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We consider here the transport properties of a pure type-II superconductor in a field close to the upper
critical field H.s, where the order parameter A(r) is small and given by Abrikosov’s solution. By analyzing
the second-order correction in A(r) to the ultrasonic attenuation coefficient, it is established that in the
calculation the expansion in powers of A(r) will not be valid. The above situation is in strong contrast to

the case of dirty type-II superconductors.

I. INTRODUCTION

ROM a theoretical point of view, it is often conven-
ient to classify type-II superconductors in two
groups: clean (or pure) ones, e.g., pure intrinsic super-
conductors such as Nb and V, and dirty ones, including
most extrinsic superconductors such as alloys and metal-
lic compounds. In the field region close to the upper
critical field where the order parameter is small, it is
natural to consider A(r) as a small parameter in discus-
sions of equilibrium as well as nonequilibrium properties
of type-II superconductors. In fact, in the dirty limit
such expansions in powers of A(r) are possible and the
transport properties are explained in terms of gapless
superconductors.'~* However, in the clean limit we
expect there are differences in electronic properties from
those in the dirty limit. For example, we know that the
k2 parameter, which appears in the expression of the
magnetization,

—4rM = (H— Ho)/(22*(H)—1)B4, Ba=1.16 (1)

diverges like Int~! as ¢=T/T ., approaches zero in the
clean limit,5 whereas in the dirty limit, xs converges a
finite value at ¢=0.

Recently de Gennes et al.,% in their calculation of the
density of states up to the second-order terms in the
order parameter, found that the density of states in a
pure type-II superconductor in the high-field region has
a logarithmic singularity at zero excitation energy, and
suggested a possible way of detecting this anomaly
through the measurement of the nuclear spin relaxation
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rate. Later, Juranek ef al.” derived a similar density of
states by a more direct calculation.

The purpose of the present paper is to point out a
peculiar difficulty in the perturbation expansion in
powers of A(r), which was masked to a certain extent
in the calculation of the equilibrium properties®8 and
now is revealed in a striking way in the calculation of
the nonequilibrium properties (e.g., ultrasonic attenua-
tion coefficients). We assume here for simplicity that
the electronic mean free path /is infinite, though we be-
lieve the general conclusion retains validity if I3>&,
where £, is the coherence length.

As is well known, in the high field region the order
parameter A(r) is given by Abrikosov’s solution® (for

H||z axis):
A= T Cactrmg, (o),

n=-—oo

‘lbn(x) = EXP[‘“ EH(x—kn/ZEH)zj ’ (2)

where C, and % are constants.

A simple spectral representation of the second-order
diagrams in A(r), which represent correction terms to
thermal products, is obtained in the next section. Mak-
ing use of this representation, it is not difficult to calcu-
late various transport coefficients. As a simple example,
we consider the ultrasonic attenuation coefficient of the
longitudinal wave. It turns out that the coefficient of
(] A(r) | 2)av in the attenuation coefficient is exactly zero.
A similar result can be obtained for the case of thermal
conductivity. We interpret the above results as an in-
dication of the fact that the power-series expansion does
not apply even when T is close to T..

II. SECOND-ORDER EFFECT IN A(r)

The transport properties of the system are usually ex-
pressed in terms of retarded products (e.g., electric con-
ductivity is given in terms of retarded products of the
current operator). Since retarded products are obtained

"H. J. Juranek, L. Neumann, and L. T ] .
459 (1966). »an ewordt, Z. Physik 173,

8In Ref. S, it is noted that the expansion of the fre i
powers of A(r) breaks down at T'=0. e energy in
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o -w " - diagrams which ap-
pear in the calcula-
‘ + tion of the various
'I;" w A A -y correlation functions.
{0) (b)

from corresponding thermal products by analytical con-
tinuation,® we shall consider here the correction terms
due to the existence of small A(r) to the thermal pro-
ducts. In the following, we shall restrict our considera-
tion to the thermal products of the density operator for
definiteness, though similar reasoning applies to any of
the thermal products. The thermal products of the den-
sity operator are expressed in terms of Green’s functions
as

<£n,nj>(q,v>=§ > / & f B Gt

XGapw (' 1)+ Fop(t-1)Foy*('-1) ], (3)

where G, (r,r') and F,(r,t") can be expanded in powers of
A as!®

Go(r,r) =G (r,r")— / Gt DADG-.(s,])
X AN(S)GO(s,r))d%d3s, (4)

F(r,t)= / GLe,DADG_ (' D%,

T o (o [ [ E2 / &k [ A
e =2 / d r/ ¢ S/ a l/ (2n)? (27r)3/ (2m)3

CYROT AND K. MAKI

156

and

s d3P etp - (r—s)
Gw°(r,s)=expl:ie / Al -dl] / , (3)
Jr (27!')3 1:(-0—'2

which is the Green’s function in the normal metal.
The vector potential A(r) is given now by A(r)
= (0,Hx,0) and

w,=27T(n+3%),

and £=$%/2m—u. We have assumed here that the ex-
ternal field H is directed along the z axis.

Substituting Eqs. (4) and (5) in Eq. (3), we have two
different integrals, which give rise to the second-order
terms in A(r) as given in the diagrams in Fig. 1.

First, we shall discuss the integral corresponding to
Fig. 1 (a), which comes from the G,G_. term in

Eq. (3):
=15 [0 o[

X / &' ¢ G, 0(1,8)A(8)G0, (1,5)
XA D(Gan(lLr)Go, (1) (7)

wn' =wp—w, 6)

In the above expression I,(q,») is the Fourier trans-
form of I,(rx'), for r—r’, which is averaged over the
bulk specimen of volume V.

We transform the integral as

X (iwn - E)_l (Z.wn_l" E"‘v : k)_-l[i(l-’n~ 5_ \A (k+k,)]—l[i¢0n, - E"' \a (k+k'+Q) ]_1

Xexp[ik' (r—s)+ik’- (r—1)+2ie / s A(l’)dl’:lA(s)A*(l)

a3
n J (2m)3

where

4 &k [ d%
I(al,a2)=-/d3r/das/d3l/ /
1% (2mr)3/ (2m)3

/ dal/ da2(7fwn'—£) l(wn'f‘g‘*‘zal) ll:wn"‘s 2<011+012)] L

X [iwn'— £~ 2(arta2) —v-qJ U (as,00), (8)

XI:exp(ik(r— s)+ik- ’(r—l)—!—Zz’e/ls Al)- dl’)A(s)A*(l)B(Zal— v-k)8(2az—v- k’)]

4|c| dr’,

ddr | ds, | di.

elkz (rz—sz)+ik’z (ra—lz)

X 8(2a1—v sind [k, cosp-eH sing(s,+1.) [)5(2es—v sinf [k, cosp—eH sing(s,+1,) J)eeH (=D (9)

9 See, for example, A. A. Abrikosov, L. G. Prokov, and 1. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics

(Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1

963).
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Here we have substituted for A(r) the expression

A(r)=CeH=* (10)

without loss of generality, thanks to the orthogonality
of the function. v is the Fermi velocity and 6, ¢ are polar
coordinates describing v where the polar axis is taken
along the z axis (i.e., in the field direction). Furthermore,
in the above transformation we have made use of the
expression

2ie/s A()dl'=ieH (s, +1.)(s,—1,). (11)
1

The final integrations are easily carried out and we have

cl* 1
I(Cil,az) = /dsi‘

Vr eHv? sin?0 cos¢p

2i(artaz)r,  ar2e "t Hapeit
Xexp(— )
vsind cos¢p  v%H sin?6 cosg
[C|® 11
= d(artag)——
Lx veH sinf

Xexp[—2(ai/v(eH)'? sinf)?], (12)

where we set V=L,L,L,.
For the more general expression of A(r) given in Eq.
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(2), we have

d3p 0
I,(qp)= Davl _ a,Q)da
@)=(a19.1 % [ 5[ sas)

X (twnta— &)~ (iw,+a+ £~
X (iwn”‘a_ S_l) (iwn’_,—a_ E—V‘ q)“l ’ (13)

where the angular-dependent spectral function is given

by 1 a \?
ple )= (W/m)e sinﬁexp[_ <e sin@) :I ’

e=(v/v/2)(eH 2)'/2.

Here we have replaced ¢ in Eq. (8) by (§—a), which cor-
responds to the change of integral variable p to p-+k.
From Eq. (8) we immediately see that the above in-
tegral has the same form as that corresponding to the
case of a superconductor carrying a uniform current,
except that the spectral function p(a,) is now given by
Eq. (14). In the case of a uniform current we have!l

(15)

where ¢, is the momentum of the condensed pair. We
note that the spectral function given in Eq. (14) has a
sharp peak for =0 (or, in the direction of the field),
which signifies that the quasiparticle running parallel
to the field has a singular density of states similar to the
one in the BCS state.

Second, the integral corresponding to Fig. 1 (b),
which comes from F,F_, terms in Eq. (3), is computed
in a similar way and we obtain

(14)

pul,2) = 8(a—v- qs),

T
Ian="% / ds’/ da“‘/ ‘”/ &7 69 (8 A(S) G ()G () A (DG (L)

&
=itz [ 2%

where p(e,Q) is again given in Eq. (14).

It might be worthwhile to note that the essential dif-
ference between I, and I is due to the different ways
w and o’ appear in the denominators, which is obvious
from the diagrams.

III. ULTRASONIC ATTENUATION COEFFICIENT

The above analysis can be carried out for any thermal
product, such as that of the density correlation, current
correlation, etc. Here we shall consider the ultrasonic
attenuation coefficient of the longitudinal wave for
qi>>1, which is directly related to the thermal product of
the density operators. Here ¢ and / are the wave number
of the sound wave and the electronic mean free path,

/ plesQde(ion+a— £ ((wutat£) 7 (iwn +at E+v- ) (i, +a— E—v-q)~1

(16)

respectively. In this case the attenuation coefficient is
given by!2.13
2\ 2

d (&) s,

WPionVs 3m

a=Im[ )

where po is the Fermi momentum. ([%,2])(q,w) can be
obtained from ([#,%2])(q,») by analytical continuation.
Gathering here the results of the previous section and
carrying out the integration over ¢ (here we substitute

11 The above spectral function is easily derived from the Green’s
functions given in K. Maki and T. Tsuneto, Progr. Theoret. Phys.
(Kyoto) 27, 228 (1962).
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13 L. P. Kadanoff and I. I. Falko, Phys. Rev. 136, A1170 (1964).



436

a*p/(2m)3=[mpo/ (2m)*]d£d2, we have
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Wntwn’ (JA[%)ay

mpo a2 1 )
<[n,n3><q,u>=;;{1+ ———~7r1‘2|:1—

driveq n |wa] |wa’]

2
1 2

X/_: p(a’md“<(wn—1ia)2 i (wn—ia)(wn’—ia)>:”

2m? (2nT)2
where again w,=27T(n+3%), wn'=wp—w,, and

0

I(e,,2)=

—~00

IT /1 @,  ia 1 o
N I
w, 2 2«T 2xT 2 2xT
For a low-frequency sound wave (w&#T.), we have
(after analytical continuation)

de (e9) ¢'<1+ w”+ia)
P { 2 2T 20T

0 o)
<En,n]>(q,w)=’:—i{1+ / rira
X[iw—-z—i%ﬂo,ﬂ)—f-O(&)]] , (20)
where )
- 9>¢'(1+ici) (1)
1(0,0)= da p(a, o)

—00

We shall point out here two unsatisfactory features of
the above result.

(2) I(0,Q) is finite. Since the screening of the electric
charge is described by the equation

- qu)q: 477([”;”])(‘130) (I)q )

where ®, is the Fourier transform of the scalar poten-
tial, the above result indicates that the screening be-
havior is modified drastically because of the set in of
superconductivity contrary to our experience. For the
BCS case with A=constant, the coefficient of [A|?
vanishes identically for w — 0.

(b) The imaginary part of I(w,2), which is propor-
tional to w, vanishes identically. This implies [see Eq.
(17)] that the attenuation coefficient is not affected up
to A% However, we know that in the BCS state, be-
cause of the singularity at w=2A in {[(#,n])(gw), the

(22)

2@{ 1+ / Z%ra(v- q)l:wv—MI (wy,Q)]} )

(18)

expansion as used above gives unphysical results, as is
easily seen from the fact that in the BCS state the
attenuation coefficient is given by

arfa*=2f(A/T),
f(x) = (ez_*" 1)—1 )

which cannot be expanded in powers of A2

(23)

IV. CONCLUDING REMARKS

We have seen above that the calculation based on the
perturbation in powers of A(r), which is useful in the
dirty type-II superconductors, gives rise to an unreason-
able result for the ultrasonic attenuation coefficients of
a pure type-II superconductor. In order to avoid this
uncomfortable conclusion, we suggest that in the case
of a pure type-II superconductor, the density of states
has a strong irregularity for w~A, which inhibits a sim-
ple perturbational approach as given above.

It is instructive to remember that in the case of the
simple BCS state we have already encountered a similar
situation; the perturbational expansion does not repro-
duce Eq. (23). Therefore, in the study of the transport
properties of a pure type-II superconductor, a more
careful analysis of the analytical behavior of higher-
order terms in A(r) is required. We mention also that the
difficulty we meet here is of a similar nature to those
in deriving the time-dependent Ginzburg-Landau
equations.!4
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