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Using the tunneling technique, we have studied superconducting alloy films of InBi in strong magnetic
fields parallel and perpendicular to the surface. Measurements in perpendicular geometry confirm previous
results for bulk type-IT samples. Additionally they show the decreased effect of screening currents for thin
films predicted by Maki. In parallel geometry we find the parameter k2 (related to the slope of the magneti-
zation in high field) to be a function of film thickness. Anomalies observed from tunneling characteristics
which we associated with the entry of flux quanta in the film are studied in detail. We construct a general
diagram showing the film behavior near the nucleation field as a function of thickness and Ginzburg-Landau
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parameter «.

I. INTRODUCTION

HE phenomenological theory of Ginzburg and
Landau' [GL], which was later derived from the
microscopic BCS theory? by Gor’kov? for superconduc-
tors near their transition temperature, has proved
enormously useful for understanding the effects of
strong magnetic fields on superconductivity. This theory
was used by Abrikosov* to show the vortex nature of
type-II superconductors, and by Saint James and de
Gennes® to predict surface superconductivity. Then
Maki® and de Gennes’ extended the GL theory to all
temperatures for dirty-alloys when the field is near its
critical value. In particular, Maki extended the GL
parameter « to all temperatures as two functions: (a)
«1 related to the value of the upper critical field, and
(b) 2 related to the magnetization in high field. Experi-
mentally, k1 was observed to increase as the temperature
was lowered, as was predicted by Maki. Furthermore,
k2 was seen to increase like x;.8 Maki had predicted a
decreasing k. Subsequently, Caroli, Cyrot, and de
Gennes® showed that ke should nearly equal «; for a
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bulk type-II superconductor. However, Baratoff'® then
noted that the k; appropriate to a thin film in a magnetic
field parallel to its surface should be the decreasing
function originally calculated by Maki.

The present work was started to find experimentally
and theoretically whether or not different «,’s apply and
to explain the cause of such a discrepancy. Experiment-
ally the very small magnetization of a thin film is
difficult to measure. However, both the magnetization
and the amplitude of the deviation of the density of
electronic states from that of a normal metal are pro-
portional to the square of the magnitude of the order
parameter near the upper critical field Hy: They go to
zero continuously when H = Hy, as expected from the
fact that the transition is second order in the magnetic
field. Therefore we can obtain the desired information
by using the tunneling technique.!! Tunneling character-
istics of InBi alloy films of 2 to 3 atomic 9%, Bi have been
measured for thicknesses ranging from 200 to 10 000 A.
The ratio of the residual mean free path in the normal
phase I to the BCS coherence length £, for these alloys
is I/&o~+%. Corrections to the dirty limit, where the
ratio is zero, are not negligible. Therefore, in addition
to calculating the tunneling characteristics for all film
thicknesses, we have studied the approximate correc-
tions for small departures from the dirty limit. Experi-
mental results for pure In films are given but not dis-
cussed quantitatively owing to the lack of a complete
theoretical treatment. Moreover, possible thickness
modulation and the precise nature of electron scattering
at the boundaries, which are not easily controlled, should
play a much more important role for pure films* than
for the dirty ones on which we focus our attention.

10 A, Baratoff, Bull. Am. Phys. Soc. 11, 175 (1966); R. S.
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Our experimental techniques are described in the
following section. Section III is devoted to a general
discussion of the extended GL theory as it applies to
thick or thin films in parallel or perpendicular fields.
Expressions for the tunneling characteristics are given,
and the difference between the different forms of «.
is explained to arise from the spatial variations of the
magnitude of the order parameter. More detailed calcu-
lations are found in two appendices. Experimental
results are compared with theory for perpendicular
fields in Sec. IV, for thin films in parallel fields in Sec. V,
and for thicker films in parallel fields in Sec. VI. A
diagram giving the type of transition to the normal
state and character of the superconductivity near the
critical field as a function of thickness and « value is
presented and discussed in Sec. VIL.

II. EXPERIMENTAL TECHNIQUES

The technical part of our experiments has already
been described.!! We may recall its general features and
present the new aspects related to the use of these films.

(A) The films were evaporated from a Joule-heated
crucible under a vacuum of less than 10~¢ Torr in a
conventional evaporator. The substrates were micro-
scopic slides (5-mm thick) glued with GE7031 varnish
on copper plates. The plates were coupled by copper
tresses to a container which could be filled from the
outside with liquid nitrogen. The temperature of the
films could be kept to —170°C during the evaporation.

A thin (200 A) film of Al was deposited on a first
layer of SiO and then oxydized by a glow discharge
under a reduced pressure of dry O,. Then we evaporated
the InBi film from a piece of bulk ingot in a single
crucible on the cooled substrate.

This procedure has given InBi films of a remarkable
thickness homogeneity. The relative thickness modula-
tion for 200 A films was less than 5%, except at the edges.
Such films were continuous resistivity and the thickness
deduced from room-temperature resistance agreed with
the optical measurements. Such a behavior is to be
compared with that of films evaporated on room-
temperature substrates. A 200 A InBi film prepared
under otherwise similar conditions is not continuous
resistively. It looks gray and is transparent. The low-
temperature thinner films develop the same properties
after several days at room temperature. An electron-
microscope study was performed in these two cases. The
InBi films were evaporated on a soluble substrate on
top of a first layer of SiO (just as for the films studied
on the microscope slides). The films evaporated at low
temperature are continuous and composed of small
grains of average size 500 A, randomly orientated.
Those evaporated at room temperature have large,
well crystallized, and isolated grains.

18 The Al film was in the normal state in our experiments per-
formed at 7'>1.2°K.
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The critical process for this recrystallization which
gives the “poor” films has to occur during or im-
mediately after-the evaporation. Just at the condensa-
tion, the crystallization is mainly caused by the surface
mobility, which is low for Na-temperature films. More-
over, the continuous films so obtained may be stabilized
later by the superficial films (oxide, adsorbed gases)
formed on them.

Properties of the thicker films evaporated at low
temperature agreed with those of the bulk materials.

(B) Tunneling measurements: Films were placed in
a bath of He* which could be pumped down to 1.2°K.
We recorded the differential conductance ¢I(V)/dV of
the junction with a system developed in Orsay using
a synchronous detection. The accuracy of 19, to 5%
depended very much on the noise of the junction. Our
results are presented in terms of a normalized dif-
ferential conductance

14I1(V)

D(V)=_—°——)
C, AV

2.1

where C, is the measured conductance in the normal
state.

(C) A Magnetic field could be applied at different
angles to the films with a 15-kG electromagnet. In order
to study the dependence on field of the differential con-
ductance, we set V=0 and recorded Dy—¢(H).!*> The
maximum or upper critical field Hy is given by
Dy_o(Hy)=1. This procedure allows a very accurate
determination of Hjr since D(H) varies linearly for a
large range of the subcritical field. A typical curve (Fig.
3, upper curve) shows the “tail effects” due to the con-
tinuous edges; the extrapolation of the linear part of
the curve near D (V=0)=1 gives H)| with a 19, ac-
curacy. (H) is Hy for a field parallel to the junction.)

The slope S of Dy—o(H) in the linear region is defined
as

S=(1—Dy-o(H))/(Hu—H). (2.2)

Usually we measure 1—Dy_o(H) for Hy—H=100 G
so that we obtain numerically 100S.

The value of the field H, is very sensitive to the
orientation of the field; the alignment could be done
with an accuracy of =#15’. This actually limits the
accuracy of the determination of the upper critical field
in parallel geometry for the thinnest films. The ac-
curacy of S is only 59, owing to the necessity of
normalization for D(V).

(D) The critical temperature T, could be taken from
resistive measurements. The edges, which were continu-
ous resistively because of the low-temperature evapora-
tion, had been trimmed. However we prefer to take 7'
from the temperature variation of H; (near T.,

14 A. Gaudefroy, E. Guyon, A. Martinet, and J. Sanchez, Rev.
Phys. Appl. 1, 18°(1966).

15 The choice of V=0 is not restrictive since in the gapless re-
gime the D(V) curve simply decreases by a uniform multiple as
the field is increased.
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H\2o[T—T.]). A very accurate determination is thus
obtained on the junction itself. Moreover, the T'; of very
thin films depends on the strains developed in cooling
and may be different on the different substrates (Al:O;
for the junctions, SiO for measuring resistive transitions).

(E) Thickness was measured optically by an inter-
ferometric method. The absolute accuracy, typically
4100 A, is very poor for the thinnest films. The
resistance measurement seems to give accurate results
in this case but, in fact, the resistivity may become de-
pendent on structure and thickness. Actually the thick-
ness was taken directly from the critical-field data
(Sec. V A).

(F) Resistivity: From the previous discussion one
sees that a direct measurement of the residual resistivity
pr is inaccurate. We usually measure the resistivity
ratio 7p and obtain pgp from the Matthiesen rule
(pot+pr)/pr=7r. (We used the room-temperature re-
sistivity for pure In: pp=9 uQ cm.) Such a method gives
good results in the case of thick films where its use can
be controlled. However we rather use directly the
transport properties obtained in the superconducting
state.

(G) The product pgl where I'¢ is the residual mean
free path is nearly constant for different alloys. Its
value indirectly gives /, which always enters with &
into the properties of dirty materials. However, there
is a large scatter in the published data for In,
which may be due in part to the different techniques
used : anomalous skin effect on bulk samples,'” and dc
resistivity measurements on films.!*% We have used this
last technique to get our own data on InBi 0.29%, in the
case I<d. (The extrapolation of the linear part of the
prd-versus-d diagram to d=0 gives §pg’ if we assume a
diffuse scattering at the boundaries.) Our results give

prl=(1.120.1)X 10 @ cm.

They agree with the most recent and similar measure-
ments by Chaudhari and Brown.?

(H) The Ginzburg-Landau parameier x was deter-
mined from the limiting form

(@H.o/dT)r,
(dH3/dT)r,

H (= Hjy for a thick film in perpendicular field) varies
linearly with T on a large domain (0.7<t<1). The
slope at T'; of the bulk critical field H.p was taken from
Kinsel’s® results. One obtains nearly (dH.p/dT)r-r,
=40T,+12 for a Bi concentration from 0 to 3%,.

167 is the bulk mean free path. We use later lo¢s for the mean
free path which takes into account the effect of the boundaries.
17 P, N. Dheer, Proc. Roy. Soc. (London) A260, 333 (1961).
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A1145 (1965).
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III. THE GENERALIZED GINZBURG-LANDAU
EQUATIONS AND GAPLESS
SUPERCONDUCTIVITY

We use the results of the generalized GL equations
in three sections, where we study: (A) the value of the
upper critical fields Hy, (B) the universal form of the
density of electronic states in the subcritical domain,
(C) the amplitude of the deviation of the density of
states (or the magnetization) from the normal-state
value when the field varies. These properties have been
studied rather thoroughly®* for bulk type-II super-
conductors in high field and are generally associated,
respectively, with notions of (A) x:(f), (B) gapless
superconductivity, (C) k2(¢). The same quantities may
be studied in other geometries. In these three sections
we will study the cases of : (1) a thin film in a perpendicu-
lar field (Abrikosov structure), (2) a thin film in a
parallel field (constant order parameter), (3) a thicker
film in a parallel field (surface superconductivity).

A. Upper Critical Field

In the presence of a magnetic field the condensed
electrons experience an interaction acting with opposite
signs on the two electrons of a Cooper pair, because of
the p-A term of the interaction Hamiltonian (p is the
canonical momentum, A the vector potential). In some
sense this interaction breaks the pair and gives a finite
lifetime 7, to the condensed electrons, where 7, is the
eigenvalue’ of the GL operator (V/i—A)%? operating
on the pair “wave function” or pair potential A(r):

1/70A@)=D(V/i—A)A(r). (3.1)

[We ignore the interaction of the spin with the field,
o-H. This is not a bad approximation since all fields of
interest here are much less than the Pauli field (~ 35,000
G). The A? interaction is also small, since |p|>>|A|.]
Here D is the usual diffussion coefficient for normal
electrons (D=3%vpl for a spherical Fermi surface, vp
being the Fermi velocity). The diffusion equation
(3.1) is expected to apply only in the case of dirty
materials (I<<&).” The characteristic distance £ for
changes in A(r) is obtained from (3.1),

£=Dr,.

The decay process competes with a natural growth of
pairs associated with'™ a characteristic time 7(f), a
universal function of the reduced temperature t=7T/T:

1/7(t)=2xpT, (3.2)
where p is obtained from
w 1
Int=y(1/2+p/2)—y (/)= ————— , 3.3)

wontitie ntd

2 We use #=kp=2¢/%ic=1. The conversion factor for fields in
gauss is just 27/®, where &, is the flux quantum.
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where y is the digamma function. An implicit expression
for Hy, is obtained by the condition that the two times
compensate, i.e. 7({)=r,. We shall now evaluate the GL
eigenvalue 7, in the three cases outlined above:

(1) The solution for the pair potential for a film in a
perpendicular field is the same as for the vortex structure
found by Abrikosov* for a bulk type-II superconductor.
The eigenvalue of (3.1), found using a Gaussian wave
function A=¢~(/DH=* (y is in the plane of the film) is

1/r«=DH. (3.4)

The parameter ;(¢) is then defined as H,(f)/V2ZH 5(¢)
where H, is Hj for perpendicular geometry. Good
agreement has been obtained between the theoretical
form of () and experimental results."* For the thinnest
films'® H, becomes substantially larger than H,, (see
Sec. IV A). Then we call the parameter «, ko:.

(2) For a thin [d<&()] film in a parallel field, |A|
is practically constant, and the eigenvalue (3.1) is
obtained® by simply averaging (A)? over the width of
the film &:

1/7«=DH?d*/12. (3.5)

The square of the parallel upper critical field H? has
the same temperature dependence as H, and may be
written in terms of the same «;(f),

Kl(t) =H|]2d2/12\/2_HCB.

(3) The eigenvalues for thicker films in parallel fields
have been calculated by Saint James.® He plots the
quantities s=H| (3d)? versus e=[d/2¢({) P=H,(d)?,
which gives a universal relation between H and H, at
all temperatures in the dirty limit. The characteristics
of the relation change very rapidly, at a critical value
€=0.816, from those of the thin films [ e=142 as seen
from (3.4) and (3.5)] to those of the thick films having
superconducting surface sheaths (H;=1.7 H, or
h=1.7 ¢). The sharp cusp which was observed in meas-
urements of the angular dependence of Hjs near the
parallel orientation® exhibits the rapidity of the change
of the solutions at .

In the limit of a thick film [d>>£(£)], A is well repre-
sented by a sum of Gaussian functions centered at the
boundaries?:

e—(aH[2) (:c-d/2)2+e—(a11/2) (z+d/2)?

(film limited by x==+d/2).
The eigenvalue is

1/7.=aDH, (3.6)

where a equals 0.59. The exact result of Saint James and
de Gennes, H3=1.69H ., is recovered to 29, accuracy.!

The thickness of the films and the value of £(f) can
be deduced from the values of H); and H, either by

% K. Maki, Progr. Theoret. Phys. (Kyoto) 31, 731 (1964).

# D. Saint James, Phys. Letters 16, 218 (1965); J. P. Burger,
G. Deutscher, E. Guyon, and A. Martinet, ibid. 16, 220 (1965).

% C. Kittel (private communication).
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fitting the universal curve of Saint James?6 for thicker

films or by using Egs. (4) and (5) in the thin-film

regime:
gO)=H) ™
d*=12H,/(H,)*.

However, for the films used here corrections must be
applied to these simple formulas for the critical fields
because of the finite value of /.

For “not too clean” films (small values of 1/£,) we
may consider separately corrections of order I/£, and
those of order //d.

First we consider corrections arising from the finite
value of 1/& (~1/7). The corrections to the GL equa-
tions near 7', have been calculated for all values of I/£
by Gor’kov.® In the Pippard approximation it would
suffice to replace all values of / in the above formulas
by a coherence length ¢= (& 14+I)'=1(1—1/&+- - ).
We discuss these corrections in more detail in Sec. IV,
where we show that the results of Gor’kov give a slightly
stronger correction ! — J(1—1.4 1/&) for the values of
I/ &0 appropriate to our films,

The second class of corrections is due to the finite
ratio 1/d.

For perpendicular geometry these corrections arise
from the diffuse scattering of electrons at the boundary.
These corrections are the same as those which modify
the conductivity?” and may be calculated using the
theory of Fuchs.?® They increase the value of the critical
field for thinner films, as we describe in Sec. IV.

For parallel geomelry the corrections of order 1/d
arising from the boundary scattering must be considered
simultaneously with the corrections of the same order
arising from the nonlocal electrodynamics. One of us®
has already calculated a function fp(l/d) which in-
corporates the combined effects. These corrections are
large enough to change the dependence of H; on thick-
ness from &' to d=3/2 when I>>d. In Sec. V we show
explicitly how these corrections should be applied to
deduce the values of d from knowledge of the critical
fields.

In cleaner films all of the corrections must be con-
sidered simultaneously. This was done earlier® in the
case of a thin film in a parallel field, where I/ £y~~I/d~0.4.
The 10%, deviations of the temperature dependence of
H) from that of formula (3.5) which were observed
experimentally by Toxen® were explained. However,
we are interested in seeing whether the limiting behavior
of (3.5) is better attained for dirtier alloys, and we show
in Sec. V that this is in fact the case.

% J. P. Burger, G. Deutscher, E. Guyon, and A. Martinet,
Phys. Rev. 137, A853 (1965); G. Deutscher, thesis, Orsay, 1966
(unpublished).

?" (a) E. Guyon, C. Caroli, and A. Martinet, J. Phys. (Paris) 25,
683 (1964); (b) P. G. De Gennes, Superconductivity of Metals and
Alloys (W. A. Benjamin, Inc., New. York, 1966). .

8 K. Fuchs, Proc. Cambridge Phil.-Soc. 34, 100 (1938).

®R. S. Thompson and A. Baratoff, Phys. Rev. Letters 15,

971 (1965); and to be published.
% A. M. Toxen, Rev. Mod. Phys. 36, 308 (1964).
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B. Gapless Superconductivity

A very spectacular feature of superconductors with
HZ Hy is the absence of an energy gap in the excitation
spectrum. The ratio of the density of states to that
(No) of the normal metal is given in terms of the local
value’ of |A(r)] :

N(Er) (2Er)—1
=142|Ar) [2r—————.
No [QREr?+1F

The energy E is measured from the Fermi level and =
is given by (3.2) and (3.3). Except for | A|?, the form of
(3.7) is independent of the geometry and the “pair-
breaking’’ mechanism. The energy scale of the anomalies
of N(E,r) is given by 7. The differential conductivity
for tunneling of electrons across a voltage difference V
is obtained! after integration of N(E) over a Fermi
distribution:

(3.7

1 dI A2 1 p deV
DN =— =1+ Rap[ +5+——], (3.8)

c.av serr 12 2 2aT
where )
b2 =0 (D) =—3 ,
D= D==E

and |A|? is averaged over the surface of the film next
to the junction.

In Fig. 1 we give tunneling measurements in the
high field domain (k=H/H)$1) taken at 1.3°K for
two samples having the same T, and so the same 7.
The D(V) curves have been normalized to the same
value at V=0 to show the shape of D(V)—1 independ-
ently of its magnitude.
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F1c. 1. Differential conductivity curves normalized at V=0,
in high field (h=H/Hm<1). For the same T, these curves are the
same for alloys of the same T, for any thickness, and any magni-
tude or orientation of the field. The continuous line is the theoreti-
cal curve.
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All points are on the same curve regardless of the
sample thickness and the value and orientation of the
high fields, as expected theoretically. However the volt-
age where D(V)=1 is about 109, higher than expected
from the theory.? This discrepancy may be due to the
finite value of //£ or to strong-coupling effects. In fact
we find a zero-field gap 2A,= (3.94:0.1)7 ', instead of the
BCS value, 3.53T,. A similar and more important effect
was found in the study of Pb alloys in the gapless re-
gion.!! Such an effect would be important for the study
of the detailed shape of D(V). However, we will not
take it into account, since our main interest is in ampli-
tude effects which we assume can be studied
independently.

C. Amplitude Effects in High Field

The correct generalized GL equation may be obtained
following the work of Maki® and Caroli ef al.%:

o 1 1 1
S —InttA(r) =
{;"(n—l—%{—%p n—*—%) } ) 82T

1
X3 —————A 13—
=0 ()’ O

For H=H the coefficient of the left-hand side of (3.9)
equals zero and we obtain (3.3). Following the method
of Abrikosov,® the magnitude of |A|? is calculated as
follows:

The solution is written as A(r)+A;(r) where A(r) is
the solution of the linearized equation. Then (3.9) is
multiplied by A*(r) and integrated over the volume of
the sample to eliminate by orthogonality A; and the
necessity of considering changes in the form of A. The
integral of the left-hand side is L, and that of the right-
hand side R. Then two types of corrections to the linear
ized equation appear: (a) those in R, (b) those arising
from the difference between p(H) and p(H ). First we
consider the integral of the right-hand side:

w 1 1
R= dv|A(r)|?
Z 5 <n+%+%p>4/ 140l

8

I

sz] A@. (3.9)
= lA@m)|2. Q.

™

D
X {n-{-%——TV?} [A(r) ]2, (3.10)

™

which corresponds to the result obtained by Caroli,
Cyrot, and de Gennes.? In general the k; parameter is
defined from R,
32 8T R
(ko)== — —— ——————

This choice of k; is such that xo(7.)=kcr. The dif-
ference between the function ks (f) defined by Maki,®

31 Tinkham (private communication) has obtained a similar
deviation for tunneling experiments on dirty Sn films.
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which decreases with lowering of ¢, and the increasing
function xs.(f) found by Caroli et al. comes from the
derivative term given in (3.10) which Maki neglected.
Thus 2y is defined in terms of

f1(o/2)= E by (i3,

Le.,
3 f1 A2

(kapr)?=~ —.
2 (o) 12
When the derivative term in (3.10) is applied to the
Abrikosov form for A(r) its average just adds a factor
of £p, resulting in a cancellation of one of the factors in
the denominator. Therefore for ke, which is the relevant
parameter for films in a perpendicular field just as for
bulk materials, f; is replaced by

—1 111 \— o -
2‘//3(2+2P) 1§0(%+%+%p)3,
3 Y5 ALl

(ko)== = ——
4@ P

For a thin film in a parallel field, derivatives of A(r)
give contributions of order e=[d/2£(f) * which may be
neglected in the thin-film limit. Thus k2 should apply
to this case.

For the case of surface superconductivity the Gaussian
function is a good approximation and k2. applies just
as in the Abrikosov state.

We expect a rather rapid change from kepy to xo. as
the first vortices enter a film when 3d~ £(#). To study
in detail this behavior was a major aim of our work.

Let us look now at the left-hand-side integral L of
(3.9). Just below Hjp, the coefficient of A(r) (which is
equal to zero at Hj) can be expanded to first order in
the difference of the vector potential A from its value
AM at H M,

ie.,

0
L=/dv(A—AM);SK1§0mIA(r)] . (311)

Equation (3.9) may be used to form a free-energy
functional of A(r) and A(r) by functional integration
over A. As is well known from the GL approach, the
minimization of the functional with respect to A*(r)
then gives back (3.9), while the minimization with re-
respect to A(r) gives that the derivative of (3.11) is
just the current j(r) [except for a factor (1/4w\r?)
X (6/V#*)]. As obtained by Makis:

o LD (Y
0= el |40 T A0 Jaw

—l—A(r)(—;—A(r))A*(r)}, (3.12)
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with

% 1
HOVEO=E

and Az is the Landau penetration depth at T'=0. From
(3.11) we find

9 2
L=4m2% / dv(A—Au)-j.

(3.13)

Gauge ambiguities may be removed by integrating by
parts from a boundary &. One gets

L=47r>\[,2(%11p2)]d7)(HM—H)/ lej y (314)
b
and finally

L Lk Ly=4mh 2 (3os?) / do(Hy—H.) / dIx;
b

2
+4WXL2(%vF2)fdv4r(/ lei) . (3.15)
b

The term L, occurs because the applied field Hy is less
than Hy; it is proportional to {|A|?) ({ ) means an
average over the volume). The term L, takes into ac-
count the effect of the screening currents in the film and
is proportional to (| A|%). The same average appears in
the expression for R which uses x,. We obtain a con-
venient expression for |A|? by setting L=R,

|A|2=L|A|%/ (R—Ls). (3.16)

The magnetization M= fdv[,dlXj may be easily
evaluated once |Al? is known. The integrals Lj, Lo,
and R have already been obtained and are discussed
below for the three cases in which we are interested.
Using the relations (3.2) and (3.4) the results can be
written in a particularly convenient form:

(1) For a thin film in a perpendicular field the cor-
rected results of Maki® give

P ("20)2 1
S=y¢r— ,
_ Hy B (k)*—3f(n)
with
(la]%)
f=——=1.16, 5=-, 3.17)
(A1) "
3 Y3 ALl
(kge)t=—— ———
T iy e

We have used (3.8), which can be written
S=(¥s/8x°T?) | A2/ (Hy—H).

The last factor of expression (3.17) appears in all other
quantities proportional to | A|%, such as the magnetiza-
tion. The ks in the numerator of (3.17) [and of later
expressions (3.18) and (3.19)] is written only as a
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convenient combination of polygamma functions in the
calculation of S. A second-order transition is possible
only when (ks.)? is greater than % f(5), since the square
of the magnitude of A cannot be negative.

The function f(5) calculated by Maki®® takes into
account the nonlocal electrodynamics and the field
outside the sample which were not included in (3.15).
When 7 is large these distortions are unimportant and
f=1, but f—0 when n— 0 (in particular when
T—T.,).

(2) For a thin film in o parallel field the results of
Baratoff' give

S=1!/22P(K2c)2 1
Hy (ko —3(d/EQ))

with the Maki ks in the denominator. A first-order
transition must be obtained when the denominator is
<0. Thus a second-order transition is possible when
d<A/5konr(t)£(), which reduces to the GL result,
d< (v/S)\(t), near T,. The same requirement may be
expressed in terms of H,p using the forms for «; and
£(¢) given earlier,

18)

ey

(3) For thick film in a parallel field Maki®® has evalu-
ated the integrals using the approximation of a Gaus-
sian wave function. Substituting the correct . function,

we obtain
s ¢2\/ZP(’<2c)2 1

) (3.19)
HM K2c2'— 0156

The denominator requires a first-order transition for
K26<0.56/\/2— or Hcs/HcB<0.95K1/ch, but Hc3<HoB is
a stronger requirement.

The particular advantage of presenting the theoretical
formulas for S in this form, in addition to emphasizing
their similarity, is that only one experimental number
H yr is necessary to fix the scale for the formula.

The field H ;s can be measured -accurately for several
temperatures and the best fit to the function 1/7(f)
found. After the scale is thus fixed at any one tempera-
ture, universal functions of ¢ give the complete tem-
perature dependence. Most commonly these formulas
have been presented™ in a form which requires
knowledge of ¢ and « to fix the scale. As we discussed in
Sec. I1, we cannot determine these parameters to better
than 10%, accuracy. With such uncertainties in the
scale, combined with experimental errors in .S, a good
determination of the temperature dependence of «»
would be more difficult. Also, in this new form many of
the corrections due to the finite value of / cancel out.
These corrections are considered further in Appendix I

2 K. Maki, Ann. Phys. (N.Y.) 34, 363 (1965).
8 K. Maki (unpublished).
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and in the following sections, where we compare the
theory with experiment.

IV. THIN FILMS IN A PERPENDICULAR
MAGNETIC FIELD

We first present our results for the case of a thin film
in a perpendicular field. The only differences between
this case and a bulk type-II superconductor penetrated
by vortex lines as given by Abrikosov are: (a) the effects
due to the field outside the specimen®; (b) the effects
due to the scattering of electrons at the boundary.

The temperature dependences of the critical field and
|A|2 have been studied previously by one of us''® on
the same InBi alloys used here and one finds that (a)
the fit with theory was good for the critical field, and
(b) a deviation from theoretical values for |A|? was
presented in terms of a k, parameter increasing more
than ks, when 7' decreased. Since there are actually
several corrections that occur when 7/£,70, which may
or may not be included in the parameter k., we prefer to
compare theory directly with the measured quantity
D(V). The results obtained agree with the earlier ones
for thick samples! but are now presented in the follow-
ing sections. The results are discussed in the light of the
recent paper by Maki®? on the fluxoid structure in per-
pendicular geometry.

A. Critical Fields

Values of Hy(f)=H,() are shown in Fig. 2. They
agree with the theoretical prediction given by Egs.
(3.2), (3.3), and (3.4). The effective mean free path of
the thinnest films Jes is reduced by boundary scattering.
This causes an increase of H,. From H, we can deduce
£(¢) using the relation £(f)?=1/H.. A typical set of
data for an InBi 2.59, alloy gives T.=4.1°K and

Jooo} H1®

500

300

100 L T

606.2

F16. 2. Variation of the prependicular critical field with tempera-
tures. The slope 1 near T says that H « (T'.—T). The best fit with
the theoretical (continuous) curve obtained by its translation
along the H axis gives the  of the film. The thickness of the films’
decreases from 3 to 24.

3t J. Pearl, Appl. Phys. Letters 5, 65 (1964).
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£(t)=700(1—2)"12 A (for #>0.7). The residual resis-
tivity pr=3.5X107% Q cm together with the dirty-limit
form?™ £(£)=0.85(£l)12(1—£)~1/2 gives us the value of
the product prléo=1.6X10"1% @ cm?® before corrections
of order /¥y are considered. [ Boundary-scattering cor-
rections cancel in this product because they are the
same for £(#)? and 0z=1/pz. We have found by averag-
ing over samples of different thicknesses (and concen-
tration) pgrl&=1.5540.10.] This value of pgrl& is
already roughly compatible with the values proposed
by one of us?® by fitting his theory for the parallel
critical fields of thin films to Toxen’s experiments!
(£=2700 A, prl=1.1X10"1 Q cm?), but not with the
data proposed by Toxen (£=2600 A, prl=2.0X10"1Q
cm?) from his own model. The product is also compatible
with the values suggested by Dheer'® (£=4400 A,
prl=0.57X10"11 @ cm?). However, this last value of &
was seen to be too large to fit the experimental data of
Toxen.? The value of pgl is also too small with respect
to other results (see also Sec. II G). We use a value
prl=1.0X10"1 @ cm?, which gives /=290 A for the
2.5% InBi described, to calculate the corrections of
order I/ & to the value pgrl&r=1.6X10""1 Q cm?. Accord-
ing to the Gor’kov theory® the expression for £(¢) is
corrected as follows:

(01— =(0.851)%0

x[1+§2-2i{¢(%)—¢(%+‘;—0)}], (4.1)

T 4p@

where pe=0.882 £/l. The digamma function may be
expanded® in a power series in pg?, giving finally

l l
2H-H= (0.851)2£ol[1——-{0.527 —0.460 ln—g—}
0 0

—0.0984(—;—)3—|— . ] . (42)

0

A self-consistent calculation for po using this last formula
and the value of I gives a corrected expression for pglé:
prlEr=1.6X10"16(1—0.203)! @ cm®=2X10" Q cm?
and £=2000 A (I/£&=1/7). If we assume that vy is not
modified when impurities are added to In, the value of
£ for pure In deduced from the 7. (4.1°K for the alloy,
3.41°K for pure In) is £=2400 A, which is in satis-
factory agreement with the earlier suggestion, 2700 A,
and that of Toxen, 2600 A.18

Corrections: As we remarked at the end of Sec. III,
the theoretical formulas for .S have been written so that
we need not know the precise values of the corrections.
We include them in an effective value of [, called Iqs.
The corresponding value of k¢t deduced from the values
of the perpendicular critical field applies to the formula
for S in the perpendicular geometry. The same ko does
not apply to the same film in a parallel field, however,
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since the corrections are different. For the three films
shown in Fig. 2, for sample, x.¢=0.98, 1.36, and 1.63
may be corrected using Fuch’s theory® and the value
of d deduced from the H); to give k=0.88, 1.13, and 1.18
for films Nos. 3, 12, and 24, respectively. The largest
correction factor, 0.72, is obtained for the thinnest film,
No. 24, where ! nearly equals d. (The increase in the
values of « is due to a small increase in Bi concentration.)

B. Amplitude Effects

Figure 3 shows Dy_o(H) for a film of intermediate
thickness (¢=1900 A). In a perpendicular field D(H)
is nearly a linear function of H from O to H . The value
of the first-entry field is too small to be observed,
because of the large demagnetizing factor, which
precludes any flux exclusion. This linear general behavior
is expected from the GL theory, since the eigenvalue
1/7x is linear in H (3.4):

1—D(H)_[A(H)]2~1 H
1-D(0) [AQ)]*  Hy

Experimental results for the slope S (2.2) are presented
in Fig. 4 together with theoretical curves. The main
qualitative feature is the relative constancy of S for
different thicknesses and temperatures, which con-
trasts sharply with the following results for parallel
fields (Secs. V and VI B).

——d

H (G
(¢ geometry

7 ni

100S

1000

J

\l Dv-O'

t=048 t=078 t= 094

Fie. 3. Variation of the normalized initial slope of the
tunneling characteristics with field. The high-field part of the
#(=T/T:)=0.48 curve shows typical determinations of the slope
S on a 100-G interval and of the upper critical field (H1). The
parallel-field curve at £=0.9 does not show the break which we
associate at lower temperatures with the first entry of vortices in
the film (Hrg). The structure at the break is usually more pro-
nounced when Hrg<H.» (curve {=0.48). The perpendicular-field
curves are nearly linear over the whole temperature range.
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100S (67)
A Perpendicular geometry
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Fi1c. 4. Temperature dependence of .S in perpendicular geometry.
The theoretical curves were calculated using values of x determined
from Hy; dashed line: dirty limit form with f=1; solid line:
corrected curve with /=1 using the finite value of I/£,; dashed and
dotted line: corresponding corrected curve with f=0. Our experi-
mental results on thick (No. 19) and thin (No. 3) samples indicate
that the effect of screening currents becomes smaller near 7', and
for thinner films: f— 0 when d/A(T) — 0.

Equation (3.17) gives the theoretical curve in the
dirty limit (I<<£&,) when f(n)=10Kd):

S=¢2P(K20)2/3HM1/((K23)2—%) . (317')

The relative constance of S follows from the linearity
of the GL eigenvalue of Hy, p=DHy/27T. The tem-
perature variation of Hy and p, each as 1—¢ near T,
cancel.

Although the corrections arising from the finite ratio
1/% do not change the temperature dependence of «,
they have a large effect on k. Our earlier experiments
indicated a x, parameter which increased roughly twice
as fast as ko as the temperature was lowered. On the
other hand, our calculations in Appendix I for the cor-
rections to the appropriate parameter for a thin film
kenr indicate a correction which results in a corrected
parameter k2p*=x independent of ¢ for the particular
value I/&=1% (see Sec. V B). To reconcile the theory
with these earlier and our present experiments we
assume that a correction of the same magnitude applies
to all the k; parameters for this ratio of I/£. Hence we
replace k2. in the denominator of (3.17") by a corrected
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value k2.* = k2, (k/k211) to obtain our corrected theoretical
curve with f() still equal to 1.

p(x20)? 1
i (3.177)
HuB (k2*)*—3

This correction is seen in Fig. 4 to bring the theory
closer to experiment.

At this point one could in principle deduce the values
of Maki’s function f() from the experimental values
by replacing the 3 in the denominator of Eq. (3.17")
by 3f(n). However, the experimental situation is not
favorable for an accurate determination of f(4). In
order to obtain reasonably dirty films our values of
must be larger than 1, and our errors in the determina-
tion of S and «ks* would give rise to large errors in the
value of f(n) deduced from them. We prefer to show the
limiting curve for f()=0,

pra 1 p [ram\?
S=l//2 =¢2—<—> ) (3.17”’)
HuB k*s2 HuyB\ «

and compare the experimental data with the theoretical
limits (3.17’), (3.17""), and (3.17"").

We give such a comparison in Fig. 4 for a thin (No. 3)
and a thick (No. 19) film:

d 800
No. 3, d=800A, p=—=———(1—1)'12
«E(1)  (1.0)(590)
2>1 for >045,
No. 19, d=1900 &, n=————(1—1)'/2;
(1.3)(510)
n>1 for ¢>0.88.

The experimental results show the expected results:
(a) Those of No. 3 do not deviate much from the cor-
rected f=0 curve; (b) those of No. 19 follow the cor-
rected f=1 curve at low temperature and go towards
the f=0 one at higher temperature.

V. THIN FILMS IN A PARALLEL FIELD

Next we consider the films whose thickness is much
smaller than the diameter of a vortex (~2£(¢)) when
a magnetic field is applied parallel to the surface. Since
£(?) is the characteristic distance over which the pair
potential varies, |A| may be considered constant for
these thin films.

A. Critical Field

According to Eqgs. (3.4) and (3.5) the temperature
dependence of H,.? should be the same as H, in the dirty
limit. In particular, near T., H, is proportional to
(1—1t)'2, whereas H, « (1—f). This point was used to
determine T, by extrapolating to zero the linear part
of the H,2(T) curve. The agreement of our experiments
with the dirty-limit theory, shown on Fig. 5, is very
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Fic. 5. Temperature variation of the parallel critical fields of
thin films [d<£(¢)]. For the alloy films (Nos. 3, 12, 24) we find a
good agreement with the theoretical (solid line) variation:
Hy < H,2 The variation of H(T) is more pronounced at low T
for the pure thin In film (No. 46), as is seen from comparison with
the line (1—¢)2 (dashed line). The calculated thicknesses are:
No. 3, d=800 &; No. 12, =470 &; No. 24, d=230 4; No. 46,
d=300 A.

good : «1(£) follows the Maki form® and does not depend
strongly on the requirement /& — 0.

We have deduced the values of the thickness from
the critical fields using

d2= 12H1fF/H“2fD y

where fr(l/d) is the correction due to boundary
scattering for perpendicular fields as calculated from
Fuch’s theory:® l=1fr, and fp(l/d) is the correction,
due to both boundary scattering and nonlocality, for
parallel fields, which we calculated earlier.® The values
of d deduced in this way are consistent with our optical
and resistive determinations.

We have also made thin films of pure In to look for
the much more rapid increase in H)| at low temperature
predicted by de Gennes and Tinkham!? and by
Shapoval.?¢ However we have only found small correc-
tions of the same order (~10%,) as those we explained
for a moderately dirty film.?® The resulting behavior is
seen from Fig. 5 to be a 59, deviation below (1—¢)1/2
behavior, contrasting with the 5%, deviation below
(1—1)V2 given by Maki’s theory for the dirty films.
However, we note that strains'” have increased the T,
of this pure film to 3.73°K [T,(Bulk In)=3.41°K], so
that we cannot be sure that / is larger than &, for these
thin films.

B. Amplitude Effects

A typical curve of Dy_o(H) for a thin film is given in
Fig. 3 (¢=0.94). The shape of D(H) is roughly what

3 Janhke, Emde and Losch, Tables of Higher Funciion (Mc-
Graw-Hill Book Publishing Company, New York, 1960). Note
that their definition of the origin of the digamma function is
different from the one used here by —1.

3 E. A. Shapoval, Zh. Eksperim. i Teor. Fiz. 49, 930 (1965)
[English transl. : Soviet Phys.—JETP 22, 647 (1966)].
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1085 (6™)

Parallel geometry

0.10 |

606.6

Fic. 6. Temperature variation of the slope in parallel geometry
for the same thin films as in Fig. 5. The amplitude of the theoretical
curve, which keeps a universal form, is solely determined from the
data of H);. Dashed line is for the dirty-limit formula (3.18’);
solid line is for the corrected formula (3.18'’). The curve (dashed
and dotted line) for the thicker film (No. 3) take into account
the correction due to thickness. The variation for the pure In
film (No. 46) is to be compared to that of the alloy film (No. 24)
of comparable thickness.

would be expected from the GL theory:
1-Dy_o(H) |AH)|? . ( H )2

1—Dya(0) 2O \Hx

In a domain of field typically 0.7H to Hyy, the func-
tion Dy_o(H) varies linearly, and no sudden anomalies
are seen on the curves.

In Fig. 6 we present experimental determinations of
the slope S in the high field region. The qualitative fea-
tures of the curves are the increase in .S with thickness
and the (1—)'/? behavior near T'; as expected from (3.5).

As discussed in Sec. IV B, «; (in contrast to «;) does
show important corrections from the temperature
variation in the dirty limit for our InBi alloys. We show
in Appendix I that the appropriate parameter for a
thin film, e, should be corrected to be approximately
independent of temperature for I/£~4%, its value being

*

Konr¥ =k=ropr(k/Kopr) .

k1 keeps the dirty-limit form.

All corrections studied in Appendix I may be in-
corporated in kear (see discussion of the results of Table
II). The (x2.)?, which we placed in the numerator of
(3.18) as a convenient combination of polygamma
functions, remains unchanged.

The theoretical curves shown in Fig. 6 are obtained
from Egs. (3.18), below. When > 1 we neglect the term
$e in the denominator (e<1 in the thin-film regime).
Therefore the theoretical formula valid in the dirty
limit is

2pk92 1
S=y;y . (3.18")

HM K2M2
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The corrections due to the finite ratio I/&(~%) give
the corrected formula
2pk92 1
S=y; —. (3.18")
Hy «?

These curves have a universal temperature dependence
independent of k. The scale factor is completely given
by the value of Hy.

For the thickest film (No. 3) shown in Fig. 6, at the
lowest temperature, e~% is not negligible. We have
calculated the curve taking into account the finite
value of &%

The experimental results for a pure In film (No. 46)
are shown on Fig. 6. If we used a dirty-limit approach,
the curve for film No. 46 should be higher than that of
film No. 24 because H  is slightly smaller (see Fig. 5).
We see the opposite and reasonable result in Fig. 6:
The deviation of the slope of pure In film from the dirty
limit goes in the same sense as for the alloy films and is
more pronounced. :

If in (3.18') ke were replaced by ks, which is the
appropriate parameter for bulk type-IIsuperconductors,
the theoretical curves would be divided by 1.7 at {=0.3.
Such a deviation is outside the range of experimental
error. Thus we may definitely conclude that the o
parameter for our not-too-dirty films is nearly constant.
The ratio of this «; to that determined on the same films
in perpendicular geometry is smaller than 1 and is still
given by ~kaar/ksc, as assumed in Sec. IV B.

VI. FILMS OF INTERMEDIATE THICKNESS
IN PARALLEL FIELDS

When - the thickness of a film exceeds the diameter of
a vortex [~2£(f)] new phenomena occur which we
associated with the entry of flux lines into the film.
Typical tunneling measurements are shown in Fig. 3 for
a film d=1900 A. Near T.[(d/£(f))<1], we observe
thin-film behavior. When the temperature is lowered, a
simple discontinuity of slope occurs, first at Hy and
then below Hj at-lower temperatures. This simple
break is shown for the curve {=0.48 and defines a field
Hryg. There is little irreversibility in the curve near Hrg
and we expect it to define a thermodynamic field value.
The break first appears at a point defined by Hrr=H u,
which was identified for numerous samples by the con-
stant ratio

Hy,
—=1.984+0.05 or e=e,=0.816.

H,

The same ratio was found to correspond to the sharp
maximum of the angular dependence curves* near Hy;
it was associated with the change in the solution of the

87 This correction can be calculated easily by constructing a
perturbation theory in powers of d/£(f). We do not present the
results of such a calculation because the numerical results given
in the next section are more general, being valid for all thicknesses.
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linearized GL equation from a one-dimensional and
symmetric one to a two-dimensional solution peaked
near a boundary (or equivalently to the creation of
vortices in the film).

At lower temperatures (¢=0.48 of Tig. 3) the flux
lines enter the film when H is far from H 5 and the change
in the tunneling characteristics is more complicated.
Such complicated anomalies for thick films have been
recently observed by Sutton®® and have also been
interpreted in terms of flux entry. However, he did not
report the case which primarily interests us here, when
the flux entry occurs in the high-field region.

A. Critical Fields

The variation of H,; with d and 7T has been studied
extensively before.?® The results are conveniently pre-
sented on the universal e(%) curve’ as shown in Fig. 7.
In addition we present values for the first-entry field
Hyg which is seen also to define a unique curve near
€. The field Hyr becomes smaller than H. without
any break, although complicated transitions are seen
when Hrp< HCZ‘

For very thick films Hyg is limited by Hre>H.,.
(For a 8000 A InBi 2.59, alloy we find Hye=180410 G
at 2.55°K, whereas Kinsel*! gives H,, =175 G). For these
films the results for Hyg~H,, (not shown on Fig. 7)
are spread as a function of € because Hrr becomes in
fact a function of d/N as shown by Abrikosov.® A
presentation of this field would require a three-dimen-
sional diagram with a new variable d@/\.

The fact that we observe very little irreversibility,
whereas barriers for flux entry have been predicted for
thick films,% is probably related to the unfavorable

€ =(-d )% = HL *- T
2y 24,

4L

— Hli(theory)
— HFE(exptal) /

3L T /

'
x 2300 43
L » 2900 4.0
Eer < . . 1180 418
/ x
// h=Hild*
L ' ! 1 15 2§,
0 1 2 3 4 5

606.7

F1c. 7. General diagram for Hy, Hy; and for the first-entry field
Hyg. The theoretical curve is that of Ref. 5. For e<ex one gets
nearly the GL-limit result e= 3}/’ and no Hyg is seen. For e> e
there is an Hyg and one goes rapidly to the thick-film limit
}/e=1.69. No anomaly is seen around the point Hyg=Hes.

3 J. Sutton, Proc. Phys. Soc. (London) 87, 791 (1966).

# A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 46, 1464 (1964)
[English transl.: Soviet Phys.—JETP 19, 988 (1964) 7.

4 P. G. De Gennes, Solid State Commun. 3, 127 (1965).
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presence of the edges of our flat films. Calculations and
further experimental study of Hgxr as well as hysteresis
effects are in progress in Orsay.

B. Amplitude Effects

Figure 8 gives the slope S for a film which shows the
same features as that of Fig. 3. Near T, the slope S
has the parabolic behavior characteristic of a thin film.
The break at Hrpg=H,, is clearly displayed and cor-
responds to a theoretical discontinuity of 3/2. We have
also shown the values of the slope before the flux
enters, when Hyg<H,,, corresponding to the unstable
one-dimensional solutions. At low temperature S has
the characteristics of a thick film with surface super-
conductivity: They are very similar to those for the bulk
type-1I vortex structure discussed in IV.

The theoretical curves have been obtained by a
numerical integration presented in Appendix II. The
corrected curves used the assumed universal corrections
for our alloys (I/£0~%), ke — ko*=ro(k/kanr).

Let us discuss first the vortex state:

The solution® A(x,y)=e*F(x) of the linearized GL
equation which satisfies the boundary condition’
(@A/dx) y=ra;2=0 has been computed by Saint James
for all values of e. He found 2=0 and F symmetric
about the center and practically constant for ¢<0.816.
For €>0.816, & increases very rapidly and F becomes
asymmetric, having larger values near one boundary
than near the other. The solution e~*¥F(—x) obtained
by a reflection through the origin is equally valid. The
appropriate solution?#*> for one row of vortices is just
a linear combination of the two solutions with arbitrary
phase factors which may be chosen for convenience.

A(x,y) =e*F (x)+ie~*F (—x). 6.1)

The magnitude of |A|? is symmetric about the film
center:

| A]P=F2(a)+F2(~ )+ 2P (x)F () sin2ky) . (6.2)

The vortices are centered at the points x=0, 2ky=—3r

~+2nm (n integer) since | A|2=0 there. The currents are

given, using (3.12), by

jy=—K{H (F*(x)+F*(—x)+2F (x)F (—x) sinky)
—k(F*(x)—F*(—x))},

jo=—K{F'(x)F(—x)—F(x)F' ()} cos2ky,

where
1 3D 14p
K= y’l2< > .
dan? wTop? 2

Thus in addition to the currents flowing parallel to the

(6.3)

41 The origin y=0 is arbitrary for the infinite system considered
here. H is along the z axis.

42 A complete treatment is given in Type I Superconductivity,
by D. Saint James, G. Sarma, and E. J. Thomas (Pergamon Press,
Inc., to be published).
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Parallel geometry
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F1c. 8. Temperature variation of the high-parallel-field slope for
an intermediate-thickness film showing the same behavior as in
Tig. 3. The jump in slope is associated with the first occurence of
flux entry. The theoretical curve was fitted at the maximum
value S=0.26 and gives the right magnitude of the jump. At
lower temperature, S is nearly constant, as in the perpendicular
geometry case. Dashed line is the corresponding calculated curve
in the dirty limit.

film boundaries independently of y, there are vortices
of current circling the points where |A[|?=0.

The discontinuity in the slope .S comes entirely from
a discontinuity in (| A|) (average over the volume of the
film) or more precisely in the parameter 8= (|A|*)/
({|A|%))? which appears in the denominator of expres-
sion (3.16) for | A|2. The magnitude of the discontinuity
may be easily obtained by approximating F by a
constant, which remains a good approximation just
above e¢=0.816. For ¢<0.816, k=0 and B=1. For
¢>0.816, k becomes finite. The magnitude of (|A[?)
does not change, since the average of the sine in (6.2)
is zero. The term 4(sin22ky)F?(x)F*(—x) of | A|%, which
averages to zero for k=0, gives 2F*(x)F*(—x) as soon
as £#0. Hence 8 changes discontinuously to 3.

From the relation (3.16) one sees that the slope S,
proportional to |A|?, becomes less by 3. The observa-
tion of a change of slope of this value is a rather striking
confirmation of the vortex nature of the solution for
>0.816.

Using the expressions (6.1) and (6.3) for A and j, we
write explicitly in Appendix II the integrals Ly, Ly, and
R (B1, 2, 3) which must be evaluated numerically. In
the dirty limit, S is written in terms of the three func-
tions, J1, J2, and C, which are displayed in Figs, 9, 10,
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Fi16. 9. The functions Ji, J» and C are used to calculate S for all
thicknesses. The jump in J at e is responsible for that of S.

and 11.
5= (ch)2 (D/ WT)‘//zf 1

, (6.4)
(Kz)z— ]2
with

(k9)?= (kaar)*(1—C)+C (k2c)*.

Each of the three functions has a discontinuity of
slope at e,. J: has an additional discontinuity of 3,
since we have included the factor 8! in its definition.
J1 is an integral of the current and J is the square of
an integral of the current. These integrals indicate the
decrease in the field strength inside the superconductor
caused by the screening currents.

The quantity J is a measure of the effectiveness of
these currents in screening the magnetic field. In par-

(6.4")

J2
06 L
021
(.d ¥
e-(ZE(l))
1 — 1
0 Ecr 2 4 -

Fic. 10. J, shows the strength of screening currents. It goes
to zero with ¢; screening currents become negligible for thin films.
Tt also decreases when the two sheaths of the surface state become
farther apart. It is at a maximum with almost the value for the
Abrikosov bulk type-II case at the point where the film can just
accommodate vortices at Hy,
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Fic. 11. C shows the variation of the parameter x; from the
Maki limit (C=0) to that of Caroli ef al. (C=1).

ticular, a first-order transition must occur when J.
exceeds (k2)?, as the magnitude of |A|%2 cannot be
negative. We will discuss this point in Sec. VII.

The parameter C defined in (4.4") measures the
strength of the derivatives of |A|% In the thin-film
limit, C goes to 0 and ks — ko3r. In the thick-film limit,
as in the bulk type-II case, C goes to 1 and ks —> Kz,.

Table I gives the values of all three functions in some
particular cases.

The value of D in (4.4) is easily obtained by fitting
the accurately determined value of Hy at the break on
the curve e(%) at the point e= e

According to our assumed universal correction for
our alloys (I/£~%), the corrected value of . is obtained
from (4.4") by multiplying by /kaa:

(k)= [ (1 —C)+C (k2c/k2nr)*]- (4.5)

Only near &, where J. is at a maximum, is the theo-
retically obtained value of S somewhat sensitive to the
chosen value of k. In order to fit the experimental
value of the maximum in Fig. 8 we were led to choose
k=1.13 for the uncorrected formula and k=1.05 for the
corrected one. A value of k=1.20 is deduced from H,
measurements, but as discussed in Sec. IV A, such
discrepancies are not unexpected.

TasiE I. Behavior of functions J1, J2, C, of the expression
of the slope in high field [Eq. (6.4)].

€E—> 0
e—0 er=0.816 ¢=3.8 (Gaussian approx.)
H@* [e\2
Jy —=|- 0.361;0.241  0.387 0.418
12 3
J2 0.80 ¢ 0.539 0.165 0.156
C 0.30 € 0.259 0.878 1.00
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The low-temperature results are insensitive to the
magnitude of « chosen and show that the temperature
dependence of k»(f) has become that for samples in
perpendicular fields, which increases approximately as
KKao/Kang-

Figure 12 shows the theoretical dependence for «»(f)
calculated in the dirty limit for a film having the same
€(?) as our film. This is the uncorrected form used to
calculate the upper curve of Fig. 8. Figure 13 shows the
corresponding function ¥, which gives good agreement
with our experiments. The corrected and uncorrected
forms of &, applying to bulk type-II case are shown for
comparison. The corrected ke for a thin film is just the
horizontal axis in this last figure.

VII. NUCLEATION DIAGRAM FOR
PARALLEL FIELDS

A particularly interesting feature of Fig. 10, showing
the function J5(e), is that it gives the type of transition
to the normal state. If we add the vertical line e=e,,
this diagram also gives the character of the solution for
A near the nucleation field. We show Fig. 10 redrawn
with the horizontal axis replaced by d/\ in Fig. 14.
We do not distinguish «; from «, for the present qualita-
tive description of this diagram, but assume them equal
to a constant k, as is strictly true only near 7',. The
function J, defines the boundaries of a region I in
which a first-order transition must occur at Hy. In
region I, k2<J,, and small values of |A|? are not pos-
sible, since they cannot be negative [see (IV.4) and
note that S« |A]%]. The requirement x2<J, reduces to
the well-known requirement > (v/5)\ in the thin-film
region (e— 0),2 and to x<0.59/V2 in the thick-film

K
124 K

K2
Kac

10}

Kam

0.7L, v VTc
0.5 10

606.12
F16. 12. The limiting form for kzar and «y, and that for the film
of Fig. 8 as a function of T/T, in the dirty limit.

4 In order to have a small € and d/A>4/5, x must be small.
The slope of J2(e) curve for e=0 just gives d=4/5\ for k=0.
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10

606.13

F16. 13. The corrected forms corresponding to Fig. 12
for a finite value of //£~1/g.

region (e—0), so that in the latter case H 3<H,. In
the rest of the diagram (II) a second-order transition
to the normal state is possible. To the left of the dotted
curve (e=e¢;) the solution for A is one-dimensional
(region S) with no distinction between surface and bulk
behavior. To the right A contains vortices at Hand
has a two-dimensional character—state II ¢. The same
distinction with respect to the curve e=e, applies to
the supercooling fields in region I.

In thick films we may easily distinguish between
bulk and surface behavior and separate the diagram of
Fig. 14 further in two regions: If x> 1/v2, the Abrikosov
mixed state is possible in the bulk, and there will be a
second-order transition in the bulk (2) at H,, [i.e. (2)
II ¢]. If* 0.59/V2<«k<1/V2, there will be a first-order
transition in the bulk (1) at Hcs followed by the ap-
pearance of vortices and a surface state which undergoes
a second-order transition at He; [i.e. (1) II ¢].45+4 Qur
continuation of the line k=1/V2 to the vertex at e= e,
is a guess.

Since € and d/\ increase when T decreases, the posi-
tion of a given film on the graph begins at the left-hand
side and moves horizontally to the right when T is
lowered. The trajectories would be more complicated
if the temperature dependence of k; and k; were used;
but our films for k<0.7 are not particularly dirty and
very precise tests of the theory cannot be made using
them.

We have confirmed the diagram by observing experi-
mentally three possible simple trajectories (see Fig. 14):

(a) ¥>0.7: We go from region I1.S to region (2) II ¢
at €= e, as shown in Fig. 13.

4 This is typically the case for pure Pb at 4.2°K.

“ A similar diagram which has been recently presented by Arp
et al. (Ref. 46) contains errors because they looked only for one-
dimensional solutions of the GL equations and did not consider
the \{?rtﬁx sliudied here.

%V. D. Arp, P. S. Collier, R. A. Kamper, and H. Mei
Phys. Rev. 145, 231 (1966). pen cssner
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Fic. 14. Nucleation-field diagram for parallel fields. The dotted
curve (d=1.8 £ or e=e,) separates a region to the left which
cannot accommodate a vortex structure in high field (state .S)
and a complementary one which allows vortices (¢). The continu-
ous curve which shows a cusp at e=¢; corresponds to the Ja(e)
curve of Fig. 10. Above this curve the high-field transition is
second order. Below it, it is first order: then (S) and (o) refer to
supercooling nucleation. This limiting curve is bounded on the
left by the value d/A=4+/5, which is the GL result (the larger
value of d/\ for larger « agrees with the result of Arp et al.). To
the right it goes to k=0.59 (Hc3=H.). The nearly horizontal line
«=0.7 is guessed. It separates domains where the transition in
the bulk will be first order (1) and second order (2) in lower fields.

We give sets of Dy_o(H) curves for three values of «. (a) gives
the same description as Fig. 3. (b) shows the successively obtained
first-, second-, and first-order transitions shown more clearly in
Fig. 15. (c) is the usual set of curves for pure material (In).

(b) k<0.4 (typically for a pure In film): We go from
region II S to region I at d>~(y/5)\.

(c) 0.4<k<0.7: The third possibility is clearly dis-
played in Fig. 15. Near T, (curve ¢=0.9) we are in
region II S characteristic of thin films. When T de-
creases, we enter region I (curve ¢=0.63) and a first-
order transition is seen as in case (b). At the lowest
temperatures (curve {=0.36) we arrive in region (1)
II o. After the first-order transition at the thermody-
namic critical field a state of surface superconductivity
appears and persists until H,, where a second-order
transition to the normal state occurs.#+*® The break
in S from the infinite value characteristic of I first
appeared for a value ez=1.95> ¢,.*° In our expermients
on case (c) we have always noted values of ez> €., and
ez increased when « of the alloy decreased. This is as
expected, as the values of ez should follow the curve
separating region I from region (1) IT 0.

Other characteristic trajectories using the variation
of 3 and k. are possible, but we never observed any of

47 The same II-I-II trajectory has just been predicted independ-
ently by Tilley, Robinson, and Baldwin (Ref. 48).

#'D." R. Tilley, G. Robinson, and J. P. Baldwin, Mullard
Research Laboratory Report No. 2571, 1966 (unpublished).

49 The ¢ values were determined approximately using the dirty-
limit forms.
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F16. 15. An experimental set of curves showing the second, first,
and second-order transitions of Fig. 14(b). Because of the un-
certainty in the «i1,5(f) variation, only a qualitative description is
possible. However, it seems that the break which occurs just
above £=0.36 is to be associated with a critical «; : The slope after
the break is always rather slight, indicating that the nucleation
field H s just crosses the thermodynamic field. We would expect a
progressive variation of slope from a very high value if the effect
were related to «..

the more complicated transitions predicted by Arp
et al.*

SUMMARY

We have investigated the behavior of alloy films of
InBi near the upper critical field H,, for parallel and
perpendicular geometries, obtaining values of H; and
of the pair potential [via |A|%/(Hy~H)]. This be-
havior is well described, with a 5%, experimental and
theoretical accuracy, if one takes into account the
corrections to the formulas applicable to the dirty
limit. We have shown that the temperature dependence
of the parameter ks, related to the value of | A|2, depends
on the geometry of the film and field: For thin films in
parallel fields with no vortices the original function sz,
calculated by Maki® applies, whereas for thick films or
for perpendicular geometry the function ks, found by
Caroli et al® is appropriate. Intermediate-thickness
films in parallel geometry were also studied. They
showed very clearly the first entry of vortices in the film
when the thickness of the film is large enough
[d>1.8¢()]; in particular, a discontinuity of 2 in
| A|%/(H— H) was observed.

A diagram giving the type of transition to the normal
state of fields in parallel geometry as a function of «
and thickness was presented.

Our results can be applied to many studies of the
high-field behavior of dirty films which are governed
by |A[%/(Hy—H), such as magnetization® and mag-
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netic susceptibility, specific heat,®® attenuation of
sound waves,” and thermal conductivity.*
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APPENDIX I: CORRECTIONS DUE TO FINITE'
1/€, IN PARALLEL GEOMETRY

In this Appendix we calculate approximately the
corrections to the expression (3.3) when /& is finite
(the calculation is made for I/£~%).® The formulas to
order A* necessary for calculating the critical field have
already been studied by one of us [ see formula (8), Ref.
297. Let us summarize the general results.

The expression for p of (3.3) becomes

pfo/[14 2n+1v T,

where y=1/¢r, Er=1;/20T=0.88%y/t, and fp includes
effects due to nonlocality and boundary scattering and
is a function of (I/d)1/1+4 (2n-+1)y.

In the local limit I1<d, fp=1; in the nonlocal limit

a1,
fo=(3/8)(@/D1+ 2n+1)v].

This changes the form of p from H?d* to H%d.

If ¥ — 0, the formulas are just modified by changing
d? into d*fp(l/d) everywhere.

The fourth-order term contains a factor f’ which has
the same asymptotic properties as fp.5 Thus the fourth-
order term is of the same order as the square of the
second-order terms only near the local limit. In the
nonlocal limit, f>>(fp)?, and the range of convergence
of the power series is much restricted.

The density of states was also calculated to second
order in 4 and found to involve only pfp(//d) in the
dirty limit; this is the universal correction to the
thickness fpd? Corrections of order /% were found to
involve not only fp but a slightly different function g,
which is also 1 in the local limit and which becomes £ fp
in the nonlocal case. Corrections of fourth order in 4

% K, Maki, Phys. Rev. 139, A702 (1965).

5 M. Cyrot and K. Maki (to be published.)

52 C. Caroli and M. Cyrot, Phys. Kondenserten Materie 4,
285 (1965).

% The actual values for our samples vary slightly around this
value. We did not take these variations into account, because they
play only a secondary role.

8 A distinction between specular and diffuse scattering for the
higher-order terms (f’) is not made in the approximation scheme
to follow.

(A1)
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to the density of states and to the nonlinear term in the
GL equation were not evaluated.

Moreover, because of the labor involved in summing
very complicated expressions, we will not evaluate the
higher-order coefficients exactly, but will instead adopt
a quastlocal approximation. We will evaluate all the
coefficients of the powers of 4 in the local limit and then
multiply each power of 4% by fp. Thus we will be taking
fp*=g*= f'. This approximation should be reasonably
valid for /~%d but becomes invalid for />4 at low tem-
peratures. The corrections due to fourth- and higher-
order terms in 4 are about 10%. An error of 50%, in
the values of the coefficients which give these corrections
would give a total correction to 5%, which is tolerable.
This approximation is not the same as the local approxi-
mation, where spatial variations of the order parameter
become very important: We still assume the thin-film
limit d<<£(¢). However we note that corrections of the
same order of magnitude as those calculated here are
observed experimentally for the case of not too thin
films, which is the basis of the calculation, and for the
intermediate and thick-film case." It would be quite
difficult to consider the exact form of the corrections in
the intermediate range, so we are lucky that the exact
form of the coefficients of higher than second order is
not too important and that a universal correction is
obtained.

The calculation uses the procedure given by Abriko-
sov and Gor’kov for impurity scattering as applied to
thin films by Maki®: 4w and A are replaced by

o dsp
=1w——— () ,
T mp;s (2m)?
(A2)
- 1 = dgp
B=at-— [F.(p)
T mﬁf (27r)3

in the usual equations for F and G. The scattering is
assumed isotropic, and 7 is the collision transport time.

F and G are expanded to order |A]2 A and |A?,
respectively, in terms of the Green’s function of
the normal metal, G(p)=1/(iw—¢) (the energy
e=?/2m— ¢; is measured from the Fermi level). In the
presence of a magnetic field, w is replaced by w-+v-A.
The integrals of (A2) are evaluated as the residues at
the poles e= i (w+v-A)

" [ap 2ty AL
—|aq, — 1/ [y A
mps (2m)? 462 145 (A3)
where b= (vrd/®)?,
dsp
wp, ) TPy
A1 A2 1
=—j{—tan—I b— (A4)
26 /b 4@ (148
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Therefore,
1 1A 1
o=wt———
27 27 2&° 1+b
11 1A]2 1
|:1—-——{——ta . ”
270 l4/b 2¢? (140)?

Assuming A and A constant, we must average these
equations over the width of the film at this point. The
equation (AS) for A is then expanded in powers of A
and wo=w+1/27:

I R A
I i

o \21‘w<1—|—b> <(1+b)2>>}] (A6)

One may notice that the cancellation 1/2r0—1=w/d
in the A3 term does not occur to fourth or higher
order in A. The order parameter is further given as
|N|7T Zo F(x,r), which has already been evaluated to
find A. One finds the GL equation in the usual manner as

w /1
—Int= Z( a >
n=0\n+3 n+3+(1—g)/2v

1 A2(n+é % 21'y><(1~|1-'b)2> <1+b>

[(n+3+(1—g)/2v 1

+
8x2T?

where
y=2rrT=l/¢r,

g=((1/4/b) tan™'y/b)=1—a+4,
1
- 7p|:1+ @nt+17 P
£pl H*d?

p=—

D

as defined before,

B=(81/25)c2.

The critical field is evaluated by setting A*=0 in
(A7), which eliminates the last term. The last term is
the expression which reduces to (A?/8*7?)f, in the
dirty limit. The expressmn which replaces the term

10, of the dirty limit is found by differentiating the
equation for the critical field with respect to H:

p (n+314+1/2v) (@—28)
o . (9
7 Bt B P

The correction to the density-of-states factor s is
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TasLE II. Corrections involved in the expression of the
slope [Eq. (3.18)] in parallel geometry.
t Corrected value
0.848 0.9726 f1 0.9673 oy2 0.9753 ¢3 1.008 (Y3/py2) 1.019 konr
0.696 0.955 f1 0.949 py2 0.9525y3 1.004 (Y3/py2) 1.029 komr
0.496 0.972 f1 0.910 pyY2 0.911 ys 1.001 (¥3/p2) 1.083 xonr
0.283 0,994 f1 0.853 py2 0.851 y3 0.998 (Y3/pP2) 1.169 xonr

found by differentiating the density-of-states correction,
which we have evaluated as S'G.(p)dsp/(27)3, with
respect to w:

_d_ A? / 1 >
do [+ (1/27) (a—B)FT\1+b/

(A9)

Differentiation with respect to w is of course the same
as replacing w by w-ieV, differentiating with respect
to eV, and letting V go to zero. Thus we find the cor-
rected factor which goes to ys in the dirty limit.

Sa 83 B

S
¥ = 1 1+v(2n41) 27 14y (2n+1)

—_——— -—

16 =08

[n+%+§;(a—ﬂ)] 3 (A10)

These expressions have all been evaluated explicitly
by summing the first seven terms in » at four different
temperatures: ¢~0.85, 0.7, 0.5, and 0.3 with /¢r,
= (2T ./vr)l=%. First the value of p was found by
solving (A7) for the critical field. The theoretical in-
crease of Hj when { decreases was only found to deviate
by 19 from the form given by Maki.® Thus experimental
values should agree with the Maki temperature depend-
ence, as they do. The other corrections found which
should multiply the corresponding functions are given
in Table II.

The corrected values of kapr/k are thus 1.004, 0.992,
0.999, 0.998. The calculation is certainly not accurate
to 19,: We ignore these small fluctuations and say that
k2 should be regarded as constant for this case. The same
correction in the thick-film limit gives a «; rising twice
as fast as in the dirty limit, i.e. as koe/k22s.

Since the correction to ¥s/ps is always less than 19,
we may say that the correction to the formulas (3.18)
for S is just (x/kep)~2, which amounts to 0.73 at the
lowest temperature (¢=0.3). However, if we had chosen
to express our results in terms of | A|2/(H— H) instead
of S, the correction to ¥3 would have to be employed.
It is incorrect to deduce values of |A|2/(Hy— H) from
S by only multiplying by 827%/y3; when the dirty limit
does not apply. For this reason we prefer to compare
the theory directly with the experimentally observable S.

% Note added in proof. G. Eilenberger (to be published) has
recently calculated x; and & for bulk type-II superconductors for
all impurity concentrations. His results are consistent with our
assumption about the more rapid increase of k2(f) than in the
dirty limit.
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APPENDIX II: DEFINITION OF THE INTEGRALS IN THE NUMERICAL CALCULATION
OF S FOR ALL THICKNESSES

First we write Ly, L, [Eq. (2.15)], and R (3.10) using Egs. (3.12) and (3.16) for j and |A|2:

x

D d/2 .
Lim——ps / de@u—H) [ d{—H2[P )+ P (=) P )~ F (=) (B1)

T —d/2 —d/2

The average over y removes the oscillating terms which entered in the definition of L;, but a contribution from the
oscillations remains in L, and R owing to the nonvanishing average of sin*2ky when k>0:

Lo <21%¢>(35_A>" ﬁ +/' of { L / dx’(—Hx’)[FZ(x')-FFZ(*x')]+k[F2(x')-F2(—x')]}2

+2{/$ dx’Hx’Fz(x')P(—-x’)}sz:I, (B2)
—ajz

where 6;=0 for £=0 and 1 for £50;

k / " bl D
8212 ) _ay2 6 8n2T%4xT J_ape
X[{2F' (x)F (%) —2F' (— 2)F (—x)}*+2{F' (x)F (— ) — F ()F' (— %)} 20+ 8k F*(x) F*(— )], (B3)

I4+p\ = 6 P = nt3
o e ) Bt
o) m e ") TS ey

R and L have the same £ discontinuity as the average (| A|). Hence it is convenient to normalize all the integrals
by dividing by (| A[%). We will also remove the temperature-dependent factors in order to define functions only of
e. The quantity J; also absorbs the value of |A[? on one of the film boundaries. The arbitrary normalization of F
is irrelevant and cancels out thanks to the division by (| A|¢):

D pHae
R=

dx

with

+d/2 +d/2 z
[ la@lr= [ s[RI AP PG - P DG 1)), B9
—d/2

—d/2 —d/2

+d/2 +d/2 z 2
3 / UGS f dx[{ f dx’(—Hx’)[F“(x’)+F2(—x’)]+k[F2(x’)—F2(—x’)]}

—d/2 —d/2

+z[ f | dx'Hx'm(x')Fz(—x')}o,,:I. (BS)

—~d/2

The first term of R is proportional to (| A|*). We define an integral to measure the strength of the derivatives from
the second term of R:

+d/2 +d/2
C/ [A(x) 4= (1) [{2F' (x)F (x)—2F' (—x)F (—x)}?
e e L UF (W)F (—2)— F ()P (—2)} 20+ 8RF ()P (—2)].  (B6)

The results of the numerical calculations are displayed in Figs. 9, 10, and 11.



