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The valence effect caused by a small concentration of light or heavy impurity atoms, giving rise to high-
frequency localized modes or to low-frequency resonant modes, respectively, is studied in the framework of
the Eliashberg electron-phonon model for an isotropic superconductor. The impurity atoms modify the
phonon-induced electron-electron interaction and also the pseudo-Coulomb potential. The corresponding
change K (w,w’) of the interaction kernel in the integral equation for the gap function of the impure metal
A(w) is assumed to be small. With a perturbation calculation, a linear integral equation is derived at zero
temperature for the impurity-gap function A;(w) =A (w) —Ao(w). Assuming a single Lorentzian (or a super-
position of two) for the phonon distribution of the host lattice, and an Einstein distribution for that of the
impurity atoms, the integral equation is solved by Neumann’s iteration procedure. The change of the gap
parameter, Ajp=A;(w=Ap), is calculated as a function of the impurity-mode frequency w1, the electron—
impurity-mode coupling parameter o?(w11), and the change U; of the pseudo-Coulomb potential. For a
special case, dilute lead-indium alloys, A: (w) is evaluated using the phonon spectra found from tunneling ex-
periments. To determine the effect of impurity atoms on the transition temperature T, one starts from
Eliashberg’s gap equation for finite temperatures, which has solutions for < T, and which becomes linear
near T.. The transition temperature is considered as an eigenvalue parameter. An exact formula for the
change of this parameter 6T, caused by K1(w,w), is derived by applying a theorem of Fredholm to the in-
homogeneous integral equation for the impurity-gap function at the transition temperature. The final result
for 8T contains, besides the interaction kernels of host and impurity lattice, the solutions A(w,T) and
Ao(w,T.) of the gap equation and of the transposed gap equation of the pure metal, respectively. The theory
is applied to dilute alloys of lead with In, Sn, Sb, Hg, T1, and Bi. The results for 8T, are discussed using the
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available experimental data for these alloys.

I. INTRODUCTION

N the contemporary theory of superconductivity
two important parameters, namely, the energy A,
necessary to break up a Cooper pair and the transi-
tion temperature 7', depend on the electron-phonon
(el-ph) interaction a?(w)g(w)."? The function g(w)
is the phonon density of states and «?(w) is the in-
teraction parameter depending on the energy w of
a phonon exchanged in an el-ph interaction. Further-
more, energy gap and transition temperature depend
on the direct interaction between two electrons, that
is, on the pseudo-Coulomb potential U.? It is the
purpose of this paper to study simultaneously the
effect of light or heavy impurity atoms, giving rise
to localized or resonant modes, respectively, on
the energy-gap function A(w), and in particular on
the gap parameter Ag=A(w=A,), and on the transi-
tion temperature 7', of an isotropic superconductor.
Whereas impurities affect the shape of the gap function
according to the change of a?(w)g(w), the effect on
T, is a gross property of the impure metal depending
on a well-defined average over the energy-gap func-
tion of the host lattice and the frequency-dependent
electron-impurity-mode interaction.
The change of Ay and 7', caused by this interaction
and by the modification of the electronic structure

! G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)
[English transl.: Soviet Phys.—JETP 11, 696 (1960)7].

2 J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, Phys.
Rev. Letters 10, 336 (1963); Phys. Rev. 148, 263 (1966).

8 P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
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[which, for a spherical energy band, is characterized
by two parameters, the electron density of states N(0)
at the Fermi surface and the Fermi momentum %z ]
is called the “valence” effect. It is linear in the impurity
concentration and has its origin in a small but basic
change of the electronic and dynamic properties of the
lattice. This change is sometimes unimportant in the
region of small impurity concentrations where the
“mean-free-path” effect, i.e., scattering, strongly
affects T'.. As pointed out by Anderson,* and studied in
detail by other authors,>® elastic impurity scattering
leads to an admixture of Bloch functions of the conduc-
tion band and, therefore, the formation of Cooper pairs
occurs between time-reversed scattered states, which
are exact one-electron states of the impure metal. If
the energy gap of the pure metal is anisotropic in k
(wave vector) space because of an anisotropy in the
effective electron-electron (el-el) interaction, the energy
necessary to break up a Cooper pair in the impure metal
is always smaller than the maximum binding energy
of a pair in the pure metal. Therefore, Ag and T, de-
crease with increasing impurity concentration until
impurity scattering becomes so strong that Bloch states
from the entire Fermi surface become, with equal
probability, admixed into a scattered-state wave func-

4P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).

®T. Tsuneto, Progr. Theoret. Phys. (Kyoto) 28, 857 (1962).

8 C. Caroli, P. G. de Gennes, and T. Matricon, J. Phys. Radium
23, 707 (1962).

? D. Markowitz and L. Kadanoff, Phys. Rev. 121, 563 (1963).

8 P. Hohenberg, Zh. Eksperim. i Teor. Fiz. 45, 1208 (1963)
[English transl.: Soviet Phys.—JETP 18, 834 (1964)].
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tion having energy E~ Ey (= Fermi energy). Under this
condition of “strong scattering,” the mean-free-
path effect saturates. Hohenberg® finds saturation if
2rT . 7<<1 (or if I,/£<K1; l,=mean free path due to
impurity scattering; 7,=I,0p, where vp is the Fermi
velocity); whereas Markowitz and Kadanoff,” because
they use the correct cutoff frequency in the gap equa-
tion for the impure superconductor, find saturation if
wpTK1, where wp is the Debye frequency (the magni-
tude of the gap anisotropy does not enter the satura-
tion criteria). For a weak-coupling superconductor, the
Markowitz and Kadanoff criterion requires the im-
purity concentration to be one order of magnitude
larger than that given by /,/£<<1.% It is an experimental
fact that the mean-free-path effect saturates when /.
becomes comparable with the coherence distance
£0,1011 corresponding to an impurity concentration of
the order of one percent. For larger impurity concentra-
tions, the valence effect determines the change of T..

To study the valence effect, a straightforward pertur-
bation procedure is applied to the Eliashberg!? gap
equation and to the equation for the renormalization
parameter. The perturbation consists of a small change
of the interaction kernel. The change of the phonon-
induced el-el interaction and of the pseudo-Coulomb
potential completely accounts for the effect of impurities
on the energy-gap function and the transition tempera-
ture of an isotropic superconductor.!? It has been shown
by Tsuneto® that elastic impurity scattering in itself
does not affect the energy-gap function found from the
Eliashberg equation (isotropic superconductor). At zero
temperature (Sec. II), the result of our perturbation
procedure is a linear inhomogeneous integral equation
for the impurity-gap function Aj(w). The solution of
this equation, and in particular Ay, will be discussed in
Sec. ITI assuming that the interaction kernel of the host
lattice is characterized by Lorentzian phonon distribu-
tion and that the impurity modes have an Einstein
distribution. This simple phonon model is sufficient to
study, e.g., the dependence of Ayg on the impurity-mode
frequency wii. For the application to a concrete case,
dilute lead-indium alloys (Sec. IV), the phonon spec-
trum is approximated by a superposition of two Lorent-
zians, using the results of Rowell, McMillan, and
Anderson!* for o?(w)g(w). In Sec. V, a perturbation

9 For example, in Al with 19, Mg the residual resistivity
pr=2.2X10"7 Q cm, corresponding to J,/£(Al)~~0.2 and 7,wp=>=2.
The value of p, is taken from Ref. 10.

( 10 A, Channin, E. A. Lynton, and B. Serin, Phys. Rev. 114, 719
1959).

11, P. Seraphim, C. Chion, and D. J. Quinn, Acta Met. 9, 861
a961). .

12 G, M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)
[English transl.: Soviet Phys.—JETP 11, 696 (1960)].

13 For a discussion of this point I would like to thank Professor
H. Suhl.

147, M. Rowell, W. L. McMillan, and P. W. Anderson, Phys.
Rev. Letters 14, 633 (1965); see also J. G. Adler, J. E. Jackson,
and B. S. Chandrasekhar, bid. 16, 53 (1966). The possibility of
observing localized modes in dilute lead alloys with the help of the
tunneling technique was first suggested by A. A. Maradudin, in
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technique is applied to the finite temperature-gap
equation to derive an exact formula for the transition
temperature change. The theory is applied to dilute
alloys of lead with In, Sn, Sb, Hg, Tl, and Bi using
proper values for the three impurity parameters wii,
az(wn), and Ul.

Before the valence effect is discussed in the framework
of the Eliashberg electron-phonon model, let us mention
the Bardeen-Cooper-Schrieffer (BCS) result for the
interaction (BCS notation)

Vie=+Vo if |el,]| e | <o1,

=+V: if |e,|er| <on, (1
=0 otherwise.
One finds
Alo 1 VI/VO
= (2)

Am)— ]\7(0) Vo 1"'1’\7(0) V1 log(wu/wl) ’

where Ag=2w; exp[—1/N(0)V,]. The impurity-gap
parameter Ay is approximately linear in V3 and is
almost independent of wyy.

II. PERTURBATION CALCULATION OF THE
IMPURITY-GAP FUNCTION (7=0)

In the Eliashberg theory of the electron-lattice
interaction in superconductors, the effective el-el
interaction is not a constant, as in the BCS theory,
but it is a frequency- and wave-vector-dependent
function that can be written in terms of the dynamic
dielectric constant of the electron-phonon system.!
Tf one assumes the validity of the random phase approxi-
mation to describe the effective el-el interaction, the
set of coupled integral equations for the gap function
A(w) and for the renormalization parameter Z(w)
are given by

Alw)= ! /‘“d
Z(w) Ag
and

[1—Z(w) o= f

Ag

AI
' Re ——~}
(w/2_A’2)1/2
X [K-th(w,w/) - U] )

’

)
cdco' —— K P (w,w’), (4
Re| o K e,

where K P*(w,w’) represents the phonon part of the
interaction kernel and U is the pseudo-Coulomb poten-
tial, which includes interactions between electrons
outside the energy interval w< |w,| around the Fermi
surface.

Let us now assume that for a pure metal the solutions
of Egs. (3) and (4), A¢(w) and Zy(w), are known. These

Proceedings of the International Conference on Laitice Dynamics,
Copenhagen, 1963, edited by R. F. Wallis (Pergamon Press, Inc.,
New York, 1965), p. 726. .

15 J, R. Schrieffer, Theory of Superconductivity (W. A. Benjamin,
Inc., New York, 1964), p. 148.
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solutions are determined by the interaction kernels of
the pure metal, i.e., by Us and by the kernel functions
K . ¢*» which are conveniently written in the form

00

KiPt(ww)=2 MK/

0

wo
dwog,((wo)—z—

1
x( . ). ©
wotw' +w—i0t  wetw —w—i07

where the phonon distribution g, of branch « is given
by the Lorentzian

wo/T
guw)= oo o) (6a)
and where the el-ph interaction constant A¢* is given by
Mot =20, 2(w1%) /w1*, (6b)

with the following expression for the frequency-depend-
ent el-ph interaction parameter:

N(O)qpaau"
aw)=—
61r2kpzw
2
e Lare e 0 K)) NG
K 47 |q+K]| wx(@)=w

Here kp is the Fermi momentum, ¢p is the Debye wave
number, gi* is the matrix element for theelectron-
phonon interaction, K is a reciprocal lattice vector, and
H(x) is Heaviside’s unit step function: H(x)=0 if
%<0, H(x)=1 if x>0. Equation (5) represents a
convenient form of the phonon-induced interaction
since the integration is readily carried out:

Ao
KoM ww)=2 7(‘01"—1@2")

1 1
X( == ) . (8)
w1t Fw—iwe  wiw —w—iws*

This form of the kernel has been derived by Anderson
and Morel® from the time dependence of the retarded
phonon-induced interaction. It is an excellent approxi-
mation to the kernel functions used by other authors!—*?
for the calculation of the tunneling density of states of
lead.

A perturbation of the interaction kernel of the pure
metal caused by impurities, other point defects, or by a

16D. J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev.
Letters 4, 102 (1965).

17 J. M. Rowell, P. W. Anderson, and D. E. Thomas, Phys. Rev.
Letters 10, 334 (1963).

18 J, R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, Phys.
Rev. Letters 10, 336 (1963).
« 1‘;;’;/' L. McMillan and J. M. Rowell, Phys. Rev. Letters 14, 108
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homogeneous deformation of the lattice will change the
gap function and the renormalization parameter. As
for point defects, their impurity-mode distribution is
often sharply peaked.20 Then, it is a good approxima-
tion for the calculation of the impurity-gap parameter
Ay and for the transition temperature change 67, to
assume an Einstein distribution, g(wi1)=8(w=w11). For
the calculation of the energy dependence of the im-
purity-gap function, Ai(w), it is, however, important to
take the “spreading” of the impurity-mode distribution
into account. To this end, either the Einstein results
As(w,wi1) and Zi(w,w:;) are integrated over g(wi)—the
integral equations for A; and Z; are linear?—or the
impurity kernel Ki(w,w') is derived from a Lorentzian
distribution of impurity modes. With the impurity-mode
distribution given by é(w—w11), the perturbation of the
phonon-induced interaction has the form

)\lwll

K P —K 3= K 1™ (0,0') =
2

1 1
><< + )
wito’+w—i0t  wito —w—:i0*

Ny
___K:*:Oph(w,w’) ’
70

©)

where N1 and N, are the number of impurity atoms and
host atoms per cubic centimeter, respectively. The
second term in Eq. (9) is omitted if the impurity atoms
occupy interstitial sites. The electron-impurity-mode
coupling constant A; depends linearly on N;. Only for
the special case of light impurity atoms arranged in a
periodic lattice can A; be evaluated from Eq. (9).22 In
general, \; must be considered as an unknown parame-
ter. The perturbation of the Coulomb interaction is
given by
SN(O) ks
Uy=U—-U*>4——-B—,
N(0) kr

20 For localized modes (light impurity atoms), wi; is larger than
the cutoff frequency of the host lattice and an Einstein distribu-
tion is a good approximation to the localized mode distribution.
The distribution for resonant modes can also be sharply peaked,
provided M1—M¢>Mo (Mo=mass of host atoms, M1=mass of
impurity atoms) as can be seen from the theoretical work of R.
Brout and W. Visscher [Phys. Rev. Letters 9, 54 (1962)7.

21D. J. Scalapino and P. W. Anderson, Phys Rev. 133, A921
(1963).

22 One finds

[ge]2=

(10)

4Le2 1 Z.:2N,
& ) 2ei(g) My

Here Z; is the charge of an impurity atom and wi(g) is the fre-
quency of the longitudinal branch of the lmpunty phonon band.
The function Sz(q,ro) accounts for the screening of the electron-
impurity-mode interaction. If the interaction is screened by

exp(—7/ro),
smqr)(1+ )(dr/r)

S(g,70)= / exp ( - —) (cosqr

——S5%(g,70)-
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where Redigfw)
2 a 2a a? I
A—[ — ]U 0 B-~[—— 2]00,
a (14+a? u(1+4-a)*
2 me*N (0) a? 1 102
Q= ,u,=—log[:1+<——):| . —u
sz 2 a’ 0 6 “Ir ; -

Since a?is of the order of 0.4 for superconducting metals,
A>0 and B<O.

With Eqgs. (9) and (10) the perturbation calculation
proceeds by writing the interaction kernel of the impure
metal in the form

K:}:(w""’,)=Kd:0(w:wl)+eKd:1(w:w,) ) (11)

where e is a smallness parameter, corresponding to the
impurity concentration, and where K,=K,*»—U,
K_=K_rh, The gap function A(w) and the renormaliza-
tion parameter Z(w) of the impure metal are also written
in this form. If one substitutes Eq. (11) into Egs. (3)
and (4), one finds equations for A(w) and Z; (w)2:

1 e
/ do’
Uw) Ago
Ay — Ao
XRe{-——————
(w'Q—'Ao

12)1/2
1 we
{/ dw’ Re
ZO(‘—") Ago
Axo

+ / dw’ Re 1
(=

Ag2)1e
A10Aoo
oo
(w/2 A002)3/2
X [AODK+0(w;w/> —w’K+0(w)A00)]—Z1(w>AO(w) } (13)

and

Asy(w)=F(w)+

Kuow), (12

Ay
s

}K+1(w,w')

A0/2)1/2

} K o(ww)

’

1 we w
Zl(w)_'";{/ dw’ Re {m] —l(w,w)

AIOAOOU)
.

(w 2 A002)3/2

XEK—O(w7w')"K—O(w,A00>]} (14)

These equations are correct for small impurity con-
centrations, independent of the strength of the electron-
phonon interaction in the host metal. Equation (12)
is a linear inhomogeneous integral equation for the im-
purity gap function. The inhomogeneous part F(w)

28 From hereon the perturbation of gap function and renormali-
zation parameter will be denoted as A, (w) and Z1 (w), respectively.

F16. 1. Real part of the energy-gap function of a pure metal
characterized by a Lorentzian phonon distribution centered at
w=w; and having half-width w;=0.2w;. Curve (a) represents the
approximate solution of the gap equation given by Eq. (15).
Curve (b) is the exact solution, ignoring renormalization. The
[I)]arameters of the interaction kernel are given by A\¢=0.35 and

0=0.1.

can be presented in closed form, if one assumes a
Lorentzian phonon distribution for the host lattice
(Appendix I). For a more realistic phonon spectrum,
e.g., a superposition of two Lorentzians, the first term
of F(w) must be calculated numerically. The two
equations for Ay(w) and Zi(w) are merely coupled via
the impurity gap parameter Ayo.

III. SOLUTION OF THE IMPURITY-GAP
EQUATION (WEAK COUPLING)

In the case, where Agp<Kw:¥, the quantity Ao under
the square root in Eq. (12) may be replaced by Ag.
Then the two equations for the real and imaginary part
of Ay(w) decouple, and the mathematical problem con-
sists of solving the linear inhomogeneous integral
equation for Re{Aij(w)}. To this end, a successive
interaction procedure is applied which results in the
Neumann series.2* The first term of this series, cor-
responding to the zeroth-order solution for Re{A;(w)},
is the homogeneous part F(w) which consists of four

Redglw)
Reder

Illoﬂ‘

F16. 2. Real part of the energy-gap function of the pure metal,
including renormalization. For the parameter values of the inter-
action kernel, see Fig. 1.

2 G, Hamel, Inlegralgleichungen (Julius Springer-Verlag, Berlin,
1949), p. 25.
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terms, F;(w), where 7 denotes successively the four terms
on the right side of Eq. (13). For the phonon-induced
interaction given by Eq. (8), the last three of the four
terms are readily calculated. The function Fi(w), how-
ever, contains A¢(w) which in case of a single Lorentzian
phonon spectrum can be approximated by a simple
function, so F; can also be presented in a closed form.
Then K, consists of a single term and Ao(w) can be
approximated by the function

Ao(w)= (Aot 2oc) U (w) — Aoc, (15)
where
wl——iwz/ 1 1
U@="" ), 19
2 w1t w—iws wi—w—1iws

and where Ag and A can be considered as adjustable
parameters (the index k=1 has been omitted). For
Zo(w)=1 and for (ws/w1)2K1, one finds by substituting
Ay(w) into the gap equation for the pure metal:

1+3X,
Ago=2w; exp(—— > (17)
M—Us
e (/Ao
lOg 2(.01 Ago
Aoe= Aol . (18)
1+ Uy log(w./w1)

The validity of these results has been checked by solving
numerically the nonlinear integral equation for the
pure metal. This result and that given by Egs. (15)
through (18) are compared in Fig. 1. For Zy(w)#1,
which takes into account the renormalization of quasi-
particle energies caused by electron-phonon inter-
actions, the energy-gap function is shown in Fig. 2.
The ratio Agg/Ag is also given by Eq. (18). However,
the value of Ag is much smaller than that found by
ignoring the renormalization. With the help of Eq. (15),
an analytical expression is found for F1(w). This result
and those for the other parts of F(w) are given in
Appendix I; formulas for the renormalization parame-
ters Zo(w) and Zi(w) are found in Appendix II. The
results are readily generalized to the more general case
of a multipeaked phonon spectrum. If one knows the
inhomogeneous part of the impurity gap, Eq. (12), the
Neumann series is found by numerical integration. The
first few approximations to the impurity-gap function
are given by

A1 O (w)=F(w,A10©), (19)
1 e
A1 O(w) = F e, Ao @)+ do’
ZO("’) Ago
[Re{F1(o’,A10P) } — A10P]
K io(ww’). (20)

(w’Z_AUU2>1/2

The impurity-gap parameter Ajo is in zeroth order
determined by Re{F(w=Aq)}; the first-order result is
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004 -
INTERSTITIAL
T I —
boo | LT T T
002 - ne
_______ n=0
[}
— W
-0.01

F16. 3. Impurity-gap parameter as a function of the impurity-
mode frequency wi, taking into account renormalization. The
index # denotes the order of approximation in which the impurity-
gap equation has been solved by iteration. The interaction kernel
of the impurities is characterized by A1/Ae=N1/No=U/U,=0.01.
For the interaction kernel of the host lattice see Fig. 1.

found with one numerical integration, etc. To study
the dependence of the impurity-gap parameter on the
Einstein frequency wi;, the phonon spectrum of the
host lattice is characterized by a Lorentzian distribu-
tion. This assumption allows for an analytic calculation
of F(w). It is sufficient for this purpose, since it is
primarily the interference of Ag¢(w’) with Kii(w,w')
which determines the characteristic dependence of Ayg
on wy; shown in Fig. 3. A two-Lorentzian phonon spec-
trum of the host lattice would not significantly alter
the wy;y dependence of the impurity-gap parameter.
The result for the first few approximations to Ajg, shown
in Fig. 3, are calculated under the assumption that the
electron-phonon interaction constant per atom of the
host lattice is equal to that for an impurity atom and
that the pseudo-Coulomb potential remains unchanged.

The effect of a localized mode, centered at wy;=2w;
and caused by interstitial impurities, on the shape

+0.06
8,0% INTERSTITIAL
Boo
+0.04 -
Z(w)=1
+0.02 1
SUBSTITUTIONAL
7 | f i n 5
o ] 2 3 4 5 6
—T
wy
-002

Fic. 4. Impurity-gap parameter as a function of the impurity-
mode frequency w11, ignoring renormalization. For the parameters
of the interaction kernel see Fig. 3.
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F1c. 5. Real part of the impurity-gap function for localized
modes (light interstitial impurity atoms) wii=2w;. For the
parameters of the interaction kernel see Fig. 3.

of the impurity-gap function is shown in Fig. 5. The
renormalization is properly taken into account. At
w=w11+Ag, the impurity-gap function has a square
root singularity when o comes from below, because of
Re{K 1(w,w")} in Fi(w) and because of Re{K_i(w,w’)}
in Re{Z1(w)}. It also has a square root singularity when
w comes from above, because of Im{K 1(w,0")} in Fi(w)
and because of Im{K_;(w,w’)} in Im{Z1(w)}. Figure 5
demonstrates the good convergence of the Neumann
series for all values of w. Structure in the impurity-gap
function is seen at wy; and wyw;.

IV. IMPURITY-GAP FUNCTION FOR
DILUTE Pb-In ALLOYS

In strong-coupling superconductors such as lead, the
condition Ag<Kwi* is, at least for the transverse acousti-
cal branch, not fulfilled. In calculating the impurity-
gap function for Phg.g7Ing.os we have, however, made
the approximation that Ay under the square root of
Eq. (12) can be replaced by Ag. Renormalization is
properly taken into account. The spectral dependence
of the el-ph interaction is known for this alloy system.*
For the calculation of the energy dependence of the im-
purity-gap function Aj(w), the following assumptions
are made for the interaction kernels of the pure and
impure metal, respectively:

1. For lead, the phonon-induced interaction is given
by Eq. (8). The corresponding phonon density of states
is that chosen by other authors!®* for the calculation
of the tunneling density of states. It consists of two
Lorentzians, one for transverse and one for longitudinal
modes, centered at w'=4.4 MeV and at w*=8.5 MeV,
respectively, with half-widths ws!=0.75 MeV and
w?=0.5 MeV, respectively. The coupling consists \¢!
and M\ are given by Eq. (6b), with average values of
the electron-phonon interaction parameter given by
McMillan and Rowell,”® a2=1.11 MeV and as?=1.34
MeV. The Coulomb pseudopotential U,=0.11.

2. The perturbation of the phonon-induced inter-
action is derived from a Lorentzian distribution
of impurity modes centered at w;;=9.5 MeV and
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with half-width ©;3=0.25 MeV. The coupling con-
stant a?(w)=1.34 MeV. This choice of the coupling
constant corresponds to the observation of Rowell,
McMillan, and Anderson,'* who found by the inversion
of the energy-gap function of the impure metal that
the electron-impurity-mode coupling constant a2(wi1)
is of the same magnitude as that for pure lead. The
authors do not quote a value for the Coulomb pseudo-
potential in Pbg ¢7Ing.os. Therefore, the change of the
Coulomb pseudopotential of lead due to alloying with
indium has been determined by fitting the calculated
value of the transition-temperature change 87T, (valence
effect, see Sec. VI) to the experimental value of
Gamari-Seale and Coles.? The result is U;=0.007. If
it were also possible to determine U, accurately from
an inversion of the gap equation of the impure metal,
the valence effect 67, could be predicted.

The results for the second-order approximation of the
impurity-gap function are shown in Figs. 6(a) and 6(b).
The impurity-gap parameter is given by A1®/Ag
= —0.010; the calculated change of the transition tem-
perature is smaller, 67./T .= —0.0058. The energy de-
pendence of the impurity-gap function exhibits structure
at wi+Ag and at witwi*+Ag. At these frequencies,
also the tunneling density of states of the impure metal,
which is readily calculated with the energy-dependent
gap function Ag(w)+A;1(w),”® has additional structure

[see Fig. 6(c)].

V. PERTURBATION CALCULATIONS OF THE
IMPURITY EFFECT ON THE TRANSITION
TEMPERATURE

The integral equation for the energy-gap function at
nonzero temperature has been derived by different
authors.2627 The presumptions, namely, a spherical
energy band and the random-phase approximation for
the effective el-el interaction, are the same as those for
the energy-gap equation (3) at zero temperature. Near
the transition temperature, where (T,—T)/T <1, the
integral equation for the energy-gap function can be
linearized because in the denominator square root,
(w'2—A'2)1/2) the A2 term can be ignored. Then, the
linearized integral equation is given by

1 e
A(w)=%/; do’ ReA(w )[f(——w VK P (w,00")

@

— J)K (e, —a)—U ¢ héw—/]—l——il— "
[l KPP (0w, —w an . 7@ o 2]
o —o L 26 g (e’
Re{A(“’* ) MBI
w+to’ w—o’ exp(Bu’)—1

2 H, Gamari-Seale and B. R. Coles, Proc. Phys. Soc. (London)
86, 1199 (1965).

26V, Ambegaokar and L. Tewordt, Phys. Rev. 134, A805
(1964).

27Y, Wada, Phys. Rev. 135, A1481 (1964).
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Fic. 6. Real part (a) and imaginary
part (b) of the impurity-gap function W
of Pby.o7Ing.03. The indium atoms give 4 w!
rise to localized modes. For the interac-
tion kernel see Sec. IV. The difference 0 } % } } T—— |
between the tunneling density of states
of the impure metal and that of lead ! 2 3 5 6 7 8
is shown in (c).
-0.,005 —
(c)
where f(«’) is the Fermi-Dirac function and where the kernel in Eq. (21) is written in the form:
B=1/kT. The renormalization parameter is independent
of A(w) and is given by the quadrature R(ww'; B)= Ro(ww'; 8)+ R1lww’;8),  (23)
where
we 1
[1—-Z(w) Jo= / do’ Ro(w,w'; ﬁ)=Re{Z ( )[f (—w)K 4P (ww’)
o\w

0

XLf(—e)K P (ww)+ f(o)K P (o, —')]
2 a(w)gul(w).

we /
—i2r / &
o exp(Bw’)—1 «

2
The solution of Eq. (21) for =4, represents the exact
energy-gap function at the transition temperature 7.
The latter plays the role of an eigenvalue parameter in
a Fredholm integral equation of the second kind. The
eigenvalue, i.e., T, for which Eq. (21) has a solution
depends on the interaction kernel. A small change of the
kernel leads to a small change of the eigenvalue parame-
ter for which the linearized gap equation has a solution.
Here, we are interested in the effect of impurities on
T., not in their effect on the energy-gap function. The
calculation of an exact formula for 67, proceeds with
the following perturbation procedure. The real part of

(22)

— [ K (@, —&')— U tanh(éz—l)]} . (24)

and where

1
@mwm=m[ imwmm%w>

o\w
Y

— fl@)K 1w, —)—=U tanh(%—):l ] —Re { Z()

Z o(w)

XRe{Ro(w,0’ ml 2
e{@@ﬁ»+qz(

o\w

}
Hmm@mmy
(25)

The renormalization parameter of the pure metal, Zp(w),
is given by Eq. (22) with K_Ph=K_ b, The change of the
renormalization parameter dueto the electron-impurity-
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mode interaction is in good approximation given by
Zi(w)=— (l/w)/ do’
0

XLf(— @)K P (w,0’) — fl@) KPP, —o')].  (26)

The perturbation of the interaction kernel £ causes a
change of the transition temperature from T, to
T+0T.. Therefore, near the transition temperature

we

Re{&(w)}—/ ) Re{A1(w’) } R o(w,w’; Bc)=aﬁc/
0

0

where k6B,= (T 46T, '— T ;1. The left-hand side of
of this equation is of the same form as the real part of
the homogeneous Eq. (21.) Therefore, according to a
well-known theorem for inhomogeneous Fredholm equa-
tions of the second kind, the inhomogeneous integral
Eq. (28) has a solution only if the right side of this equa-
tion is orthogonal to the solution Re{Ay(w)} of the
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the kernel of the impure metal is written as
R(w,w'; B)=Ro(ww'; 8)+(B—8.)
dRo(ww’; B)
X(=E)  Hsentif). @1

B=Bc

This expression is inserted into the real part of
Eq. (33) and one finds the impurity-gap equation at
T'A-oT,,

AR o(w,w’; B) we
<~———) + / Re{Ao(w!) ) R1leos’s B
ﬂ=ﬁc

' (28)

transposed equation,
Re{Ay(w)}= / do’ Re{Ao(w")}R0(w’,0;8:). (29)
0

Assuming that this equation has a nontrivial solution,
we find from the orthogonality condition the following
expression for the change of the transition temperature

e _/ " Re{zo(w,)}/’ ¢ e RC{A,O(WH)}\QI(‘O/)‘””;Bc)// ¢ do”’ RC{ZO(&J/)}/‘ ¢ do'’
0 0 ’ 0

VI. RESULTS FOR THE TRANSITION-
TEMPERATURE CHANGE

First, 8T has been calculated as a function of the
impurity-mode frequency wi1 for a single Lorentzian-
phonon distribution of the host lattice superimposed
with an Einstein distribution of impurity modes. For

+0,06 J
3%
TC
I +0.04
+0.02 -
A | ' } 0
o /1 2 3 4 5 6
/ W
/' SUBSTITUTIONAL —
002

F1c. 7. Relative change of the transition temperature as a func-
tion of the impurity-mode frequency w1, taking into account and
ignoring renormalization, respectively. For the parameters of the
interactionfkernel see Figs. 1 and 3.

dRo(w’,0" 5 B)
————————) . (30)
ag B=f

this model the impurity-gap parameter Ajp has been
calculated in Sec. IL. It also provides a qualitative
picture for the wy; dependence of 67, and Ao for a more
realistic phonon model. The formula for 67, contains
the solution of the gap equation and of the transposed
gap equation of the host lattice at 7. For weak-
coupling superconductors, the shape of Ag(w,T) is the
same as that of the zero-temperature gap function
(Fig. 2),'® the same is true for A¢(w,T). The equation
for 8T, contains, besides the gap functions, the transi-
tion temperature of the pure metal. The value of T,
is taken from the BCS relation vkT .= 2Aq, Where Agg
is the exact gap parameter of the pure metal and where
v=23.5. Since, in general, ¥ depends on the strength
of the phonon-induced el-el interaction, we have
evaluated the dependence of 87./T. on v for 3<y<4
and found it to be smaller than 3%, independent of
whether or not renormalization is taken into account.
The results for 8T./T, are plotted in Fig. 7. It is
assumed that the electron—impurity-mode coupling
constant is equal to the electron-phonon interaction of
the host lattice.

Second, 8T, has been evaluated for substitutional
lead alloys as a function of the impurity-mode fre-
quency wii, the associated coupling parameter o®(wu),
and the change of the pseudo-Coulomb potential U;.

XRe(au(6 )
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Relg(w)

0 1 2 5 8

F1c. 8. Solution of the transposed energy-gap equation
for lead at T'=T,; arbitrary units.

This calculation of 87, is exact within the framework of
the Eliashberg electron-phonon model of an isotropic
superconductor, which is independent of the strength of
the el-ph interaction. The phonon distribution of lead
and the el-ph coupling constants for longitudinal and
transverse phonons are taken from tunneling data.!8:19
The corresponding result for the solution of the trans-
posed gap equation is shown in Fig. 8. In Fig. 9 some of
the results for 67, are shown which are useful for a
comparison with the experimental data of Gamari-
Seale and Coles.? These authors have measured 67,
for dilute alloys of lead with In, Sn, and Sb of the fifth
row of the periodic system and with Hg, Tl, and Bi of
the sixth row. They account for the gap anisotropy of
lead?® and for the corresponding mean-free-path effect
on T, with the help of the formula derived by Markowitz
and Kadanoff.” The valence effect is then obtained from
the relation 87 c= (6T c)exp— (67 c)anis- The experimental
results for 67, are found in the last column of Table I.
In the first case of dilute lead-indium alloys, the ob-
served tunneling density of states has led, via the
inversion of the gap equation,'* to the determination
of the phonon distribution in the impure metal and,
thereby, to the following numbers for the impurity
parameters: w;1=9.5 MeV, a%wi)=1.34 MeV. The
third parameter U, which depends on the change of the
electronic structure, is obtained by fitting the theoretical
value for 8T, to the experimental value of Gamari-

TaBiE I. 67, (valence effect) for substitutional lead alloys;
wn=impurity-mode frequency, o?(wu)=electron-impurity-mode
coupling parameter, U;=change of the pseudo-Coulomb potential.

a?(wi1) 87, in
Impurity wn/wi! in MeV U, m°K /at.9,

In 2.16 1.34 +0.0023 —0.010
Sn 2.16 1.34 -+0.0011 +0.016
Sb 2.16 1.34 —0.0046 +0.140
Hg ... e 0 0
Tl e e +0.0040 —0.012
Bi cee v —0.0176 +0.053
TIBi . —0.0057 +0.017
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Seale and Coles. This procedure may be applied to a
metal such as lead which has a nearly-free-electron
Fermi surface. In the vicinity of the Fermi energy, the
value of the density of states is not much different from
that for free electrons. The slope of the density of states
curve is, however, negative and, below the Fermi
energy, Anderson and Gold? find a peak in this curve.
This irregular dependence of the density of states is
unimportant for small impurity concentrations. Each
indium atom contributes only three conduction elec-
trons for accommodation inside the Fermi surface,
instead of four of a Pb atom. Therefore, ékr is negative
and, since B in Eq. (10) is positive, the second term in
the expression for Uy is positive (a?=0.38 for lead?).
The first term of U [in Eq. (10)] is positive if §V(0)> 0;
this is the case if the free-electron Fermi surface shrinks.
For Bloch electrons, the change of N(0) with alloying
is not merely determined by the change of %g, or of the
conduction electron density, but also by the effect of
the impurity potential on the energy of a Bloch state,
E(k)=Eyk)+N1(k|U(r)|k), where Eo(k), is the
periodic potential caused by an impurity atom. For
free electrons, the matrix element is independent of k
(wave vector) and the density of states remains un-
changed. Here it is assumed that the change in the
electron concentration, or kg, is determined by the

3T,
IN% U=0

+0.08
Wy =216 wy
+0.06

+0.04

+002

——a (wy)

=002 4 IN meV

-004 {
(a)

3T
IN Ok
wy = 216 w,
+004 4 a2 (w,) = 134 meV

+0.02 -

T T T
000t 0.003 0.005

=002 4
=004 4
-006 -

-008
(b)

F16. 9. The valence effect on the transition temperature 67
for dilute lead alloys as a function of (a) the electron-impurity-
mode coupling a(wi), and (b) of the change in the Coulomb
pseudopotential U,.

28 A. J. Bennett, Phys. Rev. 140, A1902 (1965).

2 J. R. Anderson and A. V. Gold, Phys. Rev. 139, A1459
(1965).
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Tasie II. Estimated value of the change of the density of
states, found with the pseudo-Coulomb potential U; (Table I)
which fits theoretical and experimental results of 87.

Impurity U Skr/kr SN (0)/N(0)
In +0.0023 —0.0033 +0.0022
Sn +0.0011 0 +0.0036
Sh —0.0046 ~+0.0033 —0.0096
Hg 0 —0.0066 —0.0110
Tl +0.0040 —0.0033 +0.0077
Bi —0.0176 +0.0033 —0.0518
TIBi —0.0057 0 —0.0185

valency of the impurity atoms; 8V (0) is then considered
as an adjustable parameter to fit experimental and
theoretical values of 67,. The results of this procedure,
which has been described for Pb-In alloys, are given
in Table II. Since for Pb-In the experimental value of
wy1 Is in agreement with the theoretical one found under
the presumption that the interatomic force constants
remain unchanged by substitution,’* we assume that
the impurity frequencies for Sn and Sb are also given
by the mass ratios (which are ~M,/Mp,). Then, with
a*(w11) equal to the el-ph coupling of lead phonons of
that frequency, one finds the values for U; given in
Table I. For the impurity atoms of the same row as
lead, namely Hg, T1, and Bi, the change of the el-ph
interaction a?(w)g(w) of lead is ignored and the experi-
mental results for 67, are entirely attributed to the
modification of the pseudo-Coulomb potential.

VII. SUMMARY

We have derived formulas for the valence effect of
nonmagnetic impurities on energy gap and transition
temperature of isotropic superconductors, valid in the
framework of the Eliashberg electron-phonon model of
superconductivity. The results go beyond the relation
for the valence effect found from the BCS theory,?
since the frequency dependence of the phonon-induced
electron-electron interaction and its modification
through impurity modes can accurately be taken into
account. To this end, one must know: (a) The electron-
phonon interaction of the host lattice, a?(w)g(w), and
the repulsive Coulomb potential Uy. (b) The impurity-
mode distribution g(ws1), the inelastic electron-impurity
coupling parameter o?(wi1), and the change of the
Coulomb interaction, U;. From (a) one can construct
the interaction kernel which determines Ao(w) and
Zo(w) through two monlinear integral equations. If
one knows Ag(w) and Zy(w), the change of the gap func-
tion caused by impurities A(w) is given by an inhomo-
geneous linear integral equation. The solution of this

equation is easier to find, using the well-known iteration
WoT, 6w, 1 (8V 6N
T, o NOV\VT¥)
Short of detailed information on the el-ph interaction in an im-
pure metal, this equation can be useful in discussing the valence
effect as has been shown by D. M. Ginsberg [Phys. Rev. 136,
A1167 (1964); 138, A1409 (1965)7] for dilute Sn and In alloys.
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procedure of Neumann,?* than that of the nonlinear
integral equations for the impure metal. Furthermore,
the integral equation for Ai(w) has a form similar to that
of a Fredholm integral equation of the second type.
Therefore, Fredholm’s orthogonality theorem can be
applied to the impurity-gap equation near the transi-
tion temperature, in order to find an exact formula for
8T, This formula has been applied to a number of
dilute lead alloys for which Ag(w) and Z(w) are known
for which experimental results for the valence effect
have been found by Gamari-Seale and Coles. For this
purpose, g(wi1) can be approximated by an Einstein
distribution. In the case of Pb-In alloys, two of the
three impurity parameters, wy; and a?(wy1), are known
from tunneling data; the third, U, is found by fitting
theoretical and experimental values of 87, For the
other alloy systems we make a reasonable ad hoc
assumption about a2(wi;) to compare theory and ex-
periment. It is evident that further experimental in-
formation is necessary, such as the change of the
tunneling density of states with alloying, which deter-
mines the impurity-gap function Ai(w) and the change
of the electronic specific heat—the relative change of
the electron density of states at the Fermi surface with
alloying is not affected by the electron-phonon inter-
action—to allow for a clear-cut comparison between
theory and experiment in these cases.

Finally, let us mention some points of interest for
this comparison. In calculating A;(w) and 67", one must
know the correct values of the gap function A(w) and
of T, both of which are completely determined by
a¥(w)g(w) and U, of the pure metal.

The impurity-gap parameter Ay and 67°, depend
strongly on the impurity-mode frequency wy; if it is
smaller than the cutoff frequency of the phonon spec-
trum of the host lattice (Figs. 3 and 7). For larger
values of wyy, corresponding to localized impurity modes,
Ay and 87, depend only slightly on wyy. Therefore, a
possible increase of the transition temperature due to
localized modes is limited by the electron-impurity-
mode interaction constant a?(wy). Because of the
inelastic nature of the interaction,?? one expects a2(wi1)
to increase with decreasing mass ratio m/M; (m=-elec-
tron mass, M ;=impurity mass).

In comparing the relative change of the transition
temperature, 87,/T., with that of the gap parameter,
A1o/Ago (calculated in second order), we find that, for a
Lorentzian-phonon spectrum of the host lattice super-
imposed with an Einstein distribution of impurity
modes, there is agreement within 109, if renormaliza-
tion is ignored. When it is taken into account, the dif-
ference becomes larger, ~309,. This large difference,
which is also found for Pb-In, cannot be, for the most
part, attributed to the difference between A;®» and
the exact value of Ay, because of rapid convergence;
furthermore, AT, is exact. Instead, it is caused by the
fact that the ratio T./A, of the pure metal depends on
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the strength of the phonon-induced electron-electron
interaction, in particular when renormalization is
taken into account. The decrease of the ratio 2A¢/kT,
for a strong-coupling superconductor such as pure lead
when high-frequency impurity modes are introduced
can be qualitatively understood in terms of the change
of T./6, where 6 is a characteristic temperature which
may correspond to w;'. The gross effect of the impurity
modes is to increase 6 without a corresponding increase
of the electron-phonon interaction. Therefore, the effec-
tive coupling measured by 7./8 will decrease and hence
the ratio 2A¢/kT, will decrease towards the weak-
coupling ratio 3.5.

Aw11 00 +2Aoc) Re{Zy
Re{Frw))= {(A +Aoc) Re{Zo}
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APPENDIX I: INHOMOGENEOUS PART OF THE
IMPURITY-GAP FUNCTION (T=0)

The inhomogeneous part F(w) for a Lorentzian
phonon distribution of the host lattice, centered at w;
and having half-width w,, and for an Einstein distribu-
tion of the impurity modes, centered at wy, is given by

[f(@, w)+ f(—w, w1)+ flw, —w)+ f(—w, —w1)]—Awc Re{Zo}

XI:J o(witw)+J o(wu—w)—}\lquo I

where

[(0—wu)?—Ae?]2 L

Re{U(w—wn)}—Aoc:”, (A1)

Swwi)=[1/(w1—w—wi1) *+w? J{ws[J o(wi1Fw) — K1(wr) ]+ (01— wn—w)

X [w1 o{wntw) —wiK1(wr) — (w124 we2) Ko(w) ]},

and where the parameter integrals Jo, Ko, K; are defined below:

MoA1o 2U,
Re{Fa(w)}= [Re{zo}[g<w>+g(—w>—7log<2wc/Aoo>]—w2Im{zo}

ZIZ0|2 0
X[wK o(wr+w)—wK o(wr—w)+Ki(witw)+Ki(wi—w) ]t , (A2)
where
g(w)=[wi(1+w)+ w2 J[Ko(wrtw)+wiKi(wrtw)],
Aol1o
Re{Fs(w)}= 21Z] H{Re(Z[h(@)+h(— @)= 2Uo/\o]—wn In{ Zo} [ (@) +A(=0) HO@n/wit)},  (A3)
where ( | ’
wi(wi1Fw)Fws?
Mw)=———, klw)=—;
) (w1Fw) 2+ w,? ) (witw)Fws?
1
Re{Fy(w)}=— ] TRe{Zo}(Re{Zo} Re{Z1}+Im{Zo} Im{Z1})
+Im{Zo}(Im{Zo} Re{Z1} —Re{Zo} Im{Z1})]. (A4)

The imaginary part of F(w) is found from Egs. (A1)
through (A4) by interchanging Re{Z,} with —Im{Z,}
and Im{Z,} with Re{Z,}. The integrals Jo(w) and
K ,(w) are defined by

Jo(w)= , (AS)
Ago (wl2_ Aoo?) ”2(“)—,"“’/)
® w'"dw’
Kn(w) = .

a0 (02— A00?) 2 (w+w') 2+ ws?]

The quadrature of Eq. (AS) gives

Jolw)=£———
(w2_A002)1/2

[ |w[ + Agot (w?— Ago?) /2
log

> .f ZA A
["-’H‘Aoo—f—(w?—Aooz)l/z:l if o] 0o (A7)

where the sign 4 indicates w> Ay and the sign — in-
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dicates w<— Agg,

(AOO_O) 1/2
arctan ) ,
(Age?—w?)1/2 Aot
if — Aoof.w.<_ +Aoo.
The quadrature of Eq. (A6) gives
B2
2w9(Br?+B22)
Xlog{[(Brtw)*+ (Ba—w2)? ]/ Aw®}
B1
wa(B1+6:2)
3 Biwa+Baw
209(B124-B27)
Xlog{[(B1+w)?+(Bz—w2)?]/Ano?}

Brw—Baws
———[arct —rH(—w)],
w2(ﬂ12+ﬂ22)[arc nlon/B)—ril(~w)]

J o(w) =
(A8)

Ko(w)= e

[arctan(ws/B1) —7H(—w)],

Ki(o)
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where

Bry={(1/2)[(w?—wa— Doe®)*4wwe? ]2
:!:%(wz—wzz—l-Aooz) 1/2}1/2 ,

and where H(w) is Heaviside’s unit step function.

For a more realistic phonon spectrum of the host
lattice, consisting of a superposition of two Lorentzians,
one for longitudinal phonons and one for transverse
phonons, the right side of Eq. (Al) is calculated
numerically using the given theoretical or experimental
values for the gap function of the host lattice. The cor-
responding equations for (A2)-(A4) are simply given
by linear combinations of expressions of the above
form.

APPENDIX II: RENORMALIZATION
PARAMETERS

These parameters for a Lorentzian phonon spectrum
of the host lattice and an Einstein distribution of the
impurity modes are, respectively, given by

Re{Zo(w)}=1— (Ao/20){ (02— w12 —w1w) K1(w1+w) — (we?—w1?+wiw) K1(w1—w) — o[ (w14 w)2+w? JK o(w1+w)

Fo[ (w1 —w)* w2 ]Ko(w1—w)}, (A9)

Im{Z(w)} = — (Aowz/200){ 201+ w) K 1(w1+w) — (201— ) K1(w1—w)+ [(witw)?Hw|K o(w1F)

—[(w1—w)?+w? [Ko(wi—w)}, (A10)

Re{Z1(w)} = — (1/20) {(\wnl (@) T owinto) 4 (@ —w)Jo(wn—w) J+ Aot wili(wi+w) —w1Li(w1—w)
+ (wo2 w1 (w1Fw)) Lo(wrto) — (@2 +wi(w1—w)) Lo(wri—w) ]},  (All)

(0)11"‘60)H(w-‘w11—' Aoo)
[(w—w11)2—Aoo2]1/2

Im{Z(w)} = — (1/20) { Ths1s

+ AroA oo Li(wi—w) — Li(witw) —wLo(witw) —wLlo(wi—w) ] . (A12)

The integrals La(w) of Sec. III can be expressed in terms of the Ka(w),

Lo(w)=(1/N){20[1— (0?4 w?) IK o(w) — (w42 + AnH) Ka(w)}
Li(w)= (1/N) { (@ w22+ A00?) [ (w*+ws?) — 11K o(w)+20A00K 1(w) }

where

(A13)
(A14)

N =[(w+ Aoo) 2+ we ][ (w— Ago) >+w2? ].

For a more realistic phonon spectrum of the host lattice, characterized by a superposition of Lorentzians, the
renormalization parameters are simply given by linear combinations of expressions of the above form.



