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Effect of Localized and Resonant Impurity Modes on Energy Gap and.
Transition Temperature of Isotropic Superconductors
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The valence eGect caused by a small concentration of light or heavy impurity atoms, giving rise to high-
frequency localized modes or to low-frequency resonant modes, respectively, is studied in the framevmrk of
the Eliashberg electron-phonon model for an isotropic superconductor. The impurity atoms modify the
phonon-induced electron-electron interaction and also the pseudo-Coulomb potential. The corresponding
change Ei(cc,co ) of the interaction kernel in the integral equation for the gap function of the impure metal
A(op) is assumed to be small. Kith a perturbation calculation, a linear integral equation is derived at zero
temperature for the impurity-gap function b,~(~) =h(ar} —60(ap). Assuming a single Lorentzian (or a super-
position of tvro) for the phonon distribution of the host lattice, and an Einstein distribution for that of the
impurity atoms, the integral equation is solved by Neumann's iteration procedure. The change of the gap
parameter, a&o=a&(co = noo), is calculated as a function of the impurity-mode frequency co», the electron—
impurity-mode coupling parameter 0.'(coii), and the change U'i. of the pseudo-Coulomb potential. For a
special case, dilute lead-indium alloys, Ai (co) is evaluated using the phonon spectra found from tunneling ex-
periments. To determine the effect of impurity atoms on the transition temperature T„onestarts from
Rliashberg s gap equation for finite temperatures, @which has solutions for T&T, and which becomes linear
near T,. The transition temperature is considered as an eigenvalue parameter. An exact formula for the
change oi this parameter ST„caudseby E& (ca,ca), is derived by applying a theorem of Fredholm to the in-
homogeneous integral equation for the impurity-gap function at the transition temperature. The 6nal result
for bT, contains, besides the interaction kernels of host and impurity lattice, the solutions Ao(cu, T,) and
3,0(w, T,) of the gap equation and of the transposed gap equation of the pure metal, respectively. The theory
is applied to dilute alloys of lead with In, Sn, Sb, Hg, Tl, and Bi.The results for BT, are discussed using the
available experimental data for these alloys.

I. INTRODUCTION

N the contemporary theory of superconductivity
- - two important parameters, namely, the energy ho
necessary to break up a Cooper pa1r and the trans1-
tion temperature T„depend on the electron-phonon
(el-ph) interaction n'(&o) g(ro). ' ' The function g(co)
is the phonon density of states and rr'{co) is the in-
teraction parameter depending on the energy (a of
a phonon exchanged in an el-ph interaction. Further-
more, energy gap and transition temperature depend
on the direct interaction between tvro electrons, that
is, on the pseudo-Coulomb potential U.' It is the
purpose of this paper to study simultaneously the
eRect of light or heavy impurity atoms, giving rise
to localized OI' 1csoQant Inodcs, rcspcctlvcly, on
the energy-gap function d(ro), and in particu1ar on
the gap parameter ho ——4(co=Do), and on the transi-
tloIl tcmpcrRtuI'c 7& of Rn IsotI'oplc supcl conductor.
Whereas impurities aRect the shape of the gap function
according to the change of u'((o)g(ro), the effect on
T, is a gross property of the impure metal depending
on a well-dchncd average over the energy-gap func-
tion of the host lattice Rnd the frequency-dependent
electron —impurity-mode interaction.

The change of 60 and T, caused by this interaction
and by the modi6cation of the electronic structure

' G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)
LEnglish transl. :Soviet Phys. —JETP 11, 696 (1960)j.' J. R. SehrieGer, D. J. Scalapino, and J. W. %'ilkins, Phys.
Rev. Letters 10, 336 (1963); Phys, Rev. 148, 263 (1966).' P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
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/which, for a spherical energy band, is characterized
by two parameters, the electron density of states X(0)
at the Fermi surface and the Fermi momentum kej
is called the "valence" cRcct. It is linear in the impurity
concentration and has its origin in a small but basic
change of the electronic and dynamic properties of the
lattice. This change is sometimes unimportant in the
region of small impurity concentrations where the
"mean-free-path" eRect, i.e., scattering, strongly
RRects T,.As pointed out by Anderson, 4 and studied in
detail by other authors, ~s elastic impurity scattering
leads to an admixture of Bloch functions of the conduc-
t10Q bRnd Rnd, thclcfoI'c, thc formRtloQ of CoopcI' pRII's
occurs between time-reversed scattered states, which
are exact one-electron states of the impure metal. If
the energy gap of the pure metal 1s Rnisotropic in h.

{wave vector) space because of an anisotropy in the
effective electron-electron (el-el) interaction, the energy
necessary to break up a Cooper pair in the impure metal
is always smaller than thc maximum binding energy
of a pair in the pure metal. Therefore, 2{) Rnd T, de-
crease vnth increasing impurity concentration until
impurity scattering becomes so strong that Bloch states
from the entire Fermi surface become, with equal
probabllityy RdIIllxcd Into R scattcI'cd-stRtc w'Rvc func-

4 P. W. Anderson, J. Phys. Chem. Solids 11,26 (1959).'T. Tsuneto, Progr. Theoret. Phys. (Kyoto) 28, 857 (1962).' C. Caroli, P. G. de Gennes, and T. Matricon, J. Phys. Radium
23, 7O7 (1962).

7 D. Markowitz and L. Kadano8, Phys. Rev. 121, 563 (1963).'P. Hohenberg, Zh. Ek.sperim. i Teor. Fiz. 45, 1208 (1963)
LEnglish transl. : Soviet Phys. —JETP 18, 834 (1964)].
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tion having energy L~' Es (=Fermi energy). Under this
condition of "strong scattering, " the mean-free-
path effect saturates. Hohenberg finds saturation if
2s.T,r,«1 (or if l,/)s«1; /, =mean free path due to
impurity scattering; ~„=l„v~,where v~ is the Fermi
velocity); whereas Markowitz and Kadanoff, r because
they use the correct cutoff frequency in the gap equa-
tion for the impure superconductor, 6nd saturation if
o/nr, «1, where o/D is the Debye frequency (the magni-
tude of the gap anisotropy does not enter the satura-
tion criteria). For a weak-coupling superconductor, the
Markowitz and Kadanoff criterion requires the im-

purity concentration to be one order of magnitude
larger than that given by 1,/ps«1. s It is an experimental
fact that the mean-free-path effect saturates when /„
becomes comparable with the coherence distance

&s,
"" corresponding to an impurity concentration of

the order of one percent. For larger impurity concentra-
tions, the valence eRect determines the change of T,.

To study the valence eRect, a straightforward pertur-
bation procedure is applied to the Eliashberg" gap
equation and to the equation for the renormalization
parameter. The perturbation consists of a small change
of the interaction kernel. The change of the phonon-
induced el-el interaction and of the pseudo-Coulomb
potential completely accounts for the effect of impurities
on the energy-gap function and the transition tempera-
ture of an isotropic superconductor. "It has been shown

by Tsuneto' tha't elastic impurity scattering in itself
does not affect the energy-gap function found from the
Eliashberg equation (isotropic superconductor). At zero
temperature (Sec. II), the result of our perturbation.
procedure is a linear inhomogeneous integral equation
for the impurity-gap function At(o/). The solution of
this equation, and in particular 6~0, will be discussed in
Sec. III assuming that the interaction kernel of the host
lattice is characterized by Lorentzian phonon distribu-
tion and that the impurity modes have an Einstein
distribution. This simple phonon model is sufficient to
study, e.g. , the dependence of Aqo on the impurity-mode
frequency ~~~. For the application to a concrete case,
dilute lead-indium alloys (Sec. IV), the phonon spec-
trum is approximated by a superposition of two Lorent-
zians, using the results of Rowell, McMillan, and
Anderson'4 for ts'(o/)g(o&). In Sec. V, a perturbation

technique is applied to the finite temperature-gap
equation to derive an exact formula for the transition
temperature change. The theory is applied to dilute
alloys of lead with In, Sn, Sb, Hg, Tl, and Bi using
proper values for the three impurity parameters o&yi,

cs (o/tt), and Ut.
Before the valence effect is discussed in the framework

of the Eliashberg electron-phonon model, let us mention
the Bardeen-Cooper-Schrieffer (BCS) result for the
interaction (BCS notation)

One finds

Vss =+Vo if
~
es ~, ~

es [ (»,
=+Vt tf (es[, [es ](~tt,
=0 otherwise.

1 Vt/Vp

App 1V(0) Vp 1—1V(0)Vt log(o/tt/Mt)
(2)

where A, s
——2o/t exp[—1/E(0)Vs7. The impurity-gap

parameter A&0 is approximately linear in V& and is
almost independent of coii.

II. PERTURBATION CALCULATION OF THE
IMPURITY-GAP FUNCTION (T=O)

In the Eliashberg theory of the electron-lattice
interaction in super conductors, the effective el-el

interaction is not a constant, as in the SCS theory,
but it is a frequency- and wave-vector-dependent
function that can be written in terms of the dynamic
dielectric constant of the electron-phonon system. "
If one assumes the validity of the random phase approxi-
mation to describe the effective el-el interaction, the
set of coupled integral equations for the gap function

A(o/) and for the renormalization parameter Z(o/)

are given by

[1—Z(o/) 7o/= do/' Re — /r &"(o/, o/'), (4)
(~~2 g~s)1/2

~(~)= den Re
Z(o/) (~~2 +&2)1/2

X [E+'"(o/,o/') —U7, (3)

where K~'"(o/, o&') represents the phonon part of the
interaction kernel and U is the pseudo-Coulomb poten-
tial, which includes interactions between electrons
outside the energy interval o/( ~o&,

~

around the Fermi
surface.

Let us now assume that for a pure metal the solutions
of Eqs. (3) and (4), Ap(o&) and Zp(o/) are known. These

I'roceedhngs of the International Conference on L,attice Dynamics,
Copenhagen, 1963, edited by R. F. Wallis (Pergamon Press, Inc. ,
New Vork, 1965), p. 726."J.R. Schrieffer, Theory of Superconductivity (W. A. Benjamin,
Inc. , New York, 1964), p. 148.

' For example, in Al with 1% Mg the residual resistivity
p, =2.2X10 ' 0 cm, corresponding to i,/$0(All 0.2 and T (dD 2. —
The value of p„is taken from Ref. 10.

"A. Channin, E. A. Lynton, and B. Serin, Phys. Rev. 114, 719
(1959)."D. P. Seraphim, C. Chion, and D. J. Quinn, Acta Met. 9, 861
(1961)."G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)
)English transl. :Soviet Phys. —JETP 11, 696 (1960)j.

"For a discussion of this point I would like to thank Professor
H. Suhl."J.M. Rowell, W. L. McMillan, and P. W. Anderson, Phys.
Rev. Letters 14, 633 (1965); see also J. G. Adler, J. E. Jackson,
and B. S. Chandrasekhar, ibid. 16, 53 (1966). The possibility of
observing locajized modes in dilute lead alloys with the help of the
tunneling technique was first suggested by A. A. Maradudin, in
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solutions are determined by the interaction kernels of
the pure metal, i.e., by Uo and by the kel'nel functions
E~p" which are conveniently written in the form

E'pp (G)&Gl) =P Xp"

00
Ofp

d og"(~o)—
0 2

1 1
x -~, (5)

(op+or'+a) —z0+ &op+(o' —(o —s0+

(os"/n.

g.(~)=
M Mlg 2 M2c

2' (6a)

and where the el-ph interaction constant Xo" is given by

where the phonon distribution g„ofbranch ~ is given

by the Lorentzian

homogeneous deformation of the lattice will change the

gap function and the renormalization parameter. As
for point defects, their impurity-mode distribution is
often sharply peaked. "Then, it is a good approxima-
tion for the calculation of the impurity-gap parameter
6~0 and for the transition temperature change bT, to
assume an Einstein distribution, g(&art) = 8(a&=~tt). For
the calculation of the energy dependence of the im-

purity-gap function, At(co), it is, however, important to
take the "spreading" of-the impurity™ode distribution
into account. To this end, either the Einstein results

ht(~, grt) and Zr(~, &ott) are integrated over g(s&tr) —the
integral equations for A~ and Z~ are linear" —or the
impurity kernel Et(~,s&') is derived from a Lorentzian
distribution of impurity modes. With the impurity-mode
distribution given by 5(~—&ott), the perturbation of the
phonon-induced interaction has the form

Xp"=2(x (Mr )/(dr (6b)

with the following expression for the frequency-depend-
ent el-ph interaction parameter":

CV(0) gD Mr"

n„'(~)=
6m'kg'co

~" leK+pt"I'xZ ~(2&'—Iq+KI) (&)* 4m lq+Kl e (q)=x

Here k~ is the Fermi momentum, qD is the Debye wave
number, g~" is the matrix element for the electron-
phonon interaction, K is a reciprocal lattice vector, and

H(x) is Heaviside's unit step function: H(x)=0 if
x&0, H(x)=1 if x&0. Equation (5) represents a
convenient form of the phonon-induced interaction
since the integration is readily carried out:

pa
E'pp"((u, (a') =P ((at"—ups")

g

(
1

X ~ . (g)
"1+~+% ZM2 Ml"+M Gl 1C02

This form of the kernel has been derived by Anderson
and Morel3 from the time dependence of the retarded
phonon-induced interaction. It is an excellent approxi-
mation to the kernel functions used by other authors'~ "
for the calculation of the tunneling density of states of
lead.

A perturbation of the interaction kernel of the pure
metal caused by impurities, other point defects, or by a

"D. J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev.
Letters 4, 102 (1965)."J.M. Rowell, P. W. Anderson, and D. E.Thomas, Phys. Rev.
Letters 10, 334 (1963).

'8 J. R. SchrieR'er, D. J. Scalapino, and J. W. Wilkins, Phys.
Rev. Letters 10, 336 (1963).

"W.L. McMillan and J.M. Rowell, Phys. Rev. Letters 14, 108
(1965).

E'p E'pp =E'tp (M,M)=

X
1 1

Mtl+&d+(d sO+ G&tl+GO —M —sO i

&+p'"(~,~'), (9)
Eo

where Ej.and Eo are the number of impurity atoms and
host atoms per cubic centimeter, respectively. The
second term in Eq. (9) is omitted if the impurity atoms
occupy interstitial sites. The electron —impurity-mode
coupling constant X& depends linearly on E&~ Only for
the special case of light impurity atoms arranged in a
periodic lattice can Xt be evaluated from Eq. (9)."In
general, ) ~ must be considered as an unknown parame-
ter. The perturbation of the Coulomb interaction is
given by

81V(0) bkp
Vr= U —Os=A +8

E(0) kg

' For localized modes (ligh™purity atoms), co» is larger than
the cutoff frequency of the host lattice and an Einstein distribu-
tion is a good approximation to the localized mode distribution.
The distribution for resonant modes can also be sharply peaked,
provided MI —Mp)&Mp (Mp ——mass of host atoms, MI ——mass of
impurity atoms) as can be seen from the theoretical work of R.
Brout and W. Visscher (Phys. Rev. Letters 9, 54 (1962)~."D.J. Scalapino and P. W. Anderson, Phys. Rev. 133, A921
(1963).

"One 6nds
4' e' ' 1 Z12%1lgsl'=, 2, , ~ ~'(Vro).~ (v)

Here Z& is the charge of an impurity atom and car(q) is the fre-
quency of the longitudinal branch of the impurity phonon band.
The function S'(g,rp) accounts for the screening of the electron-
impurity-mode interaction. If the interaction is screened by
exp( —r/rp),

S(q,rp) = exp —— cosgr — 1+— (dr/r).
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Q
— Up,

-a (1+g2)

ore2Ã(0)
8 7

kp'

8
/3= —log 1+—

8

I
d1(») =F(»)+

Zo(») ~oo

de

~1'—~10
XRe Z+.0(»,»'), (12)

(»&2 A &2)1/2

F(») = d~' Re
Zo(») &00

Ap'

E+1»,»
(»I2 A &2)1/2

~oo

dko' Re E+0»,»
(»~2 A ~2)1/2

~ ~oo

~10~00
d(0

(»~2 A 2) 3/2

Xpdoo++0(»i» )» A+0(»iA00)] Z1(»)do(»)

~ e

Since a' is of the order of 0.4 for superconducting metals,
A)0 and BgO.

With Eqs. (9) and (10) the perturbation calculation
proceeds by writing the interaction kernel of the impure
metal in the form

+y(»i» )=+go(»i» )+&lty1(», » ), (11)

where e is a smallness parameter, corresponding to the
impurity concentration, and where E+——E+'"—U
Z =E 0".The gap function A(») and the renormaliza-
tion parameter Z(») of the impure metal are also written
in this form. If one substitutes Eq. (11) into Eqs. (3)
and (4), one finds equations for A1(») and Z1 (»)":

FIG. 1. Real part of the energy-gap function of a pure metal
characterized by a I.orentzian phonon distribution centered at
co=co1 and having half-width cod=0.2co1. Curve (a) represents the
approximate solution of the gap equation given by Kq. (15).
Curve (b) is the exact solution, ignoring renormalization. The
parameters of the interaction kernel are given by ) =035 d
Uo= 0.:t.

an

can be presented in closed form, if one assumes a
Lorentzian phonon distribution for the host lattice
(Appendix I). For a more realistic phonon spectrum

~ ~
j

e.g., a superposition of two Lorentzians, the first term
of F(») must be calculated numerically. The two
equations for A1(») and Z1(») are merely coupled via
the impurity gap parameter 610.

III. SOLUTION OF THE IMPURITY-GAP
EQUATION (WEAK COUPLING)

In the case, where hpp(&A&1", the quantity Ap' under
the square root in Eq. (12) may be replaced by &00.
Then the two equations for the real and imaginary part
of A1(») decouple, and the mathematical problem con-
sists of solving the linear inhomogeneous integral
equation for Re{51(»)}.To this end, a successive
interaction procedure is applied which results in the
Neumann series. '4 The first term of this series, cor-
responding to the zeroth-order solution for Re{61(»)}1
is the homogeneous part F(») which consists of four

and
roy

Z1(») = ——
~oo

d»' Re E' 1(»,»')
(»~2 +~2)1/2

~10~00M
dM-

(»I2 A 2) 3/2

XLZ-0(», »') —It 0(»,A00)] (14)

Robe(ca))
411

lO+-

These equations are correct for small impurity con-
centrations, independent of the strength of the electron-
phonon interaction in the host metal. Equation (12)
is a linear inhomogeneous integral equation for the im-

purity gap function. The inhomogeneous part F(»)

2' From hereon the perturbation of gap function and renormali-
zation parameter will be denoted as 61(co) and ZI (co), respectively.

FIG. 2. Real part of the energy-gap function of the pure metal,
including renormalization. For the parameter values of the inter-
action kernel, see Fig. j..

~ G. Hamel, Integralgleichgngen (Julius Springer-Verlag, Berlin,
1949), p. 25.
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terms, F;(o)), where o denotes successively the four terms
on the right side of Eq. (13). For the phonon-induced
interaction given by Eq. (8), the last three of the four
terms are readily calculated. The function Fr((d), how-

ever, contains Ap((o) which in case of a single Lorentzian
phonon spectrum can be approximated by a simple
function, so F~ can also be presented in a closed form.
Then E~po)' consists of a single term and d, o(o)) can be
approximated by the function

&o(oo) = (~op+ ~pc) U(o)) —&oc,
where

COy
—2C02 ( j

U(o)) =-
I +, (16)

2 ~(pl+(o Eo)2 '(pl pp &(po

0.04

(n)

~oo

0.02

-O.OI

I NTERSTITIAL

n-"2
n- I

n=0

3 4

SUBSTITUTIONAL

and where Apo and hpq can be considered as adjustable
parameters (the index K=1 has been omitted)'. For
Zo((o) = 1 and for (o)p/pt&r)'«1, one f)nds by substituting
Ao(o)) into the gap equation for the pure metal:

and

1+-',Xp

App= 2Goy exp
~o—U'o

log(2o)

r/happ)

~pc= ~ooUo
1+Vp log(o), /(pi)

(17)

(18)

The validity of these results has been checked by solving
numerically the nonlinear integral equation for the
pure metal. This result and that given by Eqs. (15)
through (18) are compared in Fig. 1. For Zp(o))&1,
which takes into account the renormalization of quasi-
particle energies caused by electron-phonon inter-
actions, the energy-gap function is shown in Fig. 2.
The ratio Apc/App is also given by Eq. (18). However,
the value of hop is much smaller than that found by
ignoring the renormalization. With the help of Eq. (15),
an analytical expression is found for Fi(M). This result
and those for the other parts of F(o)) are given in
Appendix I; formulas for the renormalization parame-
ters Zp(o)) and Zi(o)) are found in Appendix II. The
results are readily generalized to the more general case
of a multipeaked phonon spectrum. If one knows the
inhomogeneous part of the impurity gap, Eq. (12), the
Neumann series is found by numerical integration. The
first few approximations to the impurity-gap function
are given by

g)( )(o)) P(o) grp( ))

FIG. 3. Impurity-gap parameter as a function of the impurity-
mode frequency co», taking into account renormalization. The
index e denotes the order of approximation in which the impurity-
gap equation has been solved by iteration. The interaction kernel
of the impurities is characterized by 4/Xo =SI/No = O'I/Uo =0.0&.
For the interaction kernel of the host lattice see Fig. 1.

+0.06

(2)
lO

~oo

+0.04

INTERSTITIAL

+0.02

found with one numerical integration, etc. To study
the dependence of the impurity-gap parameter on the
Einstein frequency co», the phonon spectrum of the
host lattice is characterized by a Lorentzian distribu-
tion. This assumption allows for an analytic calculation
of F(o)) It is su.flicient for this purpose, since it is
primarily the interference of b,p(oo') with E+i((o,(p')

which determines the characteristic dependence of 6yp

on co» shown in Fig. 3. A two-Lorentzian phonon spec-
trum of the host lattice would not significantly alter
the ~» dependence of the impurity-gap parameter.
The result for the first few approximations to h&o, shown
in Fig. 3, are calculated under the assumption that the
electron-phonon interaction constant per atom of the
host lattice is equal to that for an impurity atom and
that the pseudo-Coulomb potential remains unchanged.

The effect of a localized mode, centered at ~»= 2'~
and caused by interstitial impurities, on the shape

+)O)((o) =P((d gioo))+ QM

Zo(~)

LRe{J"((o)',A(p&')) }—D,p&') j
&+p(~ ~') (2O)

(o)'o g o) )/p

I

I I

I 2

SUBSTITU T I ONAL

I I
I I I

3 4 5

The impurity-gap parametel 6]p ls in zel 0th order
determined by Re{ji((o= App)}

' the first-order result is

Fxo. 4. Impurity-gap parameter as a function of the impurity-
mode frequency ar», ignoring renormalization. For the parameters
of the interaction kernel see Fig. 3.
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Red,
&

(~)
~oo ———n=0

——»—-n~ l

n 2

0.02-

Fn. 5. Real part of the impurity-gap function for localized
modes (light interstitial impurity atoms) ~11=2'&. For the
parameters of the interaction kernel see Fig. 3.

of the impurity-gap function is shown in Fig. 5. The
renormalization is properly taken into account. At
~=~n+&oo, the impurity-gap function has a square
root singularity when or comes from helot@, because of
Re{E+&(co,a&')) in F~(co) and because of Re{E' q(co, co'))
in Re{Zq(&u)). It also has a square root singularity when
~ comes from above, because of 1m{K+&(~,cu')) in Fq(co)
and because of Im{E &(&o,u')) in Im{Zq(a&)). Figure 5
demonstrates the good convergence of the Neumann
series for all values of co. Structure in the impurity-gap
function is seen at ~~~ and +U.+~~.

IV. IMPURITY-GAP FUNCTION FOR
DILUTE Pb-In ALLOYS

In strong-coupling superconductors such as lead, the
condition 600«~~" is, at least for the transverse acousti-
cal branch, not ful6lled. In calculating the impurity-
gap function for Pbo 97Ino 03 we have, however, made
the approximation that do' under the square root of
Eq. (12) can be replaced by 600. Renorrnalization is

properly taken into account. The spectral dependence
of the el-ph interaction is known for this alloy system. '
For the calculation of the energy dependence of the im-

purity-gap function hq(a&), the following assumptions
are made for the interaction kernels of the pure and
impure metal, respectively:

1. For lead, the phonon-induced interaction is given

by Eq. (8). The corresponding phonon density of states
is that chosen by other authors"" for the calculation
of the tunneling density of states. It consists of two
Lorentzians, one for transverse and one for longitudinal
modes, centered at u~'=4. 4 MeV and at ~y'=8. 5 MeV,
respectively, with half-widths or&' ——0.75 MeV and
co2' ——0.5 MeV, respectively. The coupling consists Xo'

and X02 are given by Eq. (6b), with average values of
the electron-phonon interaction parameter given by
McMillan and Rowell, " n~'=1. 11 MeV and n&' ——1 34
MeV. The Coulomb pseudopotential Uo ——0.11.

2. The perturbation of the phonon-induced inter-
action is derived from a Lorentzian distribution
of impurity modes centered at coqq=9. 5 MeV and

V. PERTURBATION CALCULATIONS OF THE
IMPURITY EFFECT ON THE TRANSITION

TEMPERA.TURK

The integral equation for the energy-gap function at
nonzero temperature has been derived by different
authors. "' The presumptions, namely, a spherical
energy band and the random-phase approximation for
the effective el-el interaction, are the same as those for
the energy-gap equation (3) at zero temperature. Near
the transition temperature, where (T, T)/T, «1, —the
integral equation for the energy-gap function can be
linearized because in the denominator square root,
(&a"—A")' ' the b," term can be ignored. Then, the
linearized integral equation is given by

D((a) =
Z(cu)

+c

do)' Red((o') f(—(u')E+'"((v, o&')

f(ra') E+""(co,—co')——U tanh — + dc'
2 Z(co), 0

A(o)+a)') A((a —co') P„n,.'(a)')g„(co')
XRe —+ —,(21)

++ad' a&
—co' exp(Pro') —1

"H. Gamari-Scale and B. R. Coles, Proc. Phys. Soc. (London)
86, 1199 (1965).

"V. Ambegaokar and L. Tewordt, Phys. Rev. 134, A805
{1964)."Y. Wada, Phys. Rev. 135, A1481 (1964).

with half-vridth re~2=0.25 MeV. The coupling con-
stant n'(&v)=1.34 MeV. This choice of the coupling
constant corresponds to the observation of lowell,
McMillan, and Anderson, ' who found by the inversion
of the energy-gap function of the impure metal that
the electron —impurity-mode coupling constant 0.'(con)
is of the same magnitude as that for pure lead. The
authors do not quote a value for the Coulomb pseudo-
potential in Pbo g7In0. 03. Therefore, the change of the
Coulomb pseudopotential of lead due to alloying vrith
indium has been determined by 6tting the calculated
value of the transition-temperature change 8T, (valence
effect, see Sec. VI) to the experimental value of
Gamari-Scale and Coles."The result is Uq ——0.007. If
it were also possible to determine U~ accurately from
an inversion of the gap equation of the impure metal,
the valence effect 5T, could be predicted.

The results for the second-order approximation of the
impurity-gap function are shown in Figs. 6(a) and 6(b).
The impurity-gap parameter is given by h&0"&/600
= —0.010; the calculated change of the transition tem-
perature is smaller, vT,/T, = —0.0058. The energy de-

pendence of the impurity-gap function exhibits structure
at a&~q jAoo and at ~qq+a&q"+Boo. At these frequencies,
also the tunneling density of states of the impure metal,
which is readily calculated with the energy-dependent
gap function ho(co)+A~(co), " has additional structure
[see Fig. 6(c)j.
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Fro. 6. Real part (a) and imaginary
part (b) of the impurity-gap function
of Pbo g7In0. 03 The indium atoms give
rise to localized modes. For the interac-
tion kernel see Sec. IV. The difference
between the tunneling density of states
of the impure metal and that of lead
is shown in (c).

"0,005—
(c)

where f(a&') is the Fermi-Dirac function and where

P = 1/k T.The renormalization parameter is independent
of h(&v') and is given by the quadrature

the kernel in Eq. (21) is written in the form:

IIt(~p&'; P) = %0(a,a)', P)+ R'&((o,u'; P),
where

(23)

L1—Z(~)]~=

X«tf( ~')E: ~"(~,~')—+f(M')E: "(~, —~')]
o«c I

dG)

2 ~.'(~')f.(~') (22)
0 exp(Pa)') —1

—$27r

The solution of Eq. (21) for P=P, represents the exact
energy-gap function at the transition temperature T,.
The latter plays the role of an eigenvalue parameter in
a Fredholm integral equation of the second kind. The
eigenvalue, i.e., T, for which Eq. (21) has a solution
depends on the interaction kernel. A small change of the
kernel leads to a small change of the eigenvalue parame-
ter for which the linearized gap equation has a solution.
Here, we are interested in the effect of impurities on
T„notin their effect on the energy-gap function. The
calculation of an exact formula for BT, proceeds with
the following perturbation procedure. The real part of

f( ~)&+o'"(~,~')—
Zp((u)

f(cv')E+P" (—~, —co') —Uo tanh, (24)
2

go((v, o&': P) =Re

and where

j.
R~(~,~'; P) = Re f( ~)Z+p"(~,~')—

Zo(a))

Pco Zy(M)
f(s&')E+p"((a, —(o—') —U tanh —Re

2 — Zp((d)

Zy(co)
&(Re{go((o,o)'; P)}+Im — Im{g((o,(o'; P)}.

Zo(co)
(25

The renormalization parameter of the pure metal, Zo(&o),
isgivenbyEq. (22) withe ~"=E p" Thecha ge. onf the
renormalization parameter due to the electron —impurity-
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Re ho(tu)

I I

2 5 8

Fro. 8. Solution of the transposed energy-gap equation
for lead at T=T„arbitrary units.

This calculation of ST, is exact within the framework of
the Rliashberg electron-phonon model of an isotropic
superconductor, which is independent of the strength of
the el-ph interaction. The phonon distribution of lead
and the el-ph coupling constants for longitudinal and
transverse phonons are taken from tunneling data. '
The corresponding result for the solution of the trans-
posed gap equation is shown in Fig. 8. In Fig. 9 some of
the results for ST, are shown which are useful for a
comparison with the experimental data of Gamari-
Seale and Coles." These authors have measured bT,
for dilute alloys of lead with In, Sn, and Sb of the fifth
row of the periodic system and with Hg, Tl, and Si of
the sixth row. They account for the gap anisotropy of
lead' and for the corresponding mean-free-path e8ect
on T, with the help of the formula derived by Markowitz
and Kadano6. ~ The valence eGect is then obtained from
the relation cT,= (8T,),„„—(5T,),„;,. The experimental
results for 8T, are found in the last column of Table I.
In the first case of dilute lead-indium alloys, the ob-
served tunneling density of states has led, via the
inversion of the gap equation, " to the determination
of the phonon distribution in the impure metal and,
thereby, to the following numbers for the impurity
parameters: &utt=9. 5 MeV, n'(artt)=1. 34 MeV. The
third parameter U~ which depends on the change of the
electronic structure, is obtained by fitting the theoretical
value for 8T, to the experimental value of Gamari-

II Tc
IN OK

+0.08-

+0.06-

+0.04-

+OJ02-

-002 "

-0.04-

(tu)()
meV

&Tc

IN OK

+0.04-

+0,02

Scale and Coles. This procedure may be applied to a
metal such as lead which has a nearly-free-electron
Fermi surface. In the vicinity of the Fermi energy, the
value of the density of states is not much diferent from
that for free electrons. The slope of the density of states
curve is, however, negative and, below the Fermi
energy, Anderson and Gold" find a peak in this curve.
This irregular dependence of the density of states is
unimportant for small impurity concentrations. Each
indium atom contributes only three conduction elec-
trons for accommodation inside the Fermi surface,
instead of four of a Pb atom. Therefore, 8k~ is negative
and, since 8 in Eq. (10) is positive, the second term in
the expression for Ut is positive (a'=0.38 for lead' ).
The 6rst term of Ut )in Eq. (10)j is positive if 8X(0))0;
this is the case if the free-electron Fermi surface shrinks.
For Bloch electrons, the change of E(0) with alloying
is not merely determined by the change of kg, or of the
conduction electron density, but also by the eGect of
the impurity potential on the energy of a Bloch state,
E(k) =Eo(k)+Et(k~ U(r)

~
k), where Eo(k), is the

periodic potential caused by an impurity atom. For
free electrons, the matrix element is independent of k
(wave vector) and the density of states remains un-

changed. Here it is assumed that the change in the
electron concentration, or k~, is determined by the

Tmr, z I. bT, (valence efFect) for substitutional lead alloys;
eu&1= impurity-mode frequency, a (co») =electron-impurity-mode
coupling parameter, U1 =change of the pseudo-Coulomb potential.
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-0.04—

ImPurity eau/ca~'
n'(cupel
in MeV

bT, in
m K/at. yo

In
Sn
Sb
Hg
Tl
Bi
TlBi

2.16
2.16
2.16

1.34
1.34
1.34

+0.0023
+0.0011—0.0046

0
+0.0040—0.0176—0.0057

—0.010
+0.016
+0.140

0—0.012
+0.053
+0.017

-0.08-

Fro. 9. The valence efFect on the transition temperature bT,
for dilute lead alloys as a function of (a) the electron-impurity-
mode coupling n(co11), and (b) of the change in the Coulomb
pseudopotential U1.

8 A. J. Bennett, Phys. Rev. 140, A1902 (1965).
'8 J. R. Anderson and A. V. Gold, Phys. Rev. 139, A1459

(1965),
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TABLE II. Estimated value of the change of the density of
states, found with the pseudo-Coulomb potential UI (Table I)
which fits theoretical and experimental results of 8T,.

Impurity

In
Sn
Sb
Hg
Tl
Bi
T13i

UI

+0.0023
+0.0011—0.0046

0
+0.0040—0.0176—0.0057

8kp/ky

—0.0033
0

+0.0033—0.0066—0.0033
+0.0033

0

aÃ(0)/iV(0)

+0.0022
+0.0036—0.0096—0,0110
+0.0077—0.0518—0.0185

VII. SUMMARY

%e have derived formulas for the valence effect of
nonmagnetic impurities on energy gap and transition
temperature of isotropic superconductors, valid in the
framework of the Eliashberg electron-phonon model of
superconductivity. The results go beyond the relation
for the valence effect found from the BCS theory, '0

since the frequency dependence of the phonon-induced
electron-electron interaction and its modi6cation
through impurity modes can accurately be taken into
account. To this end, one must know: (a) The electron-
phonon interaction of the host lattice, n'(a&)g(&o), and
the repulsive Coulomb potential Us. (b) The impurity-
mode distribution g(&oii), the inelastic electron-impurity
coupling parameter ot'(&oii), and the change of the
Coulomb interaction, Ui. From (a) one can construct
the interaction kernel which determines 6p(N) and
Zs(co) through two eoetinear integral equations. If
one knows b,s(c0) and Zs(to), the change of the gap func-
tion caused by impurities 0 i(&o) is given by an ishomo-
geeeogs linear integral equation. The solution of this
equation is easier to find, using the well-known iteration

Short of detailed information on the el-ph interaction in an im-
pure metal, this equation can be useful in discussing the valence
effect as has been shown by D. M. Ginsberg )Phys. Rev. 136,
A1167 (1964); 138, A1409 (1965)j for dilute Sn and In alloys.

valency of the impurity atoms; 8$(0) is then considered
as an adjustable parameter to 6t experimental and
theoretical values of 6T,. The results of this procedure,
which has been described for Pb-In alloys, are given
in Table II. Since for Pb-In the experimental value of
co» is in agreement with the theoretical one found under
the presumption that the interatomic force constants
remain unchanged by substitution, " we assume that
the impurity frequencies for Sn and Sb are also given
by the mass ratios (which are ~Mr /M pb). Then, with
tz'(a&ii) equal to the el-ph coupling of lead phonons of
that frequency, one Ands the values for Ui given in
Table I. For the impurity atoms of the same row as
lead, namely Hg, Tl, and Bi, the change of the el-ph
interaction u (to)g(cu) of lead is ignored and the experi-
mental results for 5T, are entirely attributed to the
modification of the pseudo-Coulomb potential.

procedure of Neumann, '4 than that of the nonlinear

integral equations for the impure metal. Furthermore,
the integral equation for Ai(to) has a form similar to that
of a Fredholm integral equation of the second type.
Therefore, Fredholm's orthogonality theorem can be

applied to the impurity-gap equation near the transi-
tion temperature, in order to 6nd an exact formula for
bT, . This formula has been applied to a number of
dilute lead alloys for which d, s(&o) and Zs(&o) are known
for which experimental results for the valence effect
have been found by Gamari-Scale and Coles. For this
purpose, g(a&ii) can be approximated by an Einstein
distribution. In the case of Pb-In alloys, two of the
three impurity parameters, tdii and n'(a&it), are known
from tunneling data; the third, V~ is found by fitting
theoretical and experimental values of 6T.. For the
other alloy systems we make a reasonable ad ho@

assumption about n'(toit) to compare theory and ex-
periment. It is evident that further experimental in-
formation is necessary, such as the change of the
tunneling density of states with alloying, which deter-
mines the impurity-gap function At(to) and the change
of the electronic specific heat —the relative change of
the electron density of states at the Fermi surface with
alloying is not affected by the electron-phonon inter-
action —to allow for a clear-cut comparison between
theory and experiment in these cases.

Finally, let us mention some points of interest for
this comparison. In calculating Ai(a&) and 5T„onemust
know the correct values of the gap function d, s(&e) and
of T„both of which are completely determined by
n'(a&) g(to) and Ue of the pure metal.

The impurity-gap parameter Bio and 6T, depend
strongly on the impurity-mode frequency co» if it is
smaller than the cutoff frequency of the phonon spec-
trum of the host lattice (Figs. 3 and 7). For larger
values of ~», corresponding to localized impurity modes,
6&0 and 5T, depend only slightly on co». Therefore, a
possible increase of the transition temperature due to
localized modes is limited by the electron —impurity-
mode interaction constant tt'(o&ii). Because of the
inelastic nature of the interaction, "one expects n'(a»i)
to increase with decreasing mass ratio m/M; (m= elec-
tron mass, M;= impurity mass).

In comparing the relative change of the transition
temperature, bT,/T„with that of the gap parameter,
Alp/AQQ (calculated in second order), we find that, for a
Lorentzian-phonon spectrum of the host lattice super-
imposed with an Einstein distribution of impurity
modes, there is agreement within 10/o if renormaliza-
tion is ignored. When it is taken into account, the dif-
ference becomes larger, 30%%u~. This large difference,
which is also found for Pb-In, cannot be, for the most
part, attributed to the difference between Ayp( ' and
the exact value of 4~0, because of rapid convergence;
furthermore, hT, is exact. Instead, it is caused by the
fact that the ratio T,/b, s of the pure metal depends on
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the strength of the phonon-induced electron-electron
interaction, in particular when renormalization is
taken into account. The decrease of the ratio 260/kT,
for a strong-coupling superconductor such as pure lead
when high-frequency impurity modes are introduced
can be qualitatively understood in terms of the change
of T,/8, where 8 is a characteristic temperature which

may correspond to ~1'. The gross effect of the impurity
modes is to increase 0 without a corresponding increase
of the electron-phonon interaction. Therefore, the effec-
tive coupling measured by T,/8 will decrease and hence
the ratio 250/kT, will decrease towards the weak-

coupling ratio 3.5.
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APPENDIX I: INHOMO GENEOUS PART OF THE
IMPURITY-GAP FUNCTION (T=O)

The inhomogeneous part F(o/) for a Lorentzian
phonon distribution of the host lattice, centered at co1

and having half-width co2, and for an Einstein distribu-
tion of the impurity modes, centered at co11, is given by

Re{F1(o/)}=
2

I Zol '
~10/11 (+00+Doc) RC{ZO)

[f(o/, 001)+f( 00, 001)+—f(o/ —401)+f(—01 —401)]—~«Rc{Z0)
2

X &0(o/11+40)+ Jo(o/11 —0/)—
A.1' 1 1 UP

2U1 lrll/(0/ —0011—App) Im{Zp) (Dop+/4 pc)
+ —Re{U(o/ —4011)) —hpo, (A1)

[(0/ 0/ )2 g 2]1/2

where

f(pl)401) [1/(401 ~ 0011) +0/2 ]{002pp(poll+op) lt 1(o/1)]+ (0/1 0/11 40)

X [0/1~0(0011+00) 0/1 jCl(o/1) (0/1 +002 )+p(o/1)]) &

and where the parameter integrals Jp, Ep, E1 are defined below:

~0~10 2 Up
Re{F2(&o)}= Re{Zp) g(o/)+g( —0/) — log(20/, /boo) —0/2 Im{Zo}

2lzol' A, p

X alto(pol+40) —polt0(p/1 00)+El(o/1+0&)+El(o/1 —&0)], (A2)

where
g(o/) [0/1(o/1+40)+402 ][It0(o/1+40)+4011i 1(o/1+0/)] 1

where

~0~10
Re{F3(p/)}= {Re{Z0}[k(o/)+k(—0/) —2U0/lip] —402 Im{Z0)[k(o/)+k( —00)]+0(600'/001')},

2lZpl'

401 Q) 1 M G02

k(&o)=, k(/d) =
+1 & +2 1 & &2

(A3)

Re{F4(40))= — [Re{Zp}(Re{Zp}Re{Z1)+Im{Zp}I111{Z1))
zo

The imaginary part of F(o/) is found from Eqs. (A1)
through (A4) by interchanging Re{Z0}with —Im{Z0)
and Im{Zp) with Re{Zp). The integrals jp(40) and
E„(40)are defined by

+Im{Zp}(I111{Zp}RC{Z1) Re{Zp) III1{Z1})]. (A4)

The quadrature of Eq. (AS) gives

~o(o/) = ~
(0/2 g 2)1/2

&-(0/) =

(M 600 ) / (CO+M )

(A6)
(0/" —2 pp') ' "[(0/+0/') '+0/2']

—
llol+/41 +(012 g 2)1/2-

Xlog, if lip
l &400 (A7)

l~l+g +(~2 g 2)1/2

where the sign + indicates 000'600 and the sign —in-
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dicates ~&—~pp,
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where

~.()=
(g 2 ~2) 1/2

/'moo —0/) '"
arctan(

(500+0//

if —600&00&+&00. (A&)

The quadrature of Eq. (A6) gives

Kp(pp) =—
2»(P1'+P2')

Xiog{[(p + )'+(p —,)']/~. ,'}

[arctan(»/P1) —2rH( —p/) ],
»(Pl +P2 )

P1»+P200
A (-)=

»2(P1'+P2')

xi.g{[(p,+ ) +(p,—,) ]/~., }
P10/ P2/02—

+— [arctan(»/Pr) —2rH (—/0)],

pr(2) = {(1/2)[(00' —002' ~00 )'+«'002']'
~1(~2 ~ 2+g 2)1/2}1/2

and where H(00) is Heaviside's unit step function.
For a more realistic phonon spectrum of the host

lattice, consisting of a superposition of two Lorentzians,
one for longitudinal phonons and one for transverse
phonons, the right side of Kq. (A1) is calculated
numerically using the given theoretical or experimental
values for the gap function of the host lattice. The cor-
responding equations for (A2)—(A4) are simply given

by linear combinations of expressions of the above
form.

APPENDIX II: RENORMALIZATIQN
PARAMETERS

These parameters for a Lorentzian phonon spectrum
of the host lattice and an Einstein distribution of the
impurity modes are, respectively, given by

Re{Z0(o/) }= 1—(leap/200) {(0/2 —Qlr —G&lo&)E1(/01+M) —(4/2 —001 +G/lo/)1C1(p/1 —00) 0/1[(/01+M) +» ]Eo(G)1+op)

+0/1[(&01—00)'+»']E 0(p/1 —00)}, (A9)

Im{Z0(&0)}= —(Xpo/2/200) {(2»+0/)K1(p/1+co) —(2»—0/)K1(o/1 —p/)+ [(0/1+0/) +» Ã0(»+0/)
—[(»—0/) 2+0022]ICp(o/1 —0/) }, (A10)

Re{Z, (00)}= —(1/20/) {l%10011[(p/11+0/) Jo(o/11+ 00)+ (0/11—0&)&0(p/11 —/d)]+ ~»~00110[»L1(»+~)—»L1(»—~)

+( '+ ( + ))L.( + )-( '+ ( —))Lo( —)]}, (A»)

(G)11 co)H(co —0011 600)
1m {Z1(CO)}= (1/201) prob lp/11

[(00»1) ~00 ]
+6»kppkp»[L1(001 —/0) L1(001+00)—ppL—0(»1pp) —00L0(»—p&)] . (A12)

The integrals L (00) of Sec. III can be expressed in terms of the E„(02),

where

Lo(p/) = (1/1V) {200[1—(/02+ 0022)]E0(o/) —(002+»2+ 6002)E1(pp) },
(0/) = (1/E) {(pp +G)2 +600 )[(/0 +» )—1]Ãp((iu)+ 200600 E1(/0) }&

+= [(00+~00) +002 ][(o/—~00) +002

(A13)

(A14)

For a more realistic phonon spectrum of the host lattice, characterized by a superposition of Lorentzians, the

renormalization parameters are simply given by linear combinations of expressions of the above form.


