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We propose here a theory of pure type-II superconductors in high magnetic fields. Making use of the guess
that the effect of the magnetic field on a pure type-II superconductor in a high field is similar to that of a
transport current, we circumvent the difficulty associated with the expansion in powers of the order param-
eter A. As an application of this conjecture, we calculate here the ultrasonic attenuation coefficients in the
gapless region of a pure type-II superconductor. The attenuation coefficients decrease sharply in the super-
conducting region as (H..—H)'/2, where H is the external field, and are strongly anisotropic—a simple mani-
festation of the anisotropy in the excitation spectrum of quasiparticles.

I. INTRODUCTION

N the preceding paper! (which will be referred to as
I), by making use of the fact? that the order param-
eter A(r) is given by the Abrikosov solution

A(l‘) = Z Cnei"ky'tbn(x) ’

¥n(x)=exp[—eH (x—kn/2¢H)*], 1)

we have shown that the perturbation expansion in
powers of A(r) leads to unphysical results when it is
applied to the study of the dynamical properties of a
pure type-II superconductor in high magnetic fields.
In this connection, it is noted that the second-order
diagrams in powers of A(r) have expressions equivalent
to those in a current-carrying case, except for the
difference in the spectral function introduced there.!
Therefore, it is quite natural to ascribe the origin of the
above difficulty to the confluence of singularities in the
density of states, as is the case for current-carrying
states. In fact we can show (see Appendix) that the
density of states at small excitation energy w has the
asymptotic form

N(w) (lAp}w €
N(o)_l_ ¢ m(i?«;)

1 (|A] e
FOTTX= ——pov, (2)
8 20192

€W

and e=v(3eH )} where v is the Fermi velocity.
The coefficient of (| A|?)s, has been discussed previously.
The above expression indicates that the expansion of
N(w) in powers of | A|2breaks down for w S ({| A]2)ay) 2

In order to circumvent this difficulty, we shall make
the following assumption: The analogy between a pure
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type-II superconductor in a high field and a current-
carrying state holds not only for the second-order
diagrams (see I) for A(r), but also for the higher-order
diagrams. For example, we have the following expres-
sion for the density of states!:

YO (A 7 1
N(O)—ll 2 /_mp(’(a) da::;—)z’ ®

which is equivalent to one obtained by Juranek ef al.3
Here po(e) is given by

aQ 1 =
po(e)= f O (a2 =- f "
471' €J |al/e

p(e, ) =[ ()% sinf ] exp[ — (a/e sind)?].

It is easy to see that Eq. (3) diverges logarithmically
for small w. The above assumption allows us to write
down the expression for the density of states, which we
may expect to be valid for small w,

N(w) 0

NO) Jo

*)

pola) da Re([(T_:)%AﬂTE) . 6)

We shall hereafter set A?=(|A|?),. If we expand Eq.
(5) in powers of A? the first two terms agree with Eq. (3)
and the third term reproduces correctly the divergence
of the coefficients of (|A|%). in Eq. (1), though the
numerical coefficient is slightly different.

II. EXPRESSIONS FOR THE ULTRASONIC
ATTENUATION COEFFICIENTS

As a simple application of the analogy between a
pure type-II superconductor in high fields and a pure
superconductor carrying a uniform current, we shall
discuss here the attenuation coefficients of ultrasound.
In the following we assume //£>1, though we impose
no restriction on ¢/, where / is the electronic mean free
path, £ is the coherence distance, and ¢ is the wave
vector of the sound wave.

8 H. J. Juranek, L. Neumann, and L. Tewordt, Z, Physik 173
459 (1966). R
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Following Tsuneto,* we shall express the attenuation
coefficients in terms of various correlation functions. We
shall adopt here the method developed by Kadanoff and
Falko,® which allows us to treat the effect of the
Coulomb interaction in a simple way. For the low-
frequency limit w<wT. (we adopt hereafter the unit
system #=c¢=kp=1), the attenuation coefficient for
the longitudinal sound wave is given by®

2

=Re—— { [rerery 7o Dqur—
1WPionls

p 2
: <|:Tz’2’:n]>(q,w)
m

+HE 2)2@ Daos ©

where po and q are the Fermi momentum and the wave
vector of the sound wave, respectively. Here 7.,
is the stress tensor and » is the density operator of
electrons:

(V=V); (V—V j
Tij=z ( . ) ( . )¥I’T(r’)t)¢(r:t)} ’ (7)

spin 27 2im

r’/=r

n=7_ YHrP(rp).
spin (8)

The primed coordinate system is taken relative to the
sound-wave propagation (we take z’ as the direction
of the propagation). Similarly, the expression for the
transverse wave is given by®6

2

<[Tx’Z’:Tz’x’]>(q,w)

_ (([TZ’z’:jr’]> (q.w))2
([jx'vjx’]>(q,w)

where j is a component of the current operator. Here
we take 2’ as the direction of the polarization vector of
the sound wave. The second term in Eq. (9) may be
called “the electromagnetic term,” in contrast to the
first, or “collision-drag” term.” Except in the extremely

ar=Re
1WPionTs

, )
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pure case with a rather high-frequency sound wave, the
second term is always negligible; we shall consider here
only the first term.

III. EVALUATION OF THE CORRELATION
FUNCTIONS

The correlation functions are obtained by using the
techniques of thermal Green’s functions. In particular
we shall see later that the analogy to a current-carrying
case simplifies our analysis enormously. Since we are
interested here in those correlation functions for
arbitrary ¢/ value, we shall formulate the problem in
the presence of random impurity atoms. Scattering
effects due to impurities are taken account of by carrying
out the renormalization of the self-energy as well as that
of vertex functions.® First we shall consider the re-
normalization of the self-energy. Here we must replace
w and A(r) by

d=w(14+1/27|w|) and A@F)=n,4A(),
respectively,? where

nen={1—(1/27][&)[1—CQ(H)"*/|a[) ]} (10)

and

2 0
Cla)=- / due2 arctan(au) .
aJo

Here we have made use of the fact that A(r) is given by
Eq. (1). The above renormalization factor for A has
been found by Helfand and Werthamer.!® Fortunately,
we can show that the effect of the renormalization factor
of A(r) is negligible as long as we are concerned in the
limit 7/£>>1. We shall neglect this factor (i.e., put
ner=1) hereafter. Second, the renormalizations of the
vertex functions are far more important in the present
case. Since the related problem has been already dis-
cussed in great detail by Kadanoff and Falko,® we
shall make use of their results here without going into
further discussions. After these preliminaries it is easy
to write down various correlation functions:

1 Po /2( /2+y—2)
inCrenredao=— o [ [ sthia————soa), o
2rt m —o 1—iys’
/ ) 22 1 4 J(w,@) (12)
Im 21251 0 __ a’Q da{ } ’
([~ D@ 4 /_ . 1—iys’ 1 —y1 arctany ¥ 2
S /dsz e I (@) (13)
Im((nnaw=—po| — | ple,Q)da ’
([ Do 272?0 A /_ Y 1—14y7’ 1—y larctany
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and
1 dﬂ 00 72,72
Im([Tz'z',Tx'z':D(q,w)=‘—'P03/ — f p(a,ﬂ)dcz—-——'—f(w,a) , (14)
2x? dr J o 1—iys’

where p(,2) has been defined in Eq. (4),

© o'+ o 1 (o' +w+a)(w'+a)— A2
J(w,0) = / dw’l:tanh —tanh— ) 15)
ra 2T 2T [ (' +w-ta)?— AT]VI (o' +a)?— AZJL2
y=q, =qv/q, x'=e-v/v, (16)

and e is the polarization vector of the sound wave.
Here we have made use of the analogy to a current-carrying state, which can be seen explicitly in the coherence
factor in Eq. (15). Especially in the low-frequency limit (w<A), J(w,e) reduces to

J(w,a) =2ﬁ;‘ /A‘:‘ dw’ Cosh_2|i%]= 2wf(A—a), an

where f(x)=(1+e*/7)"1, the Fermi factor.
Substituting the above expressions in Egs. (6) and (9), we obtain the expressions of the attenuation coefficients
for arbitrary gl.

IV. SOME LIMITING CASES
In the following we shall discuss some limiting situations where further calculations are feasible.

A. gI>1
1. Longitudinal W ave
In this limit only ([#,%])«.«) contributes to the attenuation coefficient and we have

8 0

- / da di(a,k) X 2f(A—a), (18)

ar

ar™
where

aQ
or(ayk)=200 f P

= / d——Qﬁ[(l—kZ)l/2 cosf-+% sind cos¢]w,
(Wmel) 4m sind
2 1 dz a\ 2
=(7ra)me /0 g eXp[_<_e) (1— kzzz)—~1] . (19)

k=cos® and O is the angle between q and the external field H, which we take in the direction of z axis. Since we are
interested in the region where A is small, we simplify Eq. (18) as

8 0

n= 1‘2—1‘: ¢1(a,k) COSh_2(E>+O(A8) . (20)

ar —o0

ar

It is interesting to note that the shift in the attenuation coefficients is proportional to A, a behavior which cannot
be reproduced by a simple expansion of the kind discussed in I. The following asymptotic expansions are worth
noticing: )

ar’ A 17 €\2 BN 17 e\*
-—=1-—~{1—-(——) (1~—)+—<—) (1—kz+gk4)---}, for T&Tw, (21)
ar 2Tl 2\2r 2/ 2\2r

- 1____4__ é—lK(k)—1(1{)2(1{(13)+kK'(k))+—7-(ﬁ)4(K(k)+ (5/3)kK’ (k)+31k2K" (k) f
RV 3\ € 30\ e 3 } e T<<T°°(’22)
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where K (z) is the complete elliptic integral. The tem-
perature dependence of €(7) is given by

~1n£—0= /_w o) {¢(%+%)—¢(%)} . (29)

where po(@) has been defined in Eq. (4), and ¢(z) is
the digamma function. In view of the fact that the
theoretical H(#) does not agree with the experimental
one*® for pure Nb, it is more convenient to express
€(T) in terms of the experimentally observed H.(f);

e(t)=v(3eH (D)2, (24)
A is given as a function of external field?*:
2T)2 (Heo(t)—H)
! ——¢(p), g=1.16. (25)

" bmeH alt) (2k2(0)—1)8"
The definitions of x2(f) and g(p) are given in Ref. 2. It

might be much more convenient to rewrite the above

expression as
dH (1)
: ) , (0
ar

where N(0)=mpo/2n? is the density of states and M is
the magnetization. Here we have made use of the
identity?

= (2/N(0))M(ch(t)—%T

: dT(”Eech(f)]”z) E )

;- —¢ 27T

Therefore, in the superconducting region the attenua-
tion coefficients drop like (He—H)Y? (i.e., with an
infinite slope). The attenuation coefficients are strongly
anisotropic in this limit. In particular, at @=3mr, the
function K (k) diverges like

In(4/(1—k%)12%)=In(4/|3r—0O|).

This feature is a simple reflection of the anisotropy in
the excitation spectrum!!? of the quasiparticles. The
quasiparticle feels the weaker order parameter when
it travels perpendicular to the field (across the array
of the vortex line) than when it travels along the field.

2. Transverse W ave

(The polarization vector is in the plane formed by
q and H.) In this case we have

aT’ 371'

b2(0,k)2f(A—0), (28)

ar®™ Qb J —o

11Tt is possible to transform the Eq. (14) in Ref. 2 to the form
given in Eq. (23).
12C, K. Jones, J. K. Hulm, and B. S. Chandrasekhar, Rev.
Mod. Phys. 36, 74 (1964); T. McConville and B. Serin, Phys.

Rev. 140, A1169 (1965).
13 The Orsay Group, Phys. Kondensierten Materie 5, 141 (1966).
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where

Lds
bo(a,k)= j —{([(1—22) 24 2

X((1=2)=3(1 =)}

Xexp(— (%)2(1—-22)”1) . (29)

The asymptotic expressions are

ar® 37rJ A 2 k? €\2
S0

ar® 4gll 2T\ 5\ 4/\2r

20/ k%[ € \*

+~<1——)<—> )} for TSTw (30)
35\ 3/\or

3 3(m)12 k* 8(In2) /T
)
4ql 4e 2 A7 €

245“(3) < >3>} for T<T,. (31)

In the present case the coefficient of A is almost in-
dependent of temperature. This can be seen from the
(theoretical) relation

4e
KAVZ S
where we have made use of the theoretical expression

€(0)=3er/vAq and Ag is the BCS order parameter for
H=0 and T=0.

2(r)/2

~1.20X 2T,

T=0-K

(32)

3. Transverse W ave

(The polarization vector is perpendicular to the plane
formed by q and H.) In this case we have

ar®

—=— b3(ak)2f(A—a), (33)

ar™ 4ql J
where
Ldz
__(1 —_ ZZ) 1/2

Xexp[—(%>2(1~z2)—1:l (34

It is easy to see that ¢s(a,k) =¢2(e,0). Thus we can use
Egs. (30) and (31) for the present case also. Contrary
to the case of the longitudinal wave, the anisotropy in
the attenuation coefficients is not very prominent.

(k)= ’
Pl —2\/7r

B. H|q

We shall consider here the case where the propaga-
tion vector of the sound wave is parallel to the external
field (for arbitrary ¢J). In this case the angular integrals
are much simplified.
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1. Longitudinal W ave

ar’ w «
=1—— da®i(a,ql) cosh“( ) (33)
ar™ 2 —o 2T
where
A : =
=—— ——~p a,() g { .
l(ayq ) (y) 1+y2z2 luy—l arctany y j
1 1 rldz 1-32% )\ 1 1 3g2
57 h camne(-0) )i o w
3X() /1 Jo € (1—z2)12 € 1+y%? 1—y larctany y?
arctany 1
X(y)=——————, and y=gl. 37

3(y—arctany) y?

The asymptotic forms are given as

Zz 1_%{1_%<—2€;>2l:1+;1—2<1_15;(31))]_{—%(;67—')4[1ﬁi(gﬂhél_;-if(y)).lh;l‘;(l—ls}i(y)):I}

for TSTw, (38)
(v/m)A 1 [ 1 / 3) 3 >+ 3 4T In2
- 3X(y)e{1 —y! arctany\(1+y2)”2\ ¥y 292 A/T €

1 I- 1 / 3 3 6
¥ BENEL I
1—yarctangl 1492\ 32/ 2l y2
27 T\ 2 1 3 2 9
__’f_(_) [1 (142} 2 ——]l for T<Tw. (39)

3\e —y! arctany\ yZ/ (A4yH%2 42

2. Transverse Wave

00

g: g(y)[l—% /— ] da®a(a,ql) cosh‘2(?af>:| ) (40)

where
aQ 22(1-22) coquS 3y? 1dg 1
By(a.ql)= / —p(, @) /
1—g(y) 149222 =g Wr o € (=12
X ( (“)2(1 7 1)22(1—22) (41)

Xpy —\— —2%)" )
op € i 14-y%?

and

g(») =3y~ (—y+(y*+1) arctany). (42)
The asymptotic expressions are
a s

Zrolf ) e e )

for TSTw, (43)

/A r y? 1r/ 1 3?2 12 T\? 2 l
=g(y) 11— ~ +—@3)(—
g(y){ [ 1—g() L2+ A+ 3\ e, ) (149212 1+ (149212 \/1r§( )<e> 1+y2:|1
for TKTy. (44)

V. CONCLUDING REMARKS

We have thus far calculated the attenuation coefficients of ultrasound in the critical region by making use of the
conjecture that the effect of fields in a pure type-II superconductor is similar to that of a uniform current. The
result shows that the attenuation coefficient drops sharply in superconducting region (with an infinite slope), which
is in sharp contrast to the behavior in a dirty type-II superconductor.



442 KAZUMI MAKI 156

The attenuation coefficients in a pure type-II superconductor have already been discussed by Cooper ef al.,
using a model in which A(r) varies periodically in space but without any phase change. They obtained results com-
pletely different from those described here. For example, they did not discover any difficulty associated with ex-
pansion in powers of A(r). The reason for this discrepancy appears to us to be that their model is too crude to
describe Abrikosov’s solution. Thus it seems to us that their result is irrelevant to the type-II superconductor,
though there might be some physical situations where their formula applies. Recent measurements'® of the ultrasonic
attenuation coefficient on pure Nb specimens are in qualitative agreement with the present theory.

It is not difficult to apply the present technique to the calculation of other transport coefficients of a pure type-II
superconductor in high magnetic fields.

Note added in proof. A recent measurement! of the ultrasonic attenuation, carried out by the UCLA group, on
pure Nb samples in the mixed states in the parallel geometry (i.e., the propagation vector of the sound wave is
parallel to the static field) is in fair agreement with the present theory. I would like to thank Professor I. Rudnick,
Professor M. Levy, and Dr. H. Kagiwada and Dr. R. Kagiwada for interesting discussions on their experimental
results and on their numerical results of the various integrals contained in the present text.
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out.
APPENDIX: THE DENSITY OF STATES

The density of states in a pure type-II superconductor in high magnetic field has been discussed previously?® 13:

V@) _ (141 1
oty e e (a0

where po(a) has been given in Eq. (4). We note here that the logarithmic singularity is a consequence of the sharp-
ness of the spectral function at a=0; we have the following asymptotic forms

gAYl

€ e 3\ e €
1 |al
—_— —(a/e)2, —>>1. (Az)
2|e| €

The approximation used by and de Gennes et al.!3 corresponds in the present formalism to replacing po(e) by an
exponential function. In order to see the convergence of the above expansions in powers of A% we shall calculate
here the coefficients of A* by assuming that A(r) is still given by Eq. (1). We have here

~ / % [ @k / % f d%s / %y 1 1 1 1
@) @) @) @) (20 (=82 (ot v (0 v (ki k) o b Y- (it ko)

X f dr f d®n / d%re / d?rs explik (r— 1)+ ko(r—12) + ks (r—1r3) k- (r—rs)+ i (rs,12)
+igp(rs,rs) ]- A(r1) At(ra) Ars) At(rs)

/‘d%l / d%k / d?ks / d3k4/ 1 1 1 )
=———-2 N(O
N )/ 2r)3J) (2m)3 ) (2n)3 (27r)3\°5":llc 2w+v- ki 20—v-ky 20+v-k

X / a% f d3n / d%s f d®ry exp[iky(r—r1)+iko(r—12)+iks(r—13)+1k- (r—rs)+id(rs- 12)
+igp(rs- 14) JA(r1) AT (r2) Ars) At (rs) ,  (A3)

141, N. Cooper, A. Houghton, and H. J. Lee, Phys. Rev. Letters 15, 584 (1965).
18 A, Tkushima, M. Fujii, and T. Suzuki, J. Phys. Chem. Solids 26, 1 (1965); E. M. Forgan and C. E. Gough, Phys. Letters 21,

133 (1966).
“‘(R Kagiwada, M. Levy, I. Rudnick, H. Kagiwada, and K. Maki, Phys. Rev. Letters 18, 74 (1967).
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where
4’(1;5) = eH(lz+ 52) (ly'— S,,) .
Furthermore, by using a technique similar to that used in I, we find
k?

I1,=2aN@0) Y. CuCuCnp*Cunyip* exp { —4—H—[(n——m)2+ (n—m— 21))2:]}
n,m,p e

arl 7 s 1
X———[— / / f dandasdas T] 4 (oq,az,aa):l , (A4)
0wl 8/ J =1 (w—a;)
where

7|'2
](a;,az,as)“ ]dsf/ C052¢/ dOl4
47 p* sinf cos*e (eH)?

X exp[——

2i(s—astas—ag)r, (a12+a32)e—"¢+(a22+a42)e"¢:|
v sinf cos¢ v%eH sin20 cos¢p

aQ ] ® (e?Faz?)e 4 (a2 aqd)et®
—_f ————— [ doy 8(artaz—ae—ay) eXpl:— :I
l.J 47 (v2eH)? sin®0 cose J o v2eH sin2§ cos¢
aQ 1 1 [ (a12+a32) —io| [a22+ (a1+a3—a2)2]e’4’]
[ — ex
I, J 4 (v2%eH)? sin® cos¢

(AS)
v2eH sin2f cos¢

Using Feynman’s identity we can transform the integral in (A4) as

/ f )= [ o, (46)
where ( "‘w‘a)l( : ﬂmd (w—a)
I()=2 / / / £I1dul 8(1— m1— ua— us) / / / 11 de; 6(e—mr01— moce—wsis) I (aryaz,03)

[ dQ dk  (v/m)?
=—p | — f// T du; 6(1—u1—u2—u3)/ —eika (v2eH)3/2
I, J 4 (v2%eH)? sin®) cosp =1 2 2

v2eH sin20k?
X cosp — [(ur?+u3%) (24-€29) - ua?(e 2%+ 2) 4 2 (sa+1s) e — 2041143624 }
dQ 2V2 7? 13I J — e 208
= — 6 —g— - —_— |,
l.J 4w o%eH smﬁ i b1~ —wr—a0) fs) exp[ v2eH sin2f f(uz):| (A7)
where
J@) = flurus) =3[ (1 —ur—u5)*(1+€724)+ (u1—ua)?(14-€*4)4-1]. (A8)
We finally arrive at
N@ (A = pol@)de 3[AlDe  pr(e)de
=1+ f ’ (A9)
N(O) 2 o (0—a)? 8 —w (W—a)?
where
@ 1T dn (1 Y -] ao
@)= w1 S(1—wur—us—u ——exp| - ——} |.
o (Wmel =1 ' P 4 sin6[ f(u;) V2 P € sinfy/ f.

From (A10) it is easy to see that p;(a) has almost the same form as po(e). In particular, for small  we have

p1(a)=1l:\£1rco—l——|—C1+3(l ])03 ] , (Al1)

€ € €
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where [ .
ol 3
(,'nzw‘/ do H du; 5(1"'u1“u2“1t3)f(ui)"(l+")/2, (AlZ)
TJo 0o =1
Numerically we have
Co=20.90,
Cy=[In(1+4v2)]?=20.77,
1
Cy=— In(14Vv2)=20.622. Al13
Ly (A13)
For small w we have
N(w) <| Al Nav  fAyw\ 3 (! Ai Bl C1 2C 4yw
=14+—- ln(-)+— ———~|:———+—3 ln<»—~):l for w<e. (A14)
N(0) € € 8 & 3w? 3¢ €

The coefficients of (| A|*)ay diverge more strongly than that of (| A|?)s, does. Since Cy is somewhat smaller than 1,
we expect that the analogy we have discussed is not exact (valid only for A — 0).

Tt is interesting to note that the low-temperature behavior of fi(p), which appears in the definition of the parame-
ter? ko, is also expressed in terms of C; and Cs given above .We also point out here that the most divergent parts of
the higher-order terms in A? behave like ((| A|%"),y/€2)w 2D for small w.
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Bilinear Reflection of a Double-Frequency Laser Beam from a
Superconductor

K. K. GupTA AND SUDHANSHU S. JHA
Tata Institute of Fundamental Research, Bombay, India
(Received 29 November 1966)

The bilinear current density induced in a superconducting metal by a laser beam with frequencies w; and
w2 has been calculated. The calculation is done within the framework of the BCS theory of superconductivity
at temperature 7'=0°K. It is shown that in the superconducting state of the metal the component of the
induced current density, varying with the difference frequency @=w;—w; and the wave vector Q=q;—qz,
where q and g: are the wave vectors of the fundamental fields in the metal, differs considerably from the
corresponding component in the normal state of the metal when 7 is of the order of the energy gap 2A.
In this paper only that special case is considered where the wave vector Q is such that #Qu,<2A4, v, being
the Fermi velocity of the electrons. If the collision frequency Q2.5 of the electrons in the superconducting
state is small compared to @, there is a sharp peak at #Q2=2A in the energy flux of the light wave of frequency
Q reflected from the surface of the superconductor. For 7#>3>2A, the reflectivities are the same for both the
normal and the superconducting states of the metal.

1. INTRODUCTION of the bilinear current density induced in the metal,

. . i —2iwt | :
ECENTLY there has been considerable interest in varyimg as ¢ » has the form

calculating?? and measuring® the reflectivity of JBLY (Qw)= —ca(w+w)V[E(w)-E(w)], (1.1)
the second harmonic wave generated by an intense
laser beam incident on the surface of a normal metal.
If the incident wave contains a single frequency w and
if it is represented by a plane wave which is pola}'ized
perpendicular to the plane of incidence, the amplitude

where E(w) is the amplitude of the electric field in the
metal, varying as e~*“!. When the incident wave is
polarized in any other direction, there is an additional
term which is nonzero only at the surface! of the metal
and which arises from the discontinuity in the normal

1S. S. Tha, Phys. Rev. Letters, 15, 412 (1965); Phys. Rev. ~component of the fundamental electric field at the
140, A2020 (1965); 145, 500 (1966); N. Bloembergen and Y. R.  gurface. Except near a resonance for the interband

ibid. 141, 298 (1966); 145, 390 (1966). oe. X 2
Shzerslf él,njiha and C. s( Wazke, Phys. Rev. 153, 751 (1967). In their transitions in a metal, it has been shown? further that

Eq. (3.39) m should be replaced by m*, where m* is the effective  one may write

f th duction electrons. )
mas.s;oBro‘fo’o lni E. Parks, and A. M. Sleeper, Phys. Rev. Letters —1e
14, 1029 (1965); F. Brown and R. E. Parks, ibid. 16, 507 (1966); a(w—}-w):::———;—————-[e(w_},w)._l], (1.2)
N.’Bloembergen, R. K. Chang, and C. H. Lee, bid. 16, 986 (1966). 2mm c(w+ )



