (1) st hpterta) 1 [
2A wg—w wg

X U7} tanh48(orto)1= (11} tanb(35) 1]
{I}=F(q, enn— €01, I'1+T2)[g+ -(1,2)+1]
+F(q, — eor— o1, T'1+T9)[g4+(1,2)—1],
{11}=F(g, ex— o, T'1+T2)[g+ -(1,2)+1]
+F(g, eoateos, T+ T2)[g--(1,2)—1]. (4.18)
The subscripts 1 and 2 here stand for («’) and (w+w’).
The function F is given by

1 S+1

F(¢,E,T)= —[25-{- (1—-S5?) ln—-] , (4.19)
qug S—1

where

S=(1/qu)[E—iT].
The conductivity then becomes

o(gw) =K (q,w)/4miw. (4.20)
The corresponding expressions for the normal state are

3w 0
KN(q,w)=1—{ / tanh[3B(e+a)]

+ / [tanh[%ﬂ(w+w’)]—tanh(%ﬁw')]}dw’

XF(q, en¥—en®, 1V 4T9V), (4.21)
and

oV () = K¥(g,w)/dmics. (4.22)

In the weak-coupling limit, ep"—en¥=w, and the
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normal-state response function and conductivity become

i K¥(g,w)= (3mw/A)F(g,0,2T) (4.23)
an
o¥(gw)=(3/4iA)F(g0,2T), (4.24)

where 2" is the inverse relaxation time. Utilizing Eq.
(4.24), we can formally rewrite the response function
Eq. (4.18) in terms of the normal-state conductivity,
Eq. (4.24), of the weak-coupling case. This implies that
for the isotropic system, the response function and con-
ductivity in the superconducting state can formally be
expressed in terms of the normal-state conductivity,
taking properly into account the coherence factor
gaﬂ(l;z)'

We now discuss the current density in real space.
Equations (4.11) and (4.12) lead to the current density
in a form similar to that of Mattis and Bardeen:

R[R-A.(r")]

J(anH=C% e*“‘/dr'TI(w,R,T), 1.6)

where the kernel function I(w,R,T) is given by

T “wg
I(w,R,T)=——{ / ¢RLdw'{I} tanhiB(w+o’)
21 wg—w

00

+/ e ®/Lde’ [{1} tanh[38(0+w) ]

—{II} tanh(3B") ]} , (4.25)
{I}="[g+ —(1,2)+1] exp[ia(en— €02) ]
+Lg4++(1,2)— 1] explia(eoten) ],
{11} =g+ —(1,2)+1] exp[ia(eon— €o) ]
+[g- —(1,2)— 1] exp[ —ia(eonte0) ].
Here the effective mean free path L is defined as
L= |o|/[T1+T.],
a=R/|v[.

Tt is clear that for the weak-coupling isotropic system
with no magnetic impurities, the current density of Eq.
(1.6) becomes identical to that of Mattis and Bardeen
with A(w)=A, w,=A,

(4.26)
and

o' (w+o')+A2
B [/2— A7) (o) 2— AZ]12 ’

and T'(w)=T=uvy/2l. The factor exp[—R//] comes in
here in a natural way as expected. For the weak-
coupling system with magnetic impurities, the effective
mean free path becomes

1
L

(4.27)

gﬁﬂ(lyz)

11
=—f—, (4.28a)
11,
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where ! and /;are the mean free paths resulting from non-
magnetic and magnetic impurity scatterings, respec-
tively. It is noted that in this case the effective gap
parameter of Eq. (3.6¢) is still dependent on T',. When
T',=0, that is, no magnetic impurity present, the above
result becomes identical to that of Mattis and Bardeen.

An expression for the normal-state current density in
real space can be obtained by setting the gap parameter
A to be zero from Eq. (1.6);

/ R[R-A.(r)]
f———
R4

IN(t)=C3 eiot IN(w,R,T), (4.29)

where the normal-state kernel is

zN(w,R,T)J{ / " anh[38(ete)]

A

+ / [tanh[38(w-+)]— tanh (36e) |
0

Xdw' e BIE—ia (e02V—e01¥) R

(4.30)

where the effective mean free path in the normal state
L is defined as

L= |o|/[T¥+T2V].

For the weak-coupling isotropic system with non-
magnetic impurities, e2¥—en¥=w, and the normal-
state current density of Eq. (4.29) becomes a Chambers
expression with

IV (0,R,T) = —miweiaw—RIL,

(4.31)

(4.32)

In the weak-coupling system with magnetic impurities,
the kernel I¥(w,R,T) becomes

I¥(w,R,T)= — miwetaw—RIL (4.33)
and
1 11
—=—t—. (4.28b)
L 1 I

Here ! and /, are the mean free paths resulting from non-
magnetic and magnetic impurity scatterings, respec-
tively, in the normal state. They are in general different
from those of Eq. (4.28a) in the superconducting state,
and will be the same when the difference in the self-
energies in two states is neglected.

We consider now a system in which the penetration
depth is small compared with the coherence length
(Pippard limit, i.e., \<&) so that to a sufficient ap-
proximation, we can replace the kernel I(w,R,T) by
I(,0,T) as done by Mattis and Bardeen. This replace-
ment can be done also when the mean free path is small
compared with the coherence length (LK &p).** We then
expect that the ratio of conductivities in superconduc-

3¢ J. Bardeen (private communication) has poin.ted out to us
that the limit (L<&K%) is equivalent to the local limit.
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ing and normal states is equal to the corresponding ratio
of the kernel I(,0,T). From Eq. (4.25), we obtain

I(w,0,T) = —riwlo1—t02], (4.34)
where

1 oo L
01=—/ do’ g1(1,2) tanh[%ﬁ(w-i—w’)]'f‘—/
(6] wg—w et b

Xdo' g1(1,2)[tanh[38(w+w’) ]—tanh (36w’)], (4.35a)

1 oo
— / do g2(1,2) tanh[38(w-+e) ]
w [wg—w,—wgy]

1 r= )
4 / de [g2(1,2) tanh[38(w-+a')]
w wg
~+g2(2,1) tanh(38w’) ].

Here [w,—w, —w,] denotes that the algebraically
largest of two numbers is to be used, the functions g; and
g» correspond to the coherence factors, and are given by

g1(1,2)=Re{N(1)} Re{N(2)}

(4.35b)

+Re{P(1)} Re{P(2)}, (4.36a)
£:(1,2)=Tm{N(1)} Re{N(2)}
+Im{P(1)} Re{P(2)}, (4.36b)

where the functions N (k) and P(k) are defined by Eq.
(3.16), and the real parts of them correspond to the
densities of states and pairs defined by Eq. (3.18). From
Eq. (4.30), we obtain the normal-state kernel

IY(w,0,7) = —7iw. (4.37)

For an isotropic system the angular dependence drops
out in Eq. (4.35), and we obtain

o I(0,7)

N

(4.38)

—= g1—109.
o — W
We see that in the weak-coupling limit with no magnetic
impurity, the result of Eq. (4.38) becomes that of Mattis
and Bardeen. We shall see later that the result of Eq.
(4.38) can be obtained from the general expressions for
the conductivity of Eq. (4.20) in the limits of g—
and of ¢, L— 0.

We can also obtain the same formal results by using
Eq. (4.8), that is, including Z3(%). Then all results are
formally the same with the replacements

(k) — e(k)/Zs(k) ,
{2a(1,2) 1} — {gas(1,2)£1}/Z52(1) Z55(2).

5. LIMITING VALUES OF THE
RESPONSE FUNCTION

(4.39a)
(4.39b)

In this section we discuss various limiting values of
the response functions (4.18) and (4.21) for an iso-
tropic system, and show explicitly the conditions for

ELECTROMAGNETIC PROPERTIES

479

the Meissner effect and perfect conductivity. The corre-
sponding results for an anisotropic system can be ob-
tained from Eqs. (4.11) and (4.14), and will be given at
the end of this section.

For this purpose various limiting values of the func-
tion F of Eq. (4.19) are needed:

1
)
E—T

21 ()
F(%O;F) '_“—'FO(—) )
Tr T

1 E E
F(q,E,0)=——[F1(——>+iF2(—):|, (5.10)
gvo qUo q?o.

F(O,E,I‘)=§ (5.12)

(5.1b)

47 1
F(0,0,T)=— —, (5.1d)
3T
Flg—o, B, T)~—, (5.1¢)
qvo
where
Fo(x)=(1/2)[(1+4x?) tan~x—«], (5.2)
14«
Fi(x)=2x+(1—22) In|—|, (5.3)
1—x
Folx)=m(1—22)0(1—2). (5.4)

A. Normal State

Inserting Eq. (5.1) into Egs. (4.21) and (4.22), we
obtain the following limiting values of conductivity in
the normal state:

N 0 1 1 ’ h 1 /
o ( ’“’)‘X‘{ / tanh[38(o+o')]

[CRWESS

+ / [tanh[38(w-+) ]~ tanh (36)]

dw
X , (5.5a)
¥ ()4 T¥ (wto')+id
Ty

2AJ0  2T%(w)
B

X—dwFo( > , (5.5b)

2 2T (w)

oN(q,w)r»o=—§— —1{/0 tanh[38(w+w’)]

qvo Aw —w

+ / [tanh[38(w-+o) ]~ tanh (36¢") 1}
0

@ 1)
de’[ﬂ(—) — iF1<——)] , (5.5¢)
gvo qvo
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1 > sech?(3Bw) B
o (0,0)=— / T e, (5.5d)
A 0 ZPN(LO) 2
3r 1
a¥(g—w,w)=—-, (5.5¢)
4qve A
where

&= egaV — €01" = e (w+w') — ¥ (o') .

The formula (5.5d) is often used for the dc resistivity for
¢=0, when the self-energy resulting from various scat-
terings depends on frequency, such as a resonance
scattering from the s-d interaction.®

In the weak-coupling system with nonmagnetic and
magnetic impurities, Egs. (5.5) reduce to

a¥(0,0)
eV (0,0)=——, (5.6a)
W
a¥(,0)=30"(0,0)Fo(qL), (5.6b)
3 1 © %)
RRLE YOO e
4guo AL \quo s
ne
NO0)=~—=""r, (5.60)
A2 m
3r 1
¥ (g—>wo,w)=—-, (5.6€)
4qvo A
where
1 1 1 Y0

T 70 Ts L

Here 79 and 7, are the relaxation times resulting from
nonmagnetic (ordinary) and magnetic (spin-flip) im-
purity scatterings, respectively, in the normal state. The
results of Egs. (5.6) become the well-known results for
the normal-state conductivity?®® when r,=co, that is,
no magnetic impurity present. It is noted that the above
results are valid even for a system with only spin-flip
scattering present. When there is no scattering, L —co,
we see from Eq. (5.6¢) that the real part of the conduc-
tivity, which is related to the power absorption, vanishes
for w>quy as one expects (often called the Cerenkov
condition). More generally one can see the above con-
dition from Eq. (5.5¢).

B. Superconducting State

We first give only a few limiting forms for the response
function in the Pippard and London limits.

3 See for example, A. A. Abrikosov, Physics 2, 5 (1965); 2,
61 (1965); H. Suhl, Phys. Rev. 138, A515 (1965); 141, 483 (1966);
Y. Nagaoka, 7bid. 138, A1112 (1965); P. W. Anderson, ibid. 124,
41 (1961); J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964);
J. R. Schrieffer and D. C. Mattis, Phys. Rev. 140, A1412 (1965).

36 G. E. Reuter and E. H. Sondheimer, Proc. Roy. Soc. (London)
A195, 336 (1948).
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For the Pippard limit, ¢ —, we insert Eq. (5.1¢)
into Eq. (4.18), and we obtain

3
K(Q‘*’“’, w)z——-—l(w,O,T). (57)
quoA.
We then obtain the conductivity,
ot I(w,0,T)
—(g—o®, w)= =01—109 (5.8)
oV —Tiw

as given by Eq. (4.38), with o¥ of Eq. (5.5¢).
For the London limit, ¢ — 0, inserting Eq. (5.1a) into
Eq. (4.18), we obtain

2w [ee
K(Ow)=— /
A

W—w

de’ {I} tanh[3B(w+w’)]

+ / [{7} tanh[3B(w+o)]— {11} tanh (38e') e,

(5.9)
(1= g+-(1,2)+1 g++(1,2)—1
eoa— €nn—1(T'14T'y) l —eoz— eor—1(T1+T'2) ’
_(1,2)+1 _(1,2)—1
(I}= gr—(1,2)+ g--(1,2)

1 .
ce— 02— 1(T1+Ts)  eootenn—i(T1+Ta)

If we make a further approximation, I'js=T(w'),
I'(w'+w) — 0, which corresponds to L&y, and assume
that I'(w) is slowly varying with respect to frequency w,
Eq. (5.9) becomes

K (0,0) psor =~ — 400l (0,0,T) , (5.10)
where o= (1/A)(1/2Tts) =a™(0,0). The conductivity
can then be expressed by

a° I{w,0,T)
—(O’w)r_,mz i
o —Tiw

(5.11)

= 0’1-i0’2

as given by Eq. (4.38), with o of Eq. (5.6d). Thus,
from Egs. (5.8) and (5.11), we obtain

a’ I(w,0,7) o*
—(g—»,0)= =~—(0,0)re -
o —7iw oV

(5.12)

These results have also been obtained by the author in
a quite different way.%7

The results of Eq. (5.12) can be understood in the
following way: In the Pippard limit, when the penetra-

3 One can carry out the calculations using the spectral repre-
sentation form for the Green’s function from beginning [S. B.
Nam, Ph.D. thesis, University of lllinois, 1966 (unpublished)].
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tion depth is small compared with the coherence length,
one may replace I(w,R,T) by I(w,0,T) as discussed
earlier. In the local limit, g— 0, ' —, in other words,
L—0 in the current density of Eq. (1.6), the factor
exp[ —R/L] causes the main contribution to come from
R=0, and again one may replace I(w,R,T) by I(w,0,T).
These two simple arguments lead to Eq. (5.12) as one
expects from Eq. (4.34).

It should be mentioned that in the weak-coupling
system with magnetic impurities, ¢¥ in Eq. (5.11) is
given by

ne?
co=0¥(0,0)=—
m 7'0+7's
In this limit, the result of Eq. (5.9) leads to that of
Weiss et al. To see this from Egs. (3.6) and (4.9), we

rewrite
e(w)=Z(w)[w?— A%w)]'/?
= [~ M) J2+i(T+T)
= [@*— ATV 4-i(T—T,).

If we use the notations » and T'; of Weiss et al. in place
of & and I'—T',, respectively, then we obtain from Eq.
(5.9) their results in the weak-coupling limit. Our results
of Eq. (5.11) differ from theirs in that they implicitly
assume that 72> 7. Their result o for the conductivity

ToTs

(5.13)

(5.14)
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ratio at zero temperature, with w/T's — 0, becomes

ne?

TsTo

instead of Eq. (5.13). This result is only valid for 7>70.
While this may be the usual situation, it is desirable to
have the more general result Eq. (5.13), which is valid
even for the system with only spin-flip scattering
present.

We now calculate the limiting value K(0,0) in two
distinct limits: ¢— 0, w— 0 and w — 0, ¢— 0. To do
this we observe that the function F of Eq. (4.19) is
proportional to the normal-state conductivity in the
weak-coupling limit from Eq. (4.24). We thus expect
that the function 7 satisfies the usual sum rule

2 ~dE
ImF(g,0,T)=- / —ReF(q,E,T)
TvJo E

2 * dE
=—Re/ —F(q,E,T). (5.15)
o E

™

We first consider the limit ¢ — 0, & — 0. For this we
take a limit w— 0 in Eq. (5.9), using Eq. (5.15), and
obtain

6m (7 *® w
E?o K(0w)= X {EA(wg) tanh[38A(w,) ]I mF[0,0,2T (w,) ]— Re/ dw—i(—)——F[O 2¢60(w),2T ()] tanh(}6w) }

47TR " deo A(w,) tanh[3BA A) h
e p— wﬂ t 3 wﬂ PR — Zw
e/o 50:( anh[6A(w,)] ()tan(ﬁ)

w

4o R ® dwA(w) tanh(38)

= e
,/;,,_o A2w)—w? Z(w)[w?— A2(w) ]1/2

4 2r A2

Re} ——m———,
A n B (wa2HA,2)32Z,
We have here used
deo A(w)

wto WP A w)
}e(w) (5.16a)
(5.17a)
(1.119)

A%w)

€ D(w) w?— Az(w)

for convenience, and have assumed that the gap parameter A(w) and the wave-function renormalization Z(w)

have no pole on the imaginary axis.

We consider now the reverse limits, that is, we let w — 0 first, then we let ¢ — 0. Using Eq. (5.15), we obtain

K(0 )~—A—[—A<w.,> Im({F[4,0,20(>,)]} tanh[38A(w,) ]~ Re / dw—(i"zn

F[g,2€0,2T'(w) ] tanh(36w)

wg+0 Wi

6w * deg A(w)

=— Re/ ———{A(wg) tanhipA(w,)— tanh(%ﬂw)}F[q,ZeO,ZI‘(w)] (5.18)
A 0 €o D(w)
6 * A¥w) .

=:\— Re -/wru dme[q,Zeo,ZP(w)] tanh(gﬂw) (5.19)
6 2w A2

=—Re I"O(Sn) ) (5-20)

P
A n B (wa+A42)%2Z,
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where the function Fo(x) is given by Eq. (5.2), and

qvo qvo

=_— (5.21)
2¢n 2(w.2+AD)12Z,

In the Pippard limit, ¢ —» e, Eq. (5.20) becomes

6r? 1 2T
K(g—, )= —5 — —
A qvo 7 ,3 wn2+An2

A2
(5.22)

This becomes the BCS result in the weak-coupling limit,
with A,=A;

32 A(T)
ta
g&oA A(0)

A(T)

K(g—,0)= nh . (5.23)
2T

We now let ¢— 0 in Egs. (5.18), (5.19), and (5.20),
and obtain

47r ® €0
limK (¢,0)=— Re / —A(w,)
g0 A 0 €0
Aw

@ 71
D(w) tanh[gﬂw]]@ (516b)

4 0 A%(w)
=—Re / d
A- wg—0

w
A% w) —w?

x[tanh[%mwm—

tanh(3Bw)
e(w)

(5.17b)

4 2T

ey ——— .
A n ﬁ (Anz_*_wnz)s/zzn

Ay?

(1.11)

Thus we have explicitly shown that the response func-
tion satisfies the important condition

lim limK (g,w) =K (0,0)=lim imK (g,») (1.3)
g0 w—>0 w->0 g->0

for the theory of superconductivity and superfluidity.
This limiting value different from zero implies the
Meissner effect and perfect conductivity, and it is
directly related to the superfluid density p, in a two-
fluid model:

41 p,
— —=K(0,0).
Ap

(5.24)
One can obtain K(0,0) directly from the starting
point by knowing that two limiting values are equal,

K(0,0)=(K**+K%)o,0= (K*»—K"?),0+ (K"*+K%0,0
= (K*»—K"?)o,0. (5.25a)
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Using the Green’s function in a form of Eq. (3.15), we
obtain

2
KO0)=" / do f(w) / des TH{G (k)G (ko)
—GN(k,w)GN(k,w)}

4ar ©  do  A%w)
= Re / T tanh(6w) (5.17¢)
A 0g—0 €(@) Aw)—w?

47rR 5 27 A2 (11
=— Re - . 1177
A » B (wn2+An2)3/2Zn
In the pure weak-coupling limit (BCS), Eq. (5.18)
becomes exactly the BCS kernel [Eq. (C26) of the
BCS paper (Ref. 1)7];

or A? r*de
K(g0)=—— [ —
qioJo €

tanh(38A) tanh(38E) 2e
al I

—), (5.26)
A E Q'Uo> (

where the function Fy(x) is given by Eq. (5.3), and
E=(e2+A?'2) as one expects. Equations (5.16) and
(1.11) lead to the BCS result

4dr ® dertanh(36A) tanh(36E)
K(0,0)=~A2/ ——[ — :I (5.27)
A 0 62 A E
47 5 2T A? (5.28)
e Y e 28
AW B [waHA2]e2
At zero temperature this becomes
K(0,0)=4x/A, (5.29)

which is independent of the gap parameter.
In the weak-coupling system with nonmagnetic im-
purities, Egs. (5.18) and (5.20) become

or * de
K(q,()) = IAz Re -

0o €

tanh(8A) tanh(38E
x{ anh(§ga) tanh(3A )}F(q,Ze,ZI‘) (5.30)

A
o6 5 2 A?F(S,)
AT B (@AY (AT

where

(5.31)

Su=quo/ 2L (wat+ AH T,
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The results of Egs. (5.16) and (1.11) reduce to those of
Mattis and Bardeen, Abrikosov et al., and Rickayzen:

47 *®  de
K(0,0)=—az /
A o e+I?
tanh(384A) tanh(1BE)
x{ : : (5.32)
A
4r 27 A?

= (5.33)

A 2 ot et AT

At zero temperature this becomes?®

4r 1 (m
K(0,0)=— —[——— tan‘{(l——xz)”z/x]}

Axl2 (1—x2)12
drtl(r 1 1 ot (a2 —1)12
=__{___ n } (5.34)
Azxl2 21DV |x—(@x2—1)V2

where x=T/2A(0)=1/27A(0)= (r&y/2l). For x=0, that
is, /= oo, this becomes the BCS result Eq. (5.29). When
the mean free path is small compared with the coher-
ence length &, Eq. (5.33) reduces to the well-known
result

2o (Do

— — 5.35
P £o A(O) ( )

2T
In the weak-coupling system with magnetic impuri-

ties, Eq. (1.11) leads to the result of Weiss et al., and
Abrikosov and Gor’kov:

4r 2w
K(0,0) = Z —
A~

A2 47 ps

X —_——
(wn2+An2)[(wn2+An2)1/2+ P+ Ps:l A P

dr 2w
=Tz .
A2
X , (5.36)
(@n+ A (@A) 24T T, ]
where the effective gap parameter A, is
An=A—2T,A,/[wn?+A,2]12 (5.37)

 One can write tan~!(1/a?—1)/2=cos™(x) = sin~ (1—a)!/2,
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from Eq. (3.6c) and the renormalized frequency @, is

Gn=0nF 2T sGon/[ a2+ AZ]H/2 (5.38)
from Eq. (3.10). It is clear that when I',=0, that is, no
magnetic impurity present, the above result reduces to
Eq. (5.33) for the system with nonmagnetic impurities.

At zero temperature Eq. (5.36) can be evaluated by
changing the variable w, into @, of Eq. (5.38), or into
A, of Eq. (5.37);

s 1 J 8 0"
Z—[SO-SE1] T =5P0-50)]
b 6* !

p n=0 72!

n

1 o
=3[S(0)—S(6)]—7s z Se+0(0),  (5.39)

n=0 (ﬂ+4)!
where
Ys= er/A(Psio) = WEO/ZS )

I—I, w&fl 1
8= =_[—__]’
AT.0) 2L1 1,

1!'}::0: ‘I)o/A(Ps,O) .

The function S(4) is given by

S()= {tan~'B—tan—1Bz,}

(14+8)B

1 , ’1+B /1+Bz0
= n
(14+8B [14+B/ 1—Bz

s (5.40)
where

z0=x0/ (147s), 2o=0(y:— 1) (v,*—1)*2,
B=[(1-8)/(1+8)]"2,

and B=[(6—1)/(6+1)]"2. The various values of
S®™(0) are

S(0)=4r—tan"lx,,
S(0)=—(1—x0o/7vs),

S”(O) = %7!"— [tan—lxo—l—xo/'ysz:] s

X0 1
o)
Ys 2'Ys2

Xo 2 1
S®(0)= 9[%#— tan—lxo-———(l-l-— ———):I ,
752 3 732
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and so forth. When v,=0, Eq. (5.39) leads to Eq. (5.34)
as it should. It is not noted that p/p,; does not vanish
unless §, y;—, in other words, A(0,T,)—0 as
T';— T, where I',r is a critical value of T', at which
the system becomes normal.®

For a special case, 6=0, Eq. (5.39) becomes

Ps Xyl 511
—=1—8vy [3ir— tan‘lxo]——[-———— —-—:I (5.41)
p ¥s 4 v

When v,=2T/A(T,,0)=2T/A(T;,0)=1,
=1-—-3r/16.

For a system with only spin-flip scattering, the super-
fluid density becomes

then p,/p

E=_2_[S(—%~/s)—5(0)]l:1‘_8§]

P Vs Yo

16 s S(")(0)< %)".

733 =1 7l

This may correspond to the superfluid density of a super-
conductor with nonmagnetic impurities but in a static
magnetic field, with33

vo=21(uHYH*/A(H),

where (u?), H, and 7o are the average value of the square
of magnetic moment, a static magnetic field, and the
relaxation time,

In the limit, LK, AKT, and I';<<T, the superfluid
density of Eq. (5.36) may be written as

ps [L\ A AB
P (—) tanh(%BA)[1~ (2T.8)(14+47.)
o \&/A(T,0) sinhBA

—1(2T.B)%(AB)? sechz(%ﬂA):I . (543)

This reduces to the result of Eq. (5.35), when I';=0. The
more general result may be used for a system in which
only spin-flip scattering is present, so that L=/, It is
noted that the gap parameter A in Eq. (5.43) depends
on T and Ty, A(T,,T).

We now give a few limiting values of the response
functions Eqs. (4.11) and (4.14) for an anisotropic
system. The dc normal-state conductivity obtained

3 From Eq. (3.13) and the BCS gap equation, we can find the
value T'¢* at which T, vanishes; I' ;" =~ 2Apcs(0). See Ref. 29.
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from Eq. (4.14) is
2¢* [dA ® sech?(36w) 8
UI-WN(O;O) = /_vuvv / ‘—2—0)2 —dw . (5 .4:4)
(2m)3J |v| o 2IV(Quw) 2

In the weak-coupling limit this becomes

2¢?

(2m)?

dA
0,7 (0,0)= / mvﬁvﬂ-(ﬂ) . (5.45)

This is the usual expression for the normal dc conduc-
tivity of an anisotropic system in the relaxation-time
approximation. Here we have used the relaxation time
(@) =1/2T'¥(Q). Equation (5.44) reduces to Eq. (5.5d)
for an isotropic system. Other limiting values of Eq.
(4.14) can also be obtained.

For the superconducting state, in the local limit, ¢ — 0
and assuming that I'— o, which corresponds to LK &,
we obtain from Eq. (4.11) the conductivity

2 [ d4
(2m)?

Vuls

HPH—E

0u(0,0) Lo = {o1—ios}, (5.46)

where o1 and g2 are defined by Egs. (4.35). This expres-
sion reduces to Eq. (5.44) for the normal-state value,
when the gap parameter A vanishes.

It can be shown that the anisotropic response func-
tion Eq. (4.11) satisfies the condition

lirr; liII(l) K.(q,w)=K,,(0,0)= lim0 lim K, (qw), (547)
q=>0 w—> w—>0 g0
where the limiting value K ,,(0,0) is

e (dA 2r Ay?
K,.(0,0)= — / —a,,Re Y — . (5.48)

™ lvl n ,3 (wn2+An2)3/2Zn

This limiting value also can be obtained from the
starting point for an anisotropic system in a way similar
to Eq. (5.25):

K (0,0 =K ,,7(0,0)— K ,»»(0,0).  (5.25b)

6. CONCLUSION

An expression has been given for the current density
in real space, which can be applied to strong-coupling
and impure systems. It is explicitly shown that the
response function satisfies the conditions for infinite
conductivity and the Meissner effect. The general ex-
pression Eq. (4.11) for the response function may be
useful for calculating various properties, such as the
surface impedance and the penetration depth.

Calculations have been made by the author for the
Pippard limit, using Eq. (5.8) for the strong-coupling
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superconductor, Pb. In the London limit, using Eq.
(5.11), he has calculated the conductivity, surface im-
pedance, and penetration depth for an isotropic weak-
coupling superconductor with magnetic impurities.
These applications will be discussed in a subsequent
paper.?

Utilizing the Green’s function in a form of Eq. (3.15),
one can easily obtain the thermal conductivity*® and
the ultrasonic attenuation coefficient®? for strong-
coupling and impure systems.

The theory discussed here can be extended to the
case of a high-static magnetic field superimposed on an
alternating field.

We have neglected vertex corrections associated with
impurity scattering. In the weak-coupling case, the
effect is to replace 7 by 74, and a similar effect is to be
expected in strong coupling. However, the exact form of
these corrections remains to be investigated.
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APPENDIX

In this Appendix we give a simple calculation of the
Josephson tunneling current® under the assumption
that the tunneling matrix element is constant.

Following the procedure employed by Ambegaokar
and Baratoff,*® we obtain an equation corresponding to
their Eq. (16) as

dw
N()= Zz:. ;[f o (wFeV)— fillw) f Axk(w) Ay (0+eV)| Ticp| 2— Bi(w) By (w+eV) T—x, - T, COSG}

dw [ do’
t2r [ 2

kpJ 2

where ¢=a;+a,+ (ui—p,+eV)t. The functions 4 and
B are the spectral functions of the Green’s functions G
and F of Gor’kov scheme. We have introduced an applied

4 1In the calculation of the thermal conductivity, the formal
structure of the response function is similar except that in this
case the coherence factor Jag is

Ga5(1,2) = N*(1)NB(2) — P(1)P#(2).

The calculations are otherwise identical. We obtain for the thermal
conductivity,
© 2
Komdg? [ do L1440 s sechi(38o),
where ‘

Ir-(00)={o’—|A1%}/ |0 =A%) ],

I'(w) =Im{Z(w)[w*—A%w) ]2}

and

from Eq. (4.9). This result has been derived by V. Ambegaokar
and L. Tewordt [Phys. Rev. 134, A805 (1964) ] for strong-coupling
superconductors and by V. Ambegaokar and A. Griffin [Phys. Rev.
137, A1151 (1965)7 for superconductors containing magnetic
impurities. For the latter, the gap parameter A(w) is given by
Eq. (3.6¢).

4 Following the procedure employed by L. P. Kadanoff and I. I.
Falko [Phys. Rev. 136, A1170 (1964)7, we find that the transverse
ultrasonic attenuation coefficient for strong-coupling and impure
superconductors at low frequencies is given by

o ad [ o 1=FD) goas?
a0 0 =4{ [ Dt Loy L2
where

ax= f Di(w)[1—F(gL) Jdo,

ar= [ " Du@)F (gL (gL)de,
and ’

= [ " Ds@)PQL) (QL)dw,

2r w—w'+eV

Lf3"(@") = fel(@) 1T xpT—x,—pBi'(w) By'(«') sing, (A1)

voltage eV into the calculation. The assumption that
the tunneling matrix element be constant allows us to
carry out the momentum integration. We then obtain

and where \ ,
Di(w)= [l—l—%_]—i%]g sech?(36w),

Da(w)= [1 +‘%4:_%§(“;)—)Ir]g sech?(38w),

2A%(w)
w?—A%(w)
1

Pl = g = [+ arctan(x) 4],

L= quo/2 Im{Z () [w?—A%(w) ]2},
QL= gvo/2{Z (w)[w*—A%(w) ]2},

A= nmqvo/PionWaound .

The second term in Eq. (1) vanishes at zero frequency, qo=0,
in the superconducting state since the Meissner current term
(owa) appears in the denominator. Equation (1) becomes that of
Kadanoff and Falko in the weak coupling with magnetic impuri-
ties. In the normal state, however, the Meissner current term
vanishes, and the second term is finite. In the weak-coupling
limit, that is the effective mean free path L is independent of
frequency, Eq. (1) reduces to that of Pippard [Phil. Mag. 46,
1104 (1955)] in the normal state. The longitudinal correlation
function can be obtained in the same way. (We thank Professor
Leo P. Kadanoff for a discussion concerning the general response
function.) In the limit ¢Z>>1, the expression for the longitudinal
ultrasonic attenuation coefficient simplifies, since the dominant
contribution comes from the density-density correlation function:

L) ~a [ & W= [Aw)]?

«2(q,0) AL, a] 1+l

This is the result given independently by V. Ambegaokar [Phys.
Rev. Letters 16, 1047 (1966)7.

4 B. D. Josephson, Phys. Letters 1, 251 (1962); Advan. Phys.
14, 419 (1965). We thank Dr. Josephson for the stimulating dis-
cussion about the origin of the current.

V. Ambegaokar and A. Baratoff, Phys. Rev. Letters 10, 486
(1963); 11, 104 (1963).

Di(w)=2 tanh(38w),

and

arctan(¢L) sech?(}Bw).
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the tunneling current as
Jr
L [ Lok e+
0
— pHw)pT(wteV do | do'———
pH)pr (ko) coss)+— / [ ao— s
XLfr(@)— fiw) IpH(w)p (') sing,

where Jo=e(2m)[N(0)Tess |*>. Here T is the effective
tunneling matrix element. We have here introduced the
densities of the state #(w) and pairs p(w) defined by
Eq. (3.18), that is,

(A2)

1
NOn(w)=—2 A(k)=

T k

N(0)Re{w/[w?—A%w)]"?},

1
N(©0)p(w) = Z:, B(k)=N(0)Re{A(w)/[w*— A%w) ]'/%}.

The first term in Eq. (A2) gives the usual tunneling
current, and the second gives the Josephson tunneling
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current which may be expressed at zero voltage in the
form

Jr(eV=0)=Jgsing, (A3)

where the maximum value of the supercurrent Jg is
given by

Js__ 0 f " / {f’(w) /@)

1= @)= f)

wtw’

}?’(w);i”(w') . (A4)

This reduces to the result of Ambegaokar and Baratoff
in the weak-coupling limit as it should, when variables
are changed from w and o’ to e and e according to

=2+ A2=E:2, and o'?=e?+ A= E;% Equation
(A4) can be used more generally for strong-coupling
and impure (nonmagnetic and magnetic) systems. In
this equation the tunneling current is a function of the
matrix element Tess and the gap parameter A(w). One
can obtain in principle A(w) and T'e¢; from the ordinary
quasiparticle tunneling current. This would allow a
check of Eq. (A4).



