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Decay of Persistent Currents in Small Superconductors"

Wo.r.w.M A. LzTrx.z
Department of Physics, Stanford University, Stanford, California

(Received 27 May 1966; revised manuscript received 1 December 1966)

The thermodynamic Quctuations of the order parameter in a superconductor are shown to be able to
cause the decay of a "persistent" current in a ring-shaped conductor. Calculations have been made of the
lifetimes of these currents, which indicate that in very thin wires this decay should be detectable. We also
show that a true phase transition, distinguished by an infinitely sharp change of resistivity, is possible only
in an infinite three-dimensional specimen. In one- and two-dimensional samples, on the other hand, no
infinitely sharp change of resistivity occurs but, instead, the resistance drops smoothly and rapidly towards
zero as T ~0'K.

1
~INE of the outstanding problems of supercon-

ductivity is that of explaining the lifetime of
persistent currents in ring specimens. In this paper we
will show that it is possible to set an upper limit on this
lifetime by considering the effects of thermodynamic
fluctuations in the specimen. These fluctuations provide
a means by which the persistent current can decay.
Decay by this means should be observable in small
specimens where the thermodynamic fluctuations can
be appreciable. In large specimens, on the other hand,
the lifetimes are predicted to be enormously large, in
agreement with the experimental evidence.

This work was motivated by the consideration of
Ferrell' and Rice' of the role played by the dimension-

ality of the specimen on the existence of superconduc-
tivity or off-diagonal —long-range orders (ODLRO). They
have shown that in one-dimensional specimens, in
particular, fluctuations in the density or of the super-
conducting order parameter make it impossible for
ODLRO to occur in these specimens. One might
then be led to conclude that superconductivity mould

be impossible in a one-dimensional sample, that is,
one in which the transverse dimensions are small

compared to the length. In particular, one might
conclude that superconductivity would be impossible
in a linear macromolecule of the type discussed earlier

by the author. 4 This does not necessarily follow, for
we do not know at present whether ODLRO is a
sufficient md necessary condition for the existence of
superconductivity. In order to investigate whether
superconductivity can be ruled out in these systems,
we have extended the arguments of Ferrell and Rice
and used them to determine directly a limit on the
lifetime of a "persistent" current in finite ring-shaped
superconducting samples. We obtain the result that
for a system in which the range of the interaction force
is finite, a phase transition defined by an infinitely

sharp change of conductivity can occur only in a sample
which is infinite in at least three dimensions. We are
particularly interested in samples which are infinite in
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only one of the three dimensions. In these, the average
electrical resistivity at finite temperatures never drops
to a value which is absolutely zero. However, in most
cases, for temperatures appreciably less than the bulk
T„ the resistance drops to an exceedingly small fraction
of the normal resistance. We find then that while we
have neither a true phase transition nor the existence
of ODLRO because of the fluctuations in a one-
dimensional system, we can still have a state of greatly
enhanced conductivity at low temperatures. We must
stress, however, that in our argument we follow Ferrell
and Rice in assuming the existence of an order param-
eter locally. There is some reason to believe that for
specimens so narrow that the lateral dimensions are
less than the Fermi wavelength, it may be impossible
for an order parameter to occur here at all. ' This is a
different problem from that of the fluctuations and we
make no attempt to examine this here, except to discuss
what bearing our results will have on this problem.
Also, in our arguments we have confined ourselves to
the problem of thermodynamic fluctuations alone: i.e.,
fluctuations in which a small part of the specimen
deviates, for example, in its temperature or density
from that of the rest of the specimen, but within each
small part equilibrium at this diferent temperature or
density is maintained at all times. We have not con-
sidered fluctuations to states which are not describable

by such local values of the intensive parameters.
Because of this, our results give only an upper limit on
the lifetime of the persistent current. It is for this
reason that an experimental investigation of these
lifetimes would be particularly valuable, for it would.

show how important these microscopic fluctuations
were in determining the properties of the supercon-
ducting state.

THERMODYNAMIC FLUCTUATlONS

It has been shown by Gor'kov' that the Ginzburg-
Landau theory~ of superconductivity is equivalent to
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the BCS' theory, at least in the vicinity of the transition
temperature. These Ginzburg-Landau equations pro-
vide a simple means for incorporating spatial and time
varying fluctuations in the condensate which would be
cumbersome in the more microscopic forms of the BCS
theory. Recently it has been shown by Kerthamer and
Tewordt' that the Ginzburg-I. andau theory has a wider

range of validity for materials with a short mean free
path. Furthermore, there is an impressive amount of
experim'ental evidence to show that it gives an excellent
account, both qualitatively and quantitatively, of the
known phenomena of superconductivity. "" In this
paper we shall be concerned primarily with super-
conductivity in specimens with at least one dimension
extremely small. In this domain, the Ginzburg-Landau
equations have been particularly successful in explaining
old phenomena and predicting new. ""For the above
reasons, we believe that these equations form a valid
basis for our arguments except, perhaps, for samples
so small that the lateral dimensions are small compared
to the Fermi wavelength. The resultant lamination of
the Fermi sphere introduces special considerations
which in this case may prevent the existence of an
order parameter.

For our arguments, the existence of an order pa-
rameter plays an essential role. However, Ferrell in
his paper" has argued that the Gor'kov function I&'(x),

which is related to the Ginzburg-Landau order pa-
rameter, vanishes in a one-dimensional system. This
aspect of his argument is not correct. The error lies
in his incorrect replacement of the definite integral in
his equation (3) by the indefinite integral. The definite
integral has as its limits the phase of the order param-
eter at points x and x', respectively. This phase differ-
ence is, in principle, subject to measurement. The use
of the indefinite integral, however, replaces the appro-
priate phase difference with the absolute value of the
phase. This is tantamount to measuring the phase at
x with respect to some arbitrary external standard,
and this is not subject to physical measurement.
Ferrell's conclusion, however, that ODLRO should not
occur in one dimension survives, nevertheless, because
G(x,x'), which occurs in the criterion for ODLRO,
involves the phase diRerence between x and x' rather
than any absolute phase.

It appears, then, that one is on safe ground in as-
suming the existence of an order parameter at least
locally subject to the above restrictions and that the
free energy depends upon it through the Ginzburg-
Landau equations. We wish to show, then, erst that

' J. Bardeen L. N. Cooper, and J. R. SchrieBer, Phys. Rev.
108, 1175 (195 ).' N. R. Wertharner, Phys. Rev. 132, 663 (1963); L. Tewordt,
ibid. 137, A1745 (1965).

' A. A. Abrikosov, Zh. Eksperim. i Teor. I'iz. 32, 1442 (1957)
)English transl. : Soviet Phys. —JETP 5, 1174 (1957)j."T. G. Berlincourt and R. R. Hake, Phys. Rev. 131, 140 (1963).

"M. Tinkham, Phys. Rev. 129, 2413 (1963)."L.Meyers and%. A. Little, Phys. Rev. Letters 13, 325 (1964).

the thermodynamic fluctuations which have been

shown by Rice to be capable of destroying ODLRO in

a one-dimensional system will not destroy flux quan-

tization or a persistent current in a closed loop, unless

a fluctuation occurs which is of such an amplitude that
the order parameter is driven to zero for some section
of the loop.

Consider the Ginzburg-Landau equations:

F(p) = L~I11 (r) I'+&ltl (r) I'+el &tt(r) I'3d" (1)

In the usual treatment, one ignores fluctuations and
determines the equilibrium value of P(r) by minimizing

(1) with respect to h(r) and p(r). However, other
functional forms of h(r) and p(r) are possible and will

occur with a probability e ~"&&', where Ii (P) is the
computed value of the free energy in (1) for the given
functional forms of h(r) and g(r). The actual order

parameter will Auctuate among these possibilities. Rice
took these into account for a one-dimensional system
and showed that the appropriately weighted average
of the function (Q (r)f*(r'))) over all possible forms of
the order parameter was such that

((4 ( )F("))) (3)

This is the condition. for the absence of ODLRO in
the system, ' and consequently we see that ODLRO
cannot exist in such a one-dimensional system. Let us
extend this argument by considering a sample in the
form of a wire of diameter d and length l joined back
on itself to form a closed loop. We will consider initially
the case where d(&i, so that variations of P(r) across
the wire can be neglected so that we may use the one-
dimensional form of the Ginzburg-Landau equations.
Later we will discuss the limitation of this approach.
Hyers and Yang'4 have shown that if the free energy
of such a loop varies with the magnetic Aux 4 through
it, then persistent currents will Row and it will exhibit
the phenomenon of Aux quantization. Consequently,
we ask whether or not the free energy of the loop as
given by (1) varies with the magnetic flux through it.

For such a loop geometry, the boundary condition
on iJ (r) is that it. should be single valued. This, therefore,
imposes upon the phase the condition that

y(l+r) —y(r) =2irn,

where n is an integer. Because of this, each possible
form of the order pa, rameter P(r) can be classified
according to the integer describing the phase change

"N. Byers and C. N. Yang, Phys. Rev. I etters 7, 46 (1961).
See also Ref. 4 above.

where the order pa, rameter p(r) is a complex function
with real amplitude A(r) and phase p(r), and where

P(r) = h(r) expiry(r) . (2)
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round the loop in Eq. (4). Let us consider that we
group these P's in subensembles of given e.

We must include the contribution of the vector
potential A(r) into the Ginzburg-Landau equations in
order to take the contribution of the Qux into account.
As indicated above, we will take initially the one-
dimensional form of these equations:

REAl
AXIS

+o
AXIS

A~ =I

~(4)= P() +&lk()l'+ —A()

Xy(x)dx. (5)

K&'zc. 1. The order parameter |I| (x} which is complex is drawn as
a function of position. Two possible con6gurations are shown, one
for an order parameter in the subensemble n =0 and the other for
n= i. Near 2, QI(x} makes an excursion round the A,rgand dia-
gram while $0(x) does not.

For any arbitrary form for the order parameter
belonging to a given subeosemble n, we find that

4pr'c (e+n)'
&(P )=a 6'(x) dx+b 64(x)dx+

+ p'(x) 6'(x)dx, (6)

where I=J Ldx/bP(x)j, P(x) is a real function in-
dependent of the flux but dependent upon P„(x), and
n is C'/(hc/2c). We see then that for all order parameters
which lie in a given subensemble, the free energy will
depend upon the Aux unless the integral I is infinite.
For a finite ring this integral can be infinite only if

~
A(x)

~

is zero in at least one place. As a result of this,
the expectation value of the free energy over the sub-
ensemble of states of given e, ((F(P„))), must vary
with the Aux. It is convenient to think. of a single system
moving in time through the various possible phase
points representing the various Auctuations, rather than
an ensemble of the systems with a given number in
each particular region of phase space. In this view,
then, we see that so long as the system Auctuates
among the states of just this subensemble the free
energy will be Aux-dependent, and consequently during
this period a persistent current will not decay. It will
Quctuate in magnitude depending upon the instan-
taneous value of I, but its Auctuations will be centered.
on a value determined by e. Likewise, the trapped Aux

will Quctuate about a value e times the appropriate
Aux quantum, and Aux quantization will be maintained.

In order to understand the decay of a persistent
current, then, we must determine how the system can
make a Auctuation from one subensemble e to another
e'. We will argue that this is only possible if a Auc-

tuation occurs which drives the order parameter

~
A(x)

~
to zero at least at one point in the loop.

FLUCTUATIONS BETWEEN SUBENSEMBLES

We recall that the order parameter P(x) describes
the behavior of a large number of particles. Changes
in this order parameter can occur, for example, because
of an inAux of heat to the region near x or of an inQux

or efHux of particles to or from this region. It seems
reasonable to assume that changes in P(x) must occur
continuously because it involves many particles. Each
particle, on the average, must gain a little energy for
the over-all energy to increase. It is unreasonable to
expect the large number of particles described by the
order parameter to gain an increment of energy dis-
continuously. However, we could expect them to gain
energy continuously, and thus the total energy density
would change continuously through all neighboring
values of the energy density. We would expect, for the
same reason, that changes in the density and in the
entropy density would also occur continuously. On
the basis of this argument, we contend that all Quc-
tuations occur such that the order parameter changes
continuously or, in other words, through configurations
which lie infinitely close to one another. On this as-
sumption we can determine how a Quctuation can carry
the system from one subensemble, e, to another, e'.

Consider the illustration (Fig. I). This depicts the
variation of the amplitude h(x) and phase P(x) for
two possible configurations of the order parameter,
Pp(x) and P&(x), lying in the subensembles m=0 and
v=1., respectively. The total change of phase from x
to x+3 for Pp is zero, while for Pi it is 27r. We have taken
the Aux 4 to be zero. We have chosen the amplitude
and phase of the two configurations to be identical
except in the region near A. In this region. , P&(x) makes
an excursion round the Argand diagram to rejoin fp(x)
a little beyond 2, while Pp(x) makes no such excursion.
In this region, fp(x) and Pi(x) have the same amplitude
but, of course, differ in phase. It is clear from this
figure that it is only possible for Pp(x) and Pi(x) to
lie infinitely close to one another everywhere if they
both drop to zero at the same point. At this point
Pi(x)'s excursion round the Argand diagram could
coincide with fp(x) if both had zero amplitude. Our
assumption that Quctuations progress only through
configurations which lie infinitely close to one another
then leads us to the conclusion that a Quctuation from
one subensemble n to another e' can occur only if
~A(x) ~

fluctuates to zero at some point in the loop.
Our picture of the decay of a "persistent" current then
proceeds as follows: Let us suppose that at 3=0 the
order parameter of the loop lies in a subensemble e.
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Now fluctuations will occur among the states of this
subensemble as discussed earlier. Eventually a fluc-
tuation will occur with such an amplitude that 4(x)
is driven to zero in some part of the loop. The system
may then proceed into any other subensemble n'. It
will then fluctuate in this new subensemble until again
h(x) is driven to zero, at which time it may progress
to some other subensemble. On the average, it will

gradually find its way to that value of e' which mini-
mizes the free energy and will then fluctuate in and
around this neighborhood. Within each subensemble,
the system behaves like an ordinary superconductor
exhibiting flux quantization and a "persistent" current
which fluctuates about a mean value. Where ~(x)
fluctuates to zero, this part of the loop reverts tem-

porarily to the normal state exhibiting its normal
electrical resistance. For the rest of the time the loop
exhibits zero resistance. We can therefore calculate
the time average of the resistance of the loop by deter-

mining what fraction of the time some part of the loop
is normal and thus has its normal resistance.

We proceed to calculate this in the following way.
First, we note that the order parameter P(x) in some

small part of the loop may be considered to be a
function of the local vain. e of the density (of electrons)

p and of the local temperature T. Fluctuations in either
T or p can cause the order parameter to drop to zero

in some regions of the loop. For small fluctuations,
standard fluctuation theory" shows us that the proba-
bility of a fluctuation occurring of amplitude AT or

~V, where AV is the change of volume V containing X
particles, is

C, 1 Bp
a&= exp — (5T) + (~V)' (7)

2kTp' 2kTp BV

Here C. is the heat capacity of the small volume
which fluctuates in temperature by 2T. For a given
mean temperature Tp, we can readily calculate the
probability that a fluctuation can occur such that AT
is sufhcient to raise a small part of the body above the
temperature T, at which the order parameter goes to
zero. This is the meaning of T, for our further calcu-
lations. For fluctuations in density or AV, we can obtain
some idea of the magnitude 6V must reach for the order
parameter to go to zero. This we can do by assuming

co= exp
u(T) —zz(Tp) —Tp[s(T) —s(Tp)]

n , (v)
kTp

where N(T) is the internal energy per unit volume of
the filament at temperature T and s(T) is the corre-
sponding entropy. 0 is the volume of the small part of
the filament.

The order parameter cannot change very rapidly in
a distance much smaller than the mean-free-path
reduced coherence length $' without raising the free
energy appreciably; consequently, the smallest volume
whose temperature fluctuations we need consider is a
volume having the diameter of the fi]ament and a
length ('.

The Hme average of the resistance of any part of the
filament is then

that the BCS approximate expression,

kT, =1.14ha& exp[ —1/N(0) V]

is valid in this small part of the body. Here N(0) and
V depend upon the density, and thus density fluc-
tuations at a given temperature Tp can cause T, to
fall below Tp. An increase of electron density will
increase N(0) but decrease V because of increased
screening. Thus we can get an upper bound on the
variation of T, with density by assuming that V does
not change with density. A simple analysis for a free-
electron gas and the use of (8) shows that the rms
fluctuation of the temperature in (7) is greater than
the rms fluctuations of T, due to density fluctuations
by a factor of the order of e'/16AT, . Taking the Cou-
lomb repulsion into account gives a factor which is
even larger than this; consequently, it is an excellent
approximation to ignore the fluctuations of the density
and consider only fluctuations in the temperature.

Ke have to consider fluctuations which are not small,
in which case Eq. (7) is an inadequate approximation.
In this case let us imagine that the filament of super-
conductor is immersed in an environment at some mean
temperature Tp as illustrated in Fig. 2. This seems to be
the most realistic situation of experimental interest.
Quite generally, "then, the probability co of some small
part of the filament fluctuating to some temperature T
is

dT exp
N(T) —u(Tp) —T,[s(T)—s(Tp)]

0
kTp

dT exp
N(T) —u(Tp) —Tp[s(T) —s(Tp)]

0 . (10)
kTp

L. D. Landau and E.M, Lifshitz, Statistical Physics (Addison-Wesley Publishing Company, Inc. , Reading, Massachusetts )958)
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Pro. 4. Plot of the
average resistance of
a thin superconduct-
ing wire as a function
of reduced tempera-
ture t=T/7, and pa-
rameter S=—yQ,T,/k,
where 0 is of the
order of (md'/4) g~

and d is the wire
diameter.

IP6-

Ip-Io

IP '6—

IP-25
0 0.5

For wires of diameters appreciably larger than this,
it is clear that the transition from the relaxation time
characteristic of the normal state to that of an im-
measurably long relaxation time would occur in a
minute temperature interval and normally would be
masked by small differences of the transition tempera-
ture due to impurities and strains. Only in samples with

+ABLE I. Computed lifetimes for two Sn wires, one of 100'.
diameter and the other of 360 A.

Lifetime
100 A. wire

('Kl
360 A. wire

('K.)

=10 i4 sec
10 7 sec
10 4 sec

1 sec
10 days
10' years

3.7
2.0
1.5
1.25
1.0
0.75

3.7

3.26
3.10
3.06
2.90

DISCUSSION

By considering just the thermodynamic fluctuation
of the temperature of a thin superconducting specimen,
we have shown that the lifetime for the decay of a
persistent current is not infinite. However, for wires
larger than a few hundred angstroms in diameter the
lifetime for the decay attains an immeasurably large
value within a small fraction of a degree below the bulk
transition temperature,

The extension of these ideas to samples of macro-
scopic size in the second and third dimensions is not
trivial. In the first place, tb.e classification of the order
parameters into subensembles of definite e, strictly
speaking, fails for any finite width of the sample. For,

dimensions comparable to those discussed above would
it be possible to observe directly the decay of the
persistent current due to the thermodynamic Quc-

tuations. Measurements on samples of this size would
be particularly valuable in determining the role other
nonthermodynamic fluctuations play in determining
the decay lifetime.

in principle, a variation of P(r) across the sample can
make the phase change of the order parameter along a
path on one side of the sample differ from that along
the other, so that a vortex line is enclosed by the
specimen. For the case we have considered, however,
where d(f~, the free energy for such a vortex con-
figuration is so high away from the immediate neigh-
borhood T, that the system spends a sufficiently small
time in it that our classification according to a definite
e is a workable approximation. For samples in which
one of the transverse dimensions is greater than f~, we
must include the possibility of the existence of such
vortex configurations and the interactions these would
have with an external field and a conduction current.
If the magnetic field is large enough, then an equi-
librium array of these vortices can exist and one obtains
the Abrikosov state characteristic of the type II
superconductor.

It is worthwhile noting that the decay mechanism
we have considered amounts to the entry of one flux
unit (not hc/2e, but this value corrected to the dimen-
sions of the sample" ) in the average flux during a
transition between subensembles. This is superficially
similar to the mechanism which generates the flux low
resistance of type-II superconductors. The dissipative
mechanism, i.e., the movement of Aux through the
specimen, is the same in both cases; however, the
important difference lies in the role played by the
magnetic field. In the type-II superconductor, a mag-
netic field greater than H, & is necessary in order to
maintain the sample in the Abrikosov state with an
equilibrium distribution of vortices throughout the
sample. The movement of this array due to the Lorentz
force interaction with the conduction current gives rise
to the dissipation of the current. The magnitude of
this dissipation is determined by the strength of the
pinning sites of the vortex array. This problem has
been treated by several authors. "The situation which
we have examined is that were the magnetic field is so
small, B«H, &, that there is, firstly, no equilibrium
vortex array and, secondly, the magnetic field inter-
actions, can be neglected. In this case, it is not the
strength of the pinning sites of the vortices which deter-
mines the dissipation but rather the probability for the
creation of a vortex. In the very thin sample we have
considered, i.e., d(/t, the existence of a vortex in the
wire would require a higher free energy than that which
is necessary to drive the order parameter to zero across
a section of the wire. For this reason the preferred decay
mechanism is by the latter means. For samples with
transverse dimensions comparable to the penetration
depth or larger, the free energy required for the creation
of a vortex will be lower than that needed to drive the
order parameter to zero across a section of the wire. In

' J. Bardeen, Phys. Rev. Letters 7, 162 (1961).' See for example, P. W, Anderson and V. B. Kim, Rev. Mod.
Phys. 36, 39 (1964).
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this case the current can still decay but the mechanism
is more closely akin to the Qux Qow resistance found for
type-II superconductors.

In a Josephson junction the penetration depth is

anomalously large and the order parameter anomalously
small; consequently, the most probable way for Qux

to cross the junction, assuming that the junction is

short compared to the penetration depth, is by a
Quctuation in which the order parameter Quctuates to
zero as discussed here rather than by the migration of
a Qux line across the junction as in a type II
superconductor.

It is useful to note that in the absence of an external

magnetic fieM the energy per unit length of a vortex is
of the order of 4»'/4vr'X', with approximately equal

contributions coming from the field energy and from

the current. Here Cp ——hc/2e, and X is the penetration

depth. Even for quite thin films at temperatures a
little below T, this energy is appreciably larger than

kT, so that the equilibrium density of these thermally

excited vortices will be extremely small. For example,
consider a film of Sn, 100 A thick, the mean free path,
l = 100 A, $o = 10' A, 'AI. (0)=500 A at t = T/ T,=0.99.
We have" X=0.62XI.(0)t tp/l(1 l)]"', giving &=3.1
X10' A. The total energy of this vortex line is therefore

of the order of 18kT„and the probability of finding a
vortex in this region at this temperature is =e ".We

observe, however, that for any finite film thickness the

energy of such vortices, while large, cannot be infinite,

so that near enough to T, an appreciable density of

these will occur. Similarly, the pinning energy cannot

be infinite for a finite film. The resistive transition to

the superconducting state must therefore be continuous

because of the gradual decrease in the number of these

vortices per unit area as the temperature is lowered

below T,. As the film thickness is made larger, the total

energy of a vortex line through the film increases, and

consequently we should expect a sharper transition to

the superconducting state to occur. Only for an

infinite

three-dimensional sample can one expect a, discontinuous

transition. Such a discontinuity is characteristic of a

phase transition. One may conjecture then that no true

phase transition should occur in either the one- or two-

dimensional cases.

In the presence of a magnetic field, the problem

becomes considerably more complicated in detail,

although it is easy to see that such a field lowers the

energy of those vortices with the appropriate orien-

tation with respect to the field until at II,~ an equi-

librium array becomes possible. Below H, », the number

of thermally excited vortices will then be field-depen-

dent and likewise the resistance.

One can also apply these coo,siderations to the

hypothetical superconducting macromolecule suggested

earlier. ' If an order parameter can exist in such a linear

'9 B.H. Goodman, Rev. Mod. Phys. 36, 12 (1964).

molecule and we accept the estimates' of T,=2000'K,
a coherence length of 30 4, and the density of states
at the Fermi surface used, in that calculation, we obtain
a value of 5=2.5. (In this system where the lateral
degrees of freedom of the electrons are frozen out, we
calculate the electronic specific heat of the molecule
per unit length, and 0 is replaced by the coherence
length $~.) Referring to Fig. 4, we see that below room
temperature (t(0.15) the average resistance will have
fallen to a very small fraction of its normal resistance.
A much more rapid drop in resistance with temperature
can be gotten by cross-linking the individual polymer
filaments so that they form a three-dimensional net.
By so doing one raises the energy required for a Qux
line to penetrate through the mass of filaments. Also,
if the polymer filament is imbedded in some other
material or Quid instead of vacuum, the Quctuatiolis
of the temperature of the filament will be tied to the
Quctuations of some part of its immediate environment.
This will effectively increase the volume which can
undergo the thermal Quctuations and again increase
the effective value of S.

We see then that the thermodynamic Quctuations
are not suQicient in themselves to rule out the possi-
bility of a state of greatly enhanced conductivity
occurring at the low temperatures in a linear macro-
molecule. This point can only be settled by examining
whether or not an order parameter can exist locally
in such a system. In this regard we may note that the
exactly soluble one-dimensional model of Mattis and
Lieb' shows no evidence of the superconducting state
for any form of the interaction potentials. This must
not be construed as evidence that such an order pa-
rameter cannot exist here, for we have shown that in
any one-dimensional system such as that of Mattis
and Lieb, an order parameter, if it exists, must Quctuate
so that it moves through all the difIerent subensembles
e discussed earlier. The exact solution to the thermo-
dynamic properties of this system, therefore, must be
an average over all these subensembles of different e.
It is not difficult to see from Eq. (6) that such an
average washes out all the flux dependence in the free
energy and thus yields a state which in equilibrium
has no superconducting properties. The true equilibrium
state in this case is not superconducting but, as we have
seen in our 'examples above, the approach to equi-
librium can be so slow at low temperatures that a
noeequilibrium state can persist for a sufhcient length
of time to give a greatly enhanced conductivity.

CONCLUSION

We have shown that the Quctuations of both the
amplitude and the phase of the Ginzburg-Landau order
parameter do not destroy a persistent current in a
"one-dimensional" superconducting loop unless a Quc-
tuation occurs which drives the amplitude of the order.
parameter to zero at all points on a surface which severs
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the loop. We calculate the probability of this occurring
by using standard fluctuation theory. From this we are
able to calculate the time-average resistance of the
samples, and we find that while no infinitely sharp
change of resistance occurs at any temperature, never-
theless, the resistance falls significantly below the
normal resistance of the specimen as the temperature
is lowered appreciably below the bulk T,. A true phase
transition to the superconducting state appears to be

possible only in an infinite three-dimensional sample.
In one dimension, if the range of the interaction force
is finite, no phase transition is possible. The resistance
of the one-dimensional system does approach zero,
however, as T —+ O'K.
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The critical surface transport current of type-II films is measured as a function of magnetic field
(II,i (II (P,3), of the angle that the magnetic field makes with the surfaces, of surface condition, and of
film thickness. The results show that the critical surface current (1) is much smaller than that predicted by
the Abrikosov-Park model, (2) does not vary systematically with film thickness as predicted by certain
recent theories, (3) increases as the surface is roughened, (4) decreases sharply as the perpendicular com-
ponent of the applied magnetic field is increased, and (5) increases sharply as the applied magnetic field is
lowered through II.2. These results are interpreted as evidence for surface Qux pinning, i.e. of a surface-
critical-state model, rather than as evidence for any of the published theoretical models. In our model,
quantized flux threads or spots intercepting the surface of the sample are pinned at surface pinning sites.
When a transport current is applied, a Lorentz force is exerted on these surface Qux threads or spots. At a
transport current level below the intrinsic theoretical limit, the Lorentz force exceeds the pinning force; Aux
moves across the surface, a steady voltage is detected, and a critical surface current is thereby defined.

A. INTRODUCTION

HE large transport supercurrents supported in the
mixed state (H.i&H(H, 2) in hard supercon-

ductors like Nb3Sn and Nb-Zr alloys Row predominantly
through the bulk of the conductor. ' These supercurrents
exist by virtue of the interaction between the quantized
magnetic Aux threads that permeate the superconductor
and some appropriate defect structure such as grain
boundaries, ' precipitate particles, ' radiation damage, 4

etc. ,—an interaction that inhibits the motion of the
Qux threads and the appearance of a voltage. It has
recently been shown that the surfaces of a type-II super-
conductor can also support a transport supercurrent. ' '

' For a general review, see J. D. Livingston and H. W. Schadler,
Progr. Mat. Sci. 12, 183 (1964).

2 G. J. van Gurp and D. J. van Ooijen, J. Phys. Radium (to be
published); J. J. Hanak and R. Enstrom, Air Force Material
Laboratory, Wright-Patterson Air Force Base, Ohio, Technical
Report No. AFML —TR—65—169, 1.965, p. 86 (unpublished).

3 J. D. Livingston, J. Appl. Phys. 34, 3028 (1963).' C. P. Bean, R. L. Fleischer, P. S. Swartz, and H. R. Hart, Jr.,
J. Appl. Phys. 37, 2218 (1966); G. W. Cullen and R. L. Novak,
Appl. Phys. Letters 4, 147 (1964); S. H. Autler et al. , Bull. Am.
Phys. Soc. 10, 346 (1965).

~ J. G. Park, Rev. Mod. Phys. 36, 87 (1964); D. P. Jones and
J. G. Park, Phys. Letters 20, 111 (1966);L. J. Barnes and H. J.
Fink, ibid. 20, 583 (1966), also Phys. Rev. 149, 186 (1966);

This effect has been demonstrated in at least two types
of experiments. In the first type it has been shown that
shielding surface transport supercurrents can be induced
by a changing external magnetic field. ' ' In the second
type, that which we' and Bellau' perform, the ability
of the surface to carry a transport supercurrent is
demonstrated by applying transport currents directly
to films and prisms. In both types of experiments it
is found that a surface transport supercurrent will Qow
both in the mixed state and in the region of the Saint
James and de Gennes surface film (H, e&H(H. 3).' A

H. A. Ullmaier and W. F. Gauster (to be published); M.
Strongin and E. Maxwell, Phys. Letters 6, 49 (1963); D. J.
Sandiford and D. G. Schweitzer, ibid. 13, 98 (1964); M Strongin,
A. Paskin, D. G. Schweitzer, O. F. Kammerer, and P. P. Craig,
Phys. Rev. Letters 12, 442 (1964); M. Strongin, D. G. Schweitzer,
A. Paskin, and P. P. Craig, Phys. Rev. 136, A926 (1964);M. A. R.
Leblanc, Phys. Letters 9, 9 (1964); S. H. Goedemoed, A. Van der
Giessen, D. De Klerk, and C. J. Gorter, ibid, 3, 250 (1963);
B.Bertman and M. Strongin, Phys. Rev. 147, A268 (1966);R. W.
Rollins and J. Silcox, Solid State Commun. 4, 323 (1966).

6 G. Bon Mardion, B. B. Goodman, and A. LaCaze, J. Phys.
Chem. Solids 26, 1143 (1965);L. J. Barnes and H. J.Fink (private
communication); H. A. Ullmaier and W. F. Gauster (to be
published).

7 P. S. Swartz and H. R. Hart, Jr., Phys. Rev. 138, A818 (1965).
R. V. Bellau, Phys. Letters 21, 13 (1966).
D. Saint-James and P. G. de Gennes, Phys. Letters 7, 306

(1964).


