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Theory of Pure Type-II Superconductors in High Magnetic Fields.
II. Ultrasonic Attenuation*
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(Received M Septemher 1N6)

%e propose here a theory of pure type-II superconductors in high magnetic 6elds. Making use of the guess
that the effect of the magnetic field on a pure type-II superconductor in a high 6eld is similar to that of a
transport current, me circumvent the difEculty associated with the expansion in powers of the order param-
eter A. As an application of this conjecture, me calculate here the ultrasonic attenuation coefBcients in the
gapless region of a pure type-II superconductor. The attenuation coeScients decrease sharply in the super-
conducting region as (H, s —H)'~s, where H is the external Geld, and are strongly anisotropic —a simple mani-
festation of the anisotropy in the excitation spectrum of quasiparticles.

I. INTRODUCTION
' 'N the preceding paper' (which will be referred to as

I), by making use of the fact' that the order param-
eter h(r) is given by the Abrikosov solution

&(r)=P C. e'""P„(x),

lt.{x)= expI —ee(*—ue/2ea) ],
we have shown that the perturbation expansion in
powers of h(r) leads to unphysical results when it is
applied to the study of the dynamical properties of a
pure type-II superconductor in high magnetic 6elds.
In this connection, it is noted that the second-order
diagrams in powers of h(r) have expressions equivalent
to those in a curreg. t-carrying case, except for the
difference in the spectral function introduced there. '
Therefore, it is quite natural to ascribe the origin of the
above difhculty to the conQuence of singularities in the
density of states, as is the case for current-carrying
states. In fact we can show (see Appendix) that the
density of states at small excitation energy co has the
asymptotic form

type-II superconductor in a high 6eld and a current-
carrying state holds not only for the second-order
diagrams (see I) for A(r), but also for the higher-order
diagrams. For example, we have the following expres-
sion. for the density of states'.

&(~)=1+ (3)
X(0) 2

po(~) d~
~—n'

dQ
po(~) = —p(n, o)=- e "dt,

X E t~f/e
(4)

p(n, a)= L(~)'&se sins)-' expI —(n/. sing)sj.

It ls easy to see 'that Eq. (3) diverges logarithmically
for small ~. The above assumption allows us to write
down the expression for the density of states, which we
may expect to be valid for small co,

( co—u
po(n) dn ReI —

I
. (5)

(I (to rr) s Qsgl/s j

which is equivalent to one obtained by Juranek et aces

Here po(er) is given by

&()=1- 1

X(0) e' &4yto

II. EXPRESSIONS FOR THE ULTRASONIC
ATTENUATION COEFFICIENTS

e=e(tseQ„)&, where e is the Fermi velocity.
The coeKcien«f (I ~

I
') has bee" d"c""edpreviously.

The above expression indicates that the expansion of
X{ro)in powers of

I
6

I

' breaks down for to& ((I5
I
s), )'ts.

In order to circumvent this di6iculty, we shall make
the following assumption: The analogy between a pure
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As a simple application of the analogy between a
pure type-II superconductor in high 6elds and a pure
superconductor carrying a uniform current, we shall
discuss here the attenuation coeKcients of ultrasound.
In the following we assume t/Pp&)1, though we impose
no restriction on q$, where / is the electronic mean free
path, $o is the coherence distance, and q is the wave
vector of the sound wave.

H. J. Juranek, L. Neumann, and I.. TeMordt, Z, physik )73
459 (1N6).
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We shall hereafter set 6'—= (I 5 I '), . If we expand Fq
(5) in powers of &s, the first two terms agree with Eq. (3)
and the third term reproduces correctly the divergence

1 (I6I')„of the coeKcients of (I6I'). in Eq. (1), though the
+07&X- +' '', (2) numerical coefficient is slightly different.
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p
s 2

+ —(Lrr, ri7) 1s, 1 i (6)
3m

where ps and q are the Fermi momentum and the wave
vector of the sound wave, respectively. Here
is the stress tensor and n is the density operator of
electrons:

(v —v') (v —v')
r; = Z 0'(r', &)4(r,&)

Sp 1n

~= 2 4'(r, &)lf(r, &).
Sp 1n

The primed coordinate system is taken relative to the
sound-wave props, gation (we take s' as the direction
of the pl'opaga'tloll). Sllllllally, 'tllc cxpI'css1011 fol tllc
transverse wave is given by'6

eT ——Re
&PiOn&8

(L "", "*7)is,-)

((I r** i*7)is.-i)'
(9)

(I:i* i"7)«,-)

where j ~ is a component of the current operator. Here
we take x' as the direction of the polarization vector of
the sound wave. The second term in Kq. (9) may be
called "the electromagnetic term, " in contrast to the
first, or "collision-drag" term. v Except in the extremely

Following Tsuneto, ' we shall express the attenuation
coeKcients in terms of various correlation functions. %e
shall adopt here the method developed by Kadanoff and
Falko, ' which allows us to treat the effect of the
Coulomb mteract~on ~n a simple way. For the low-

frequency limit &a(rrT, s (we adopt hereafter the unit
system A=e=ke ——1), the attenuation coeflIcient for
the longitudinal sound wave is given by5

2p 2

(Lr, ..., r;;5)«.1 ,
—(I r. ..rr7) «,.1

3m

pure case with a rather high-frequency sound wave, the
second term is always negligible; we shall consider here
only the 6rst term.

III. EVALUATION OF THE CORRELATION
FUNCTIONS

The correlation functions are obtained by using the
techniques of thermal Green's functions. In particular
we shall see later that the analogy to a current-carrying
case simplifies our analysis enormously. Since we are
interested here in those correlation functions for
arbitrary q/ value, we shall formulate the problem in
the presence of random impurity atoms. Scattering
sects due to impurities are taken account of by carrying
out the renormalization of the self-energy as well as that
of vertex functions. ' First we shall consider the re-
normalization of the self-energy. Here we must replace
o1 and h(r) by

oI =re(1+1/2r IoII) and a(r) =Ii„HA(r),

respectively, ' where

~-H= (1—(1/2r I
~ l)L1—c(n(e&)'"/I ~ l)73-I (lo)

00

C(a) =— dne "' arctan(ag) .

Here we have made use of the fact that h(r) is given by
Kq. (1). The above renormalization factor for 6 has
been found by Helfand and Kerthamer "Fortunately
we can show that the effect of the renormalization factor
of h(r) is negligible as long as we are concerned in the
limit l/)s»1. We shall neglect this factor (i.e., put
ri„rr=l) hereafter. Second, the renormalizations of the
vertex functions are far more important in the present
case. Since the related problem has been already dis-
cussed in great detail by Kadanoff and Falko, ' we
shall make use of their results here without going into
further discussions. After these preliminaries it is easy
to write down various correlation functions:

Im(I r;...r, ;7)«, )
2~2 es

sos(sis+y —2)

p(n, Q)dn J((o,n),
1-hays'

j. dQ
fm(L, ...,~7)«,—— p, ' — P(n, fl) dn

2x' 4m

dQ
fm(L&, ~7)« „1=--p,

2x' 4x'

s" 1 1
t

J(oI,n)
--+—

)
1 sy»' 1—y ' arctany y'—j 2

J(oI,n)

'T. Tsuneto, Phys. Rev. 121, 402 (1961);see also T. Tsuneto (unpublished).' L. P. Kadano6 and l. I. I"alko, Phys. Rev. 136, A11/0 (1964).' K. Maki, Phys. Rev. 148, 370 (1966).
r L. T. Claiborne, Jr., and R. W. Morse, Phys. Rev. U6, A893 (1964).
8 K. Maki and P. I'ulde, Phys. Rev. 140, A1586 (1965).
9 K. Maki, Physics 1, 21 (1964).
I' K. Helfand and ¹ R, Wertharner, Phys. Rev. Letters 13, 686 (1964).
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8"X"
( g)d .

J(0&&n) &Im([grig&&Tv'z'j) ('( ~~
2 2 4&r

) h been define(I ~nK . (4)whe~~ u(n "
M 0, 0} aI GD

g2 &/&

h tanh
[( &+ +n)2 6 j [(

'" "'"
2T

q.vr'qp, x'=e'vr"
&

(14)

y

tl ln the coherenceseen expllcl y 1

p la
h logy to a curren

) J( ) e(lu e to
Here wc have made

-
the low frequency llml

(17

K . (15).Especially m

1

factor in q.

h 'J (»&n) =— =2 f(~- ),

arbitrary q/.

LIMITING CASESIV. SOME LIM

lations are feasible.ss some lmi in
'

where further calcu ationsss soIQc 111Tllting situations w clcIn the following we shshall dlscu

A. ql)&l

X. I.oegANdhno,
'

al 8'use

ocf6cient an wethe attenuation cocf6
'e,„) contributes to t e aIn this limit only ([m,e])(,,„) con

' t e a

(
6—a

'
nsof t e a

'
efhcientshe e ressions of the attenuation coefB

'
w = 1 (:*(") ' the Fermi factor.

Su s i u
'

ve e ressions in Kqs. (6 anSubstituting the above expr
'

s. 6 an
for

dn yg(n, k) X 2f(A n), —

dQ

( k)=2qr& —5((I v)p(n,(t&y n& = n

(Q&r) e

—k') "' cos8+ k sin8 cos(t&j—h[(1—k co
4m

e
—(a/e sinl)&

sin8

2

—' '/' I—k s2 21/2

t e lre Since we are

(&(')'('e 0 (1—s ) (

the direction of s axis. Sin8 whichwetakeint e ireen and the external field' '
th angle betwe q

re Aissmall, we simp i y

(20

intereste in ere lsd the region w ere is

e QO

n k cosh-2 ~+O(~8).

Tc0 p

k' 1
1——+- (1— s'

22T 2 22T

k p for.E k —— (E(k)+kE'(k))+-E k ' —
i (E(k)+

(„
t .o ortionalto ' "."ttion coefbcients is pr p

totic expansions a
he shift ln the attenuation ctonote that thes i tloncIt is interesting he s I

bc reproduced by a slD1p c cxp f 1

(21

noticing:
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3
&s(n k) =— —(L(1-s')"'+k'

2(rr) '~s s e
OQ

—ln
~co &&((1—') '—-'(1—')"')j)

where IC(s) is the complete elliptic integraL The tern- where

perature dependence of e(T) is given by'"

where ps(n) has been defined in Eq. (4), and P(s) is
the digamma function. In view of the fact that the
theoretical H, s(i) does not agree with the experimental
one' " for pure Nb, it is morc convenient to express
e(T) in. terms of the experimentally observed H,s(t);

Xcxp —— I—s' —' . 29

The asymptotic expressions are

e(i) = e(-', eH;(i))'". (24)

6 is given as a function of external field':

m(2~T)' (H.s(&)—H)

6rreH, (t) (2kss(t) —1)P

Tile dcfiIlltlons of Ks(t) Rnd g(p) Rie glvcll 111 Rcf. 2. It
might be 1Tluch morc coIlvcnlcnt to I'c%'lltc th.c above
cxpl'csslon as 24|(3) /I' '

+ --(1—k')
~

— for T((T„. (31)
ke( dH, s(i)

as= —(2/E(0))Mi H.s(i)—-', T In the present case the coefhcicnt of 6 is almost in-
dependent of temperature, This can be seen from the
(theoretical) relationwhere &(0)=type/2lr' is the density of states and M is

the magnetization. Here we have made use of the
ldentltf —1.20&2T,O,

3+s r=s. K
(32)

d /ugeH„(i)]»s~ s—= —g(p)
dT& 2~7 i

(27) whcic wc liRvc made lisc of the theoretjcai expression
e(0)= se+V~so and ~M» thc I)CS order parameter for
II=0 and T=O.

Therefore, in the superconducting region the attenua-
tion coefficients drop like (H, s—H)'~s (i.e., with an
infinite slope). The attenuation coefficients are strongly
anisotropic in this limit. In. particular at 0'=srs- the
function Z(k) diverges like

3. Trmssverse H/ave

(The polarization vector is perpendicular to the plane
formed by 11 and H.) In this case we have

»(4/(I —ks) iIs) =in(4/~-,'~—0~).
This feature is a simple reflection of the anisotropy in

the excitation spectrum'" of the quasiparticles. The
quasiparticle feels the weaker order parameter when

it travels perpendicular to the field (across the array
of the vortex line) than when it travels along the field.

Z. Tramsverse TVave

ys(n, k)2f(A n), —

3 'ds
ys(n, k) = (1 ss) 1/s

2g~
Qp 2

Xexp —— (1—s')—'

(33)

(34)

{The polarization vector is in. the plane formed by
11 and H.) In this case we have It is easy to see that Ps(n, k) =Ps(n, 0). Thus we can use

Eqs. (30) and (31) for the present case also. Contrary
to the case of the longitudinal wave, the anisotropy in
the attenuation coeKclcnts ls not very proxMncnt.

"It is possible to tra, nsform the Kq. (14) in Ref. 2 to the form
given in Eq. (23)."C. K. Jones, J. K. Hulm, and 8. S. Chandrasekhar, Rev.
Mod. Phys. M, 74 (1964); T. McConville and B. Serin, Phys.
Rev. Bo, A1169 (1965).

» The Orssy Group, Phys, Kondensierten Materie 5, 141 (1966).

B. II/~frI

Ke shall consider here the case where the propaga-
tion vector of the sound wave is parallel to the external
Geld (foi arbitrary gl). Ill 'tllis CRsc thc RiiglllR1' 111'tcgrals

are much simpli6ed.
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2. Lorlg~tldirial lVave

(n
dnC, (n, ql) cos —

~

2T
'

2T

(gs.)g 1 1 3y 3q 3 4T ln2
1+—

I

——i+ —,—
3X(y)e 1—y-' arctany (1+y')'/' y'/ y'] 2y' Qir

X
3 3 6

1+ +
1—y 'arctany 1+y' y' y' y'

m' T' 1 ( 3 y' 9-
i1+—

3 e 1—y
' arctany E y' (1+y')'/' y'

for T((T,o. (39)

Z. Troriseerse t(Vme

dQ 3"
C i(n, ql) = —p(n 0) (1—3s')

3X(y) 4ir 1+y's' 1—y
' arctany y'

' ds 1—3s' 1 3s'
— — -p —-

I

(1-")-'
I „-, --, , (36)

3X(y) ger o e (1—s')'/' e/' I 1+y's' 1—y 'arctany y'

arctanp
X(y) = and, p =g). (37)

3(y—arctany) y'

The asymptotic forms are given as

nz. ' 6 / 1( e ' 1 4 1 e ' 1 26 124 1( 4
1+—1— +—11—

1&X(y) 2 2T y' 1S 315X(y) y E 15X(y)i
for T&T.o, (38)

where

0,'g oo

- -=g(y) 1-
Ay' 2T

dnC2(n, ql) cosh '
2T

(40)

3 dQ s'(1—s') cos'y
Co(n ql) = . — —p(n, &)—

1—g(y) 4~ 1+y's'

3y' ' ds

2L1—g(y)]Qir o e (1—s')'/'

&so(1 so)
Xexp —— 1—s' ' — 4ij 1+yoso

Tlm asyrnptot1c expressions are

g(y) = ly '(—y+(y'+1) ««any). (42)

, , 1(»i'l)+y-'~-
(y'+1)y '—— I+-I I

b'+1)'y '——
2T 2 2T 5L1—g(y)j/ 2&2T k 5 (1—g(y)) j

for T& Tco, (43)

3/s. h y' x' T' 1 y 12 (T y+ f(3)l-
2L1 g(y)l~ 2L1+ (1+yo)1/ojo 3 e (1+ye) i/o 1+(1+yo) i/2 g~

'

l e 1+ye I

for Tg&T„. (44)

V. CONCLUDING REMARKS

%'e have thus far calculated the attenuation coeKcients of ultrasound in the critical region by making use of the
conjecture that the eRect of 6elds in a pure type-II superconductor is similar to that of a uniform current. The
result shows that the attenuation coefficient drops sharply in superconducting region (with an in6nite slope), which
is in sharp contrast to the behavior in a dirty type-II superconductor.
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Numerically we have

For small co @re have

l

C„=— dy li du; b(1—u —u.—u )f(u;) &'+"&t',

0 0 i=1

Co—0.90,

Ci= [in(1+%2)j'=0.&7,

C,=—ln(1+&2)=0.622.'
V2

(A12)

(A13)

A( ) (It)!').. 4v 3(!A!),-C, 2C,
1+ ln + + ln — — for ~((e

~'(0) e' e 8 e' 3~' 3e' e

The coefFicients of (!6!'),diverge more strongly than that of (!6!'),does. Since Ci is somewhat smaller than 1,
we expect that the analogy we have discussed is not exact (valid only for 6 -+ 0).

It is interesting to note that the low-temperature behavior of fa(p), which appears in the definition of the parame-
ter f(,, is also expressed in terms of C~ and C3 given above .tptte also point out here that the most divergent parts of
the higher-order terms in 6' behave like ((!6!'"), /e')co 'l" '~ for small to.
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Bilinear Reflection of a Double-Frequency Laser Beam from a
Superconductor

K. K. Gm TA Azo SUDHAzsHU S. JHA

2 ata Inststnte of Fnndamental Research, Bombay, Indsa

(Received 29 November 1966)

The bilinear current density induced in a superconducting metal by a laser beam with frequencies c01 and
~& has been calculated. The calculation is done within the framework of the BCS theory of superconductivity
at temperature 7=0'K. It is shown that in the superconducting state of the metal the component of the
induced current density, varying with the difference frequency Q=au~ —cog and the wave vector Q =g1—q~,
where g, and q~ are the wave vectors of the fundamental fields in the metal, divers considerably from the
corresponding component in the normal state of the metal when AQ is of the order of the energy gap 25.
1n ttus paper only that special case is considered where the wave vector Q is such that itQey((2tt, er being
the Fermi velocity of the electrons. If the collision frequency 0, of the electrons in the superconducting
state is small compared to 0, there is a sharp peak at AQ =2A in the energy Aux of the light wave of frequency

re@ected from the surface of the superconductor. For AQ)&26, the reAectivities are the same for both the
normal and the superconducting states of the metal.

1. INTRODUCTION

KCK&TI.Y there has been considerable interest in

ca]culatlngl 2 and n1easurlng thc reQcctlvlty of

thc second harmonic wave generated by an intense

laser beain incident on the surface of a normal metal.

$f the incident wave contRlns R slnglc frequency u and

jf jt is rcplcscntcd by R plane wave which is polarized

perpendicular to the plane of incidence, the an1plitude
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of the bilinear current density induced in the metal,
varying as t, ""' has the form

J" (2~) = —«(~+~)V[E(~) E(~)] (1 1)

wh««(~) is the ~~pl~tude of the elect»c feld;n the
metal, varying as e '"'. %hen the incident wave is
polarized in any other direction, there is an additional
term which is nonzero only at the surface' of the metal
and which arises from the discontinuity in the normal
con1ponent of the fundamental electric field at the
surface. Except near a resonance for the interband
transitions in a metal, it has been shown' further that
onc may %'lite

—28
~(~+~)=, -[e(~+~)—1j, (1 2)
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