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We show that no theory can describe a stable molecule or molecular ion if it expresses the charge density
as a function of the electric potential alone. Such theories comprise the Thomas-Fermi, Thomas-Fermi-
Dirac, Thomas-Fermi-Gombas theories. The Thomas-Fermi theory with the Fermi-Amaldi correction
cannot give rise to molecular binding for homonuclear, diatomic, neutral molecules if the total number of
electrons in the molecule equals or exceeeds 4. The Thomas-Fermi-Weizsacker theory gives stable homo-
nuclear, diatomic molecules.

X. INTRODUCTION

~ 'HE Thomas-Fermi (TF) theory of atoms was also
applied to molecules, crystals and metals, ' by

calculating the self-consistent electron distribution in
the presence of more than one attractive center. The
question arises as to whether this approximate com-
putation is able to describe stable systems in the follow-

ing sense. If the separation of the system into its atomic
constituents would always lead, within the TF approxi-
mation, to a release of energy, the TF theory cannot
account for stable systems. Sheldon has shown by a
numerical computation that the Thomas-Fermi-Dirac
(TFD) theory leads to no stable Ns molecules. He also
suggested that this may be a general property of the
TFD model. '

More recently, Lee, Longmire, and Rosenbluth' have
shown that for homonuclear diatomic molecules the
TF method admits no solutions which are stable.
Independently, Teller4 demonstrated that this result
holds true for any molecule both within the TF theory
and the TF theory amended by Dirac to include ex-
change forces (TFD theory).

In this note we intend to demonstrate three things.
(1) The same result holds in any theory in which the
electron density is not an explicit function of the posi-
tion, but varies from point to point only by virtue of its
dependence on the local electric potential. Thus, if
n(x) is the number density of the electrons at x, and
C(x) is the electrostatic potential at x, no binding is
possible if n(x)= f(C), where f can be an arbitrary,
non-negative function. (It is essential that I should

depend on C only, and neither on its derivatives, nor on
other functions. ) Teller's theorem now immediately
follows, since, for the two cases discussed, e is a simple
function of C. Also, we And that the situation is not
altered if we introduce the so-called correlation cor-
rection. ' (2) If we apply the Fermi-Amaldi (FA) correc-

* Supported by the National Science Foundation.
P. Gombas, Die Statistische Theoric des Atoms (Springer Verlag,

Vienna, 1949), p. 266.
2 J. W. Sheldon, Phys. Rev. 99, 1291 (1955).' A. R. Lee, C. L. Longmire, and M. Rosenbluth {unpublish
4 E. Teller, Rev. Mod. Phys. 34, 627 (1962).

tion, molecular binding occurs only for molecules with
a total electron content less than four. (3) If we intro-
duce the Keizsacker correction7 binding will occur.

II. THE BINDING FORCE

In this section we derive the relevant results for a
diatomic, homonuclear, neutral molecule. Later we
shall show how we can generalize some of the results to
arbitrary molecules. Instead of the energetic considera-
tions given by Teller we shall follow Lee ef ul. and
imagine the nuclei of the molecule held fixed by external
forces, and investigate the internal forces acting on one
of the nuclei. If this is pointed towards the other
nucleus, the molecule wants to contract, and binding is
present; if it points away from the other nucleus the
molecule wants to fall apart; if the latter is true for all
separations, no binding is possible. Here we shall not
investigate the possibility that the potential of the
binding force is so shallow that no quantized energy
level can be accommodated in it. For the present purpose
binding means: There is a range of separation such that
the constituents attract each other.

Consider the diatomic molecule with nuclei A and 9
(see Fig. 1). I.et p~, p~ denote the (positive) charge
densities of nuclei A and 8, and p the (negative) charge
density of the electrons. Sometimes we shall write
p= —ee, where e is positive and rs is the number density
of the electrons. Our aim is to S.nd F~= J'p~Ed V, which,

by symmetry, can only have a component along the

FIG. 1. Volume
of integration V~
bounded by surfaces
S and S'. S bissects
the molecule which
has its two nuclei
located at B and A.
S' may be at in-
anity. Positive di-
rection is indicated
by arrow at B.

5 Reference 1, p. 96.
ed). Reference 1, p. 65.' Reference 1, p. 110.
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line AB. Let us consider the direction from left to
right, from 8 to A, as positive, hence a positive force
on A would tend to separate A from B.From Poisson's
equation pg= —(j./4s. )AC —p —pe, multiply this by
E= —gradC and integrate over the volume Vg enclosed

by 5 and 5, as indicated in Fig. 1. V~ contains the
right half of the molecule around the nucleus A. 5 is a
symmetry plane perpendicular to the equipotential
surfaces; the 5' surface encloses the molecule, and on it
the electric Geld is zero, if the molecule is neutral.
5' may have to be located at inGnity. Ke obtain

F~ ——— (AC) gradCd V—F.
4x

The integral over the electron charge density gives
—F, where Ij' is the force acting on the electron cloud in
V~. p~ is zero in V@, hence it contributes nothing.
Integrate on the right-hand side twice by parts. We
obtain

gradC gradC dS

(gradC )'dS —F, (2)
8+S

hand side of the equation

Fg ——— N, I"+8
Sx

K= —gradC.

III. THE EVALUATION OP THE BINDING FORCE

Equation (3) is completely general; we used only
Poisson's equation. To proceed. further we must invoke
a theory which, coupled with Poisson's equation,
enables us to compute p and 4. This is accomplished if
we Gnd an additional relation between p and C. The
TF theory and its different extensions furnish us with
such relations. In particular the TF theory, the TFD,
theory, and their extensions by Qombas, including
correlation effects, give a simple algebraic relation be-
tween p and C. The Fermi-Amaldi correction gives a
relation between p, 4, and the electrostatic potential of
the nuclei; The Weizsacker correction changes this
1'elatlpll between p and C' lilto a dsffefesAGE egggflos.

Let us Grst suppose that the theory gives a relation
between p and 4 alone, not involving the derivatives,
or other functions. Write p= —es, with s= f(c), where,
as yet, f is an arbitrary, non-negative function. Then

where dS is the surface element of integration with the
Tjormal pointing outwards; we may also introduce
—tlS= N where tlS has its normal inward. On 8' the
electric field is zero; moreover grad 4 lies in the plane 5,
since 5 is perpendicular to the equipotential surfaces.
Thus the Grst integral contributes nothing, and the
second is reduced to an. integration over 5.

In the integral the integrand is always positive; dS
is a vector poin. ting towards J3, thus, —dS= N; points
away from 8.Hence the integral gives rise to a positive
force on A, which points away from the other nucleus.
This force can be interpreted as the pressure of the
electric Geld. between the nuclei arising through the
Maxwell stresses. The binding will depend on the sign
of F; if F is negative, no binding is possible. In the force
I' the self-force is included, which arises through the
action of the charge elements within nucleus A. Con-
sider the nucleus as a small charged sphere. Then, by
symmetry this self-force is zero, as long as the surface
S does not intersect the nucleus; thus the self-force
part of F contributes nothing as long as we do not bring
the nuclei A and 8 so close together as to fuse them into
the nucleus of a new atom. If we fuse the two nuclei
together, the surface 5 wi11 pass Ihroggh this nucleus,
and part of the self-force will reappear in Ii.s Writing
p= —ee, our problem will then be to analyze the right-

s J.L. Sehwarts )Rev. Mod. Phys. 35, /34 (1963)g pointed ont
that Teller's proof of his theorem seems to hold even if we fuse
the two nuclei. This leads to the incorrect result that the TI"
atom itself is unstable. As we see, this objection does not apply
to our proof of Teller's theorem.

F=e f(C') gradCdV=e dV grad f(C')dC'

=e N f(C')dC'= —e dS; f(C')d@' (4).
Again, only the jn«g»tjpn over 8 contributes. LThis is
true in spite of the arbitrary nature of f, provided (a)
Poisson's equation with this s= f(C) hs, s spjutjons wjth
cylindrical symmetry; (b) J'sdV cpnverges jf we sub-
stitute this solution C in s= f(C) (a) is neede. d for the
6rst integral over 5 in Eq. (2) tp vanish; (b) is needed
for the integrals over 5' in Eq. (2) tp vsnjsh. If np
such solution exists there is no theory to investigate. )
Now, f is a non-negative function of its argument,
hence its integral is always positive, or zero, making the
integrand in the surface integral positive, or zero. Since
dS, points in the positive direction, this majtes F
negative. No binding is possible. From this we conclude
that no theory, however complex, can describe binding,
so long as within it the density can be expressed as a
(local) function of the electric potential alone. In the
TF theory

f=o (C-Cs)'I'

o = (1/Bs') (2/ea)s~', a=Bohr radius.

For the TFD theory

f=~t (C' C"+")'"+~7—r= (&/2~')'"(8/a)'" (6)
4'0 is related to the chemical potential p of the electrons,
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—@40——p, , and its value is determined by the condition
that J'iid V=1V. (In neutral systems p is zero for the
TF case, and is negative for the TFD case.) Thus, these
two theories are special cases of our general theorem,
and they cannot give rise to binding. Equation (3) for
the TF case has already been obtained by Lee, Longmire,
and Rosenbluth. If we introduce a correction for the
electron correlation, the relation between C and e can
be written in the form

(4—Ce)e —(5/3)eirPI'+-', e I'"+-'n ri'"/(m'"+n )
—n -'m'"/(I' '+ni)'=0 (7)

with
eg= —,', (3n )"Va e;= ~ (3/ir) "V
ni=0.056e'/a, n2=0 12/a.

Inverting this relation we obtain n as a function of C.
Thus, in this case too, binding is not possible.

We were unable to And a physical argument to show

why the existence of the relation n= f(4) prohibits
binding.

Since in reality stable molecules do exist, it would be
interesting to see how far, and in what regions within an
actual molecule the relation N=f(4) ceases to exist.
This relation implies that the equidensity surfaces are
also equipotential surfaces. Density maps computed for
molecules do exist'; from them one is able to compute
numerically the equipotential surfaces, and upon com-

paring the two sets of surfaces we may gain an idea as
to where and how to improve the approximation leading
to the density-potential relation.

FA Correction (Neutral Atoms)

Here ri=o (Ci—Ce)'~', where Ci(x) is the potential
seen by an atomic electron at the point x; hence it is
not equal to the total potential 4 (x) at x, observed by a
small test charge, and which enters in (3) through
E= —gradC. Conventionally, for a single atom, C~

satisfies the differential equation AC»= —4irp(M —1)/
M—4mp~, if M electrons are present around the nucleus
A. This correction, as is well known, leads to a 6nite
radius for an atom.

The simplest generalization to a molecule with S
electrons would be AC'i = —4irp (N —1)/N —4ir (p~+pe).

However, if the separation between A and 8 tends to
infinity this equation is not solved by 4»'"~+4»'e&, where
C~&~& and C~(~~ are the solutions for the isolated atoms
A and B.

In fact, consider A and 8 very far apart and take a
6eld point r such that

I
rI» Ir~ —re I&& radius of A or

&. Then 4'i'"'+4'i"'=e/Ir —r~ I+e/Ir —re I-2e/IrI
while 4'i'"+ & e/IrI. The difliculty is that in Ci we

consider a field generated with 2 electrons removed,
one from atom A and one from atom B. The problem
is then to construct the proper FA correction for mole-

' P. R. Smith and J. W. Richardson, J. Phys. Chem. 69, 3346
(&965).

cules. This problem has not yet been satisfactorily
solved. "Somewhere else" we have pointed out that in
the usual TF theory, as applied to atoms, the FA correc-
tion is uniquely determined by using a properly nor-
malized closure relation which expresses the pair dis-
tribution function of the electrons through the singlet
distribution function of the electrons. This is not the
case for molecules since this closure condition can de-
depend not only on N but on

I rz —re I
as well, and in

such a way as to change the coefficient of p in the equa-
tion for Ci from (N —1)/1V for small Ir~ reI —to
(—,'N —1)/(~ilV) for large separations. This leaves open
the precise form of the IA correction for molecules;
however, we are interested whether a binding force can
arise for large separations. For this purpose it is sufh-
cient to use the (-', N —1)/(-', N) factor which gives

~4'i= —4~p(kN —1)/(i N) —4~(p~+ pe)

To use our theorem we must 6nd the relation between
4» and 4; the latter obeys AC = —4irp —4ir(pal+pe). If we
denote the potential generated by the nuclei by C,„,
i.e. 64, = —4ir(pal+pe), the following relations exist,

4»= 4 (N —2)/N+ (2/N)4, ;

4 =C,N/(N —2) —24 ../(N —2);
ol

E=EiN/(N —2)—2E,„/(N —2),
with

Ei———gradC i, E,„=—gradC, „.
Outside the charge distribution Ci ——(2/1V)4, , thus 4
vanishes outside the charge distribution, as it should be.
(The N=l case is excluded, since this results in a
molecular ion. )

Substitute K to compute I"~. We And

E
Fg = dS,—— pRid V

e gn. (N—2)

+ pE, d V. (10)
(1V—2)

The 6rst term is positive, the second can be transformed
into a surface integral over 5 the same way as before,
and gives a positive contribution. The third term is
2(N —2)—1 times the electric force acting on the
electrons in the right half of the molecule due to ions
A and B.Let

I r~ —re
I
=R be so large, that S does not

go through the constituents A and B. Then E, p are
zero on 5 and only the last term remains. This is the
resultant of the electric force on the charge cloud around
A due tonucleus 8, F~& &, and due to nucleusA, F~( '.
By symmetry F& must be along the line connecting A
and B. Let us introduce the unit vector q, pointing
from 8 to A along this line. Thus (q F~) is negative if
F~ points to the left; thus the condition for binding is

1o Reference 1, p. 70.
» N. L. Balazs and R. A. Mould, Phys. Rev. 135, A1560 (1964).
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((1 F~)(O. The first contribution is negative, ((1 F~&s&)
=—(Xe/2)'(1/R'). This term favors binding. The
second contribution, F~(") would vanish by sylnmetry
if the charge cloud around A were spherical. In order to
find F~&~& we need to solve Eq. (8).This we shall do in
successive approximations. Assume

C =C «&yC, &»+" ~ N=N«&+~&»+" ~

C'o=C'o&o)+C'o")+ ".
%'e expect, and can later verify, that the iteration
proceeds in inverse powers of R. The upper index de-
notes the order of smallness, the lower index labels the
different functions Co, and 4 i. The iteration can be most
easily described by Table I. Let the plane 5 subdivide
the space into two half spaces, one containing 8, the
other A. The function will be given for the half spaces
in which they appear in Table I.Thus, we first assume
the TF solutions for isolated atoms, with the FA cor-
rection. This, however, is not quite right, because the
tail of the solution for atom 2, e/ I

r—r~ I, is present at
atom 8, and the tail of the solution for atom 8,
(./Ir —rI) I

is present at atom A, while we have com-
puted the density n(" for each atom neglecting this tail.
Ke correct this, computing an e(" which is the second
term in the Taylor-series expansion of n with respect to
CI, and Co,' N=o(CI —Co)'I'; Co is also expanded, and
C)o&'& is determined by the requirement that J"ro&'&d V be
zero. However, this I(') now gives rise to an additional
potential C»(2); this Cg(') in turn gives rise to a new
corre. tion +(2) in ~; etco

We need only e(') for our purposes, evaluated on atom
A, i.e.

Twsxz I. Approximation scheme to Thomas-Fermi equations
with the Amaldi correction for the widely separated atoms A
and B.

8 half space A half space

Zeroth order
C&1«) =Coy TF SOlutiOn C1(o) 41 TP solutiOn
Coo(o) =C)o for isolated Co(') =C o for isolated
n«) =I 9 atom a atom

First order

«)&»=o/Ir-roI
I(» —$o (@q(o) @o(o)l)lo

(C1(1) C oO))
C o(') determined by

J'oo(»d V=O

4)&» =o/[r —rgJ
)o(» —(io (g,,(o& @o(o)))Io

(C)1(0 C)O(»)
C o(» determined by

J'N(»d tI'=0

Second order

«, (') =J'd V'N(r'l/(r —r')
@(2)—g~(C, (o) C o(o))1/s(C, (a) C, (o))

yroo (c)(o)—cflo(o)l-llo(cJ)~(» @o(»lo

etc.

(q Fg&"&)= [-,'Ne'/R'] — dx(x(o)III .
2 (xoI))I—1)

Introduce the standard variables x=r/Io*,

e«& = PX/4~) ~ojL-,'N/(-', X—1)1(„/x)»o,

where p is the solution of the dimensionless TF equa-
tloI1 Oo

= qPI /x I, with tile boundary coIldltloll
xo«'(xo) = —2/Ã, and

p,*=(4)r ) 'Io8 '(oS) IIol oX/(-,'X—1)yIo;

ro ——
Io xo is the radius of the isolated atom. (This Io*

should not be confused with Io, the chemical potential. )
This gives

Let us put the origin of the coordinate system at nucleus
2 at a distance R from 8, and expand lr —rs I

'. We
get e(') as

e&» =-oo'IoeLn&o& JIol 1/R —(r q)/R' —Co&I&/e)

where q is a unit vector from nucleus J3 to A along E..
The integral of or&'& will vanish if we pick C o&1&/e = 1/R,

with
n "&=—-o(r'Iool r)&o&1IIo(r q)/R'.

Since —(r.q) is positive to the left of A, we see that
the center of the charge cloud around A moved towards
B.The force along q due to nucleus A is

V'«~&')I(e r)/~ld~

i~or(1/Ro) (o)&oIoo L (0))of)I ( 8. r) q/ Iroo)T/

(g Fg ) is —os'/Ro; hence the existence of binding
will be determined by the condition

dx(x(p)'II&1.
2 (-I,X—1) o

The latter integral must be evaluated approximately,
and will depend on S. A crude numerical integration
gives for the integral the value 5.7 for -',%=10;4.7 for
2K=5) 1.j. for —,X=2. Thus, no b~nding will arise for
even such a low value of 2F as 2.

Weizsicker Correction

Put @=X'; then, according to Keizsacker, the rela-
tion between the potential C and X is given by

(eC+Io)&(= (5/3)roX"Io —4rgX
r)o = (3o/S)(r 'I', (11)
r;= eoa/8, or eoa/32.

The 6rst term on the right gives the TF theory, the
oIoo I-z(o&j)Iorg» second is the Weizsacker correction. (The factor o is

given by Weizsacker; the more accurate factor ~ was
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obtained by Kompaneets and Pavlovskii, and by Baraff the TF result; the second term can be integrated by
andBorowitz. ")Sinceiiisconstant, wecanimmediately parts; we finally obtain for the n componen. t of F,
insert (eC+p) in F, in place of eC. The first term gives (et=1, 2, 3; summation convention)

d V nB(eC')l/Bx-= &V x'B[(S/3)»sx'" —4»'ax/x]/Bz

d V( (5/3)»s(-', )x'"Bx/Bx —4» (xB'x/B'xpB&. —Bx/B& Bsx/Bs&p)

d V(B[ss»ix"i'B p]/Bxp B4—», (xB'x/Bx Bxp Bx—/Bx Bx/Bgp)/Bxp)

dSp['s»sxioyB p+4» (Bx/B* Bx/B~p —xB'x/Bg Bgp)]

(dS,)p[same integrand]= — (dS,)pii s'»sti"'B p+ (2»;/ts)[(Bts/Bx )(Bn/Bxp) ri(B'ts—/Bg Bgp)]) . (12)

I,et us take the direction from B to A the positive x
direction. Then, in the integral over S only the first and
last terms survive, (the second vanishes by symmetry);
and we obtain for (tg),

(F~),= (dS~), (E'/8m. + s»sn'"~s —2», (B'e/Bx') }. (13)

For binding to be possible B'ts/Bx' must be positive on

S, and large enough to balance the other terms.
Consider now the nuclei so far apart that we can

approximate X midway between them by the sum of
the asymptotic solutions obtained for the individual
atoms, x~(s~), xii(sii); where s~ is the distance from
nucleus A, and s~ is the distance from nucleus B.They
obey asymptotically the differential equations

Ax„+ (p/4», )x„=0, Axii+ (p/4», )xii ——0,

which are indeed obtained from (11) if we neglect
powers of X and neglect eC compared to p, the first we

can do, since m and X tend to zero in the central region
as the separation tends to infinity; the second is trivially
permitted since, as the separation increases C tends to
zero in this region while the constant p tends to
p,~ ——p~, the chemical potential of the isolated atom.
(The integrability of n requires that this ii be negative. )
The solution will then be of the form x=C(e '&"/s~
+e '&I'/sii), where C is a constant and/ is the decay
length l= (4»;/(p~)'", p(0.

We estimate now the three terms in the integrand of
Eq. (13).Let ts be the density midway between the two
nuclei, which are at a large distance 2R from each other.
Around the midpoint the electric field due to the charge

~A. S. Kompaneets and K. S. Pavlovskii, Zh. Eksperim. i
Teor. Fiz. Bl, 427 (1956l )English trsnsl. :Soviet Phys. —JETP 4,
328 (1957)g; G. A. BaraG and S. Borowitz, Phys. Rev. 121,
1704 (1961);see also N. L. Balkzs, ibid. 134, A841 (1964).

clouds around A and B can be uniquely expanded in
inverse powers of R. The leading term is the same as the
Coulomb force due to two point charges; one, carrying
the unshielded charge around A located at nucleus A,
the other carrying the unshielded charge around B
located at nucleus B. Since the amount of unshielded
charge present around each nucleus is about 4+8'lee,
this gives an electric field of order 2 (4z-R'inc)/R'. Then,
the three terms in the integrand are of the following
orders:

8' (te)'m' (-,')»sissies, 2»;is/P. —
As we let R tend to infinity e tends to zero. The first
term is of order e', the second of order e'l', while the
last one of order m. Thus the last term will predominate
and hence an attractive force will arise between the
widely separated constituents; this force goes to zero
exponentially as the separation tends to infinity. The
Weizsacker correction stabilized the molecule.

Suppose now that we wish to include the Dirac and
Gombas correction terms as well. Will the Weizsacker
term lead again to stabilization' The answer is yes.
Now Eq. (11) will be amended by terms which are
proportional to e'" and e'" for small e. Hence, around
the Inidpoint the asymptotic form of this equation for
large separation remains the same and we can estimate
in F~ each term as before. The new terms in the equa-
tion. replacing (11) give rise to new terms in the inte-
grand of F~ which are proportional to age'~' and
eXn' '; hence, for small e they are again negligible
compared to the stabilizing term, which is proportional
to n. Thus a stable molecule will arise again. Indeed,
an approximate numerical calculation by Gombas"
shows that within the Thomas-I'"ermi-Dirac-Weizsacker
(TFDW) theory an iV s molecule is stable, while

"P. Gombas, Acta Phys. Acad. Sci. Hung. 9, 461 (1959).
This paper uses the ~ factor in the Keizsacker correction.



156 FORMATION OF STABLE MOLE CULES

Sheldon' obtains no stable N2 molecule omitting the
Weizsacker term.

IV. GENERALIZATIONS

Our results should be generalized in diferent direc-
tions; first, to homonuclear diatomic molecular ions;
second, to general molecules, finally to general molecular
ions. As far as diatomic molecular ions are concerned,
the situation is as follows. In Eq. (2) there is no
additional contribution to F coming from the integra-
tion over 5', since the field falls off as I/r', and the
surface integral contains as the integrand the square of
the field. Hence all our results in the TF, TFD, and
(TF+correlation correction) cases are unchanged. We
have seen that the FA correction does not generate
binding for most cases of interest. This situation will

be even worse if the molecule is not neutral. For the
TF theory with the Weizsacker correction as applied to
ions further work is needed, since an additional term,
independent of e appears in Eq. (2), which upsets the
method used before.

I.et us generalize now our results to a general poly-
nuclear molecule. First, take the case where e= f(C);
this gave no binding for homonuclear diatomic mole-
cules. Observe that the crucial requirement in the proof
was the existence of surfaces S' and S. The surface S'
surrounds the molecule, and on it the electric field is
zero. As long as 1'mdV converges, such a surface will

exist. 5 had the property that it separated one nucleus
from the rest and had no electric field across it, i.e.,
it was orthogonal to all equipotential surfaces it inter-
sected. Will 5 always exist) If the surface is given by
g(x,y, z) =C, g satisfies the partial differential equation
gradg gradC =0. The existence of this surface was
assured in the homonuclear diatomic case by symmetry.
For the general case, we proceed in two steps. First we
show the existence of this surface for a special arrange-
ment of the nuclei, then we show that by changing this
arrangement we can only deform the surface but cannot
destroy its existence. Once we have shown this, the
proof of the impossibility of binding goes through
exactly as before. Consider, then a collection of nuclei
and electrons, and arrange all nuclei except for one in
a small spherical bunch 8 fixing them, say, on the
surface of a small sphere. Further away, 6x nucleus

A. Surround this configuration with the electrons
according to the law e= f(4), where 4 is the solution of
Poisson's equation. Except for the immediate vicinity
of 8, this arrangement will have a cylindrical symmetry
around the line connecting 8with A. (In the immediate

vicinity of 8 the fact that 8 is not quite spherical will

disturb slightly this symmetry. ) Now consider a plane
through 8 and A, and carry in this plane, along a given
path, a small positive test charge from 8 to A. In
the immediate vicinity of each end the electric field
along the path will be repulsive, thus the projection
of E onto the path will have opposite signs. Since the
electric field is continuous, there must be at least one
point along the path where this projection is zero. Mark
these points. Repeat this for many paths. The same
remark applies to each. Now pick on each path that
point which is nearest to A. Connect these. You get a
curve C. Rotate the plane containing this curve around
the connecting line AB. The curve C will generate the
surface S.We have constructed the required solution of
gradg gradC =0 for this special configuration. But the
solution of this partial differential equation depends
continuously on the coefficients, which in turn depend
continuously on the location of the nuclei. (To avoid
any difhculties we shall consider the positive nuclei
as small charged spheres, and we admit only such con-
figurational changes which do not require the fusion, or.

splitting of the positive nuclei. Since in the construc-
tion their number is left arbitrary, this is no restriction. )
Hence, by changing the configuration of the nuclei we
will change the location and shape of surface 5, but it
always remains in existence. Knowing that an S exists,
we can immediately show, as before, that no theory
which gives the electron density as a function of poten-
tial alone, can describe a stable molecule.

For the theory amended by the FA correction and
Weizsacker correction the generalization is more diK-
cult, and we intend to return to it later. The FA correc-
tion must be treated differently, since the proof did not
depend only on the existence of the surface 5. For the
Weizsacker correction a difficulty arises, since we used
the fact that S is a symmetry plane, twice: first, to
show that on S the vector E has no normal component;
second, that on it grade has no normal component
either. The first step can be generalized; however, in
general, the second does not follow from the first and
our proof breaks down.
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