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The minimum energy necessary for escape is E;+e¢
or, in aluminum, 15.9 eV. Electrons excited from near
the Fermi energy by absorpton of photons with kv
=9,18 eV have an energy of nearly 20.9 eV. The escape
cone for these electrons is easily determined and is
found to be approximately 0.26.

The escape cone for Table IV is not much less than
0.26m. By interpolating between Tables III and 1V, it
is seen that the escape probability is tatisfied by mean

STUART AND F.
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which are about 9 eV above the Fermi energy, the mean
free paths are between 1,=67 A, [,=400A and I,
=167 A,1,=667 A. This just spans the values I,
=130 A, 7,=510 A which were found to give the best
fit when a detailed analysis was made of the entire
energy distribution of electrons emitted from alumi-
num.’ It should be noted, though, that Quinn’s theo-
retical calculation of /, in aluminum® indicates a value
of about 50 A for electrons of energy greater than 5

eV above the Fermi energy, and appears to be in sub-
stantial disagreement with our analysis of the experi-
mental results.

% T, J. Quinn, Phys. Rev. 126, 1453 (1962).

free paths between 1,=100 A, 7,=600 A and 7,=250 A,
1,=1000 A. Because ! for aluminum is 67 A while the
tables were constructed for «='=100 A, it is necessary
to scale the results. Thus, for electrons in aluminum,
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Properties of the Mn®® Nuclear-Magnetic-Resonance Modes
in CsMnF;}

L. B. WELse*
Depariment of Physics, University of California, Berkeley, California
(Received 20 June 1966)

A new NMR mode of the Mn®® nucleiin the hexagonal antiferromagnet CsMnF3 has been observed directly
between 673 and 676 Mc/sec. This mode results from the difference in the hyperfine couplings for nuclei of
the Mn1 and Mn2 sites when the nuclei are strongly coupled by the Suhl-Nakamura (SN) interaction. The
new NMR mode resembles an antiferromagnetic (AFM) exchange mode, while the NMR mode observed
by Minkiewicz resembles an acoustic AFM mode. The linewidths of the acoustic and exchange NMR
modes at 5000 Oe are 0.042 and 0.22 Mc/sec, respectively. These are a factor of ten narrower than predicted
from the SN interaction. A four-sublattice model of CsMnF3 is proposed which accounts for the field de-
pendence of both NMR modes. The NMR frequencies extrapolated to infinite nuclear temperature are
666.04:0.2 Mc/sec for the Mn2 site and 676.85+0.1 Mc/sec for the Mn1 site. This suggests zero-point
spin-wave reductions of (2.24:1.0)% and (3.2+1.0)% for the Mn1 and Mn2 sites; Davis’s calculation pre-
dicts 2.49% and 4.36%, respectively. The temperature dependence of the electron-sublattice magnetization
is determined from the temperature dependence of the exchange NMR mode. Four-sublattice-model spin-
wave calculations account for this temperature dependence when an intrasublattice ferromagnetic exchange
energy is included which is 329, of the antiferromagnetic intersublattice exchange energy. The Mn® nuclear
spin-lattice relaxation times have been determined for fields between 600 and 5000 Oe and for temperatures
between 1.4 and 4.2°K. The field dependence and magnitude of the relaxation times are not understood,
but at 5000 Oe, T'yoc T7496+0.03 with Ty equal to 3.7 sec at 1.4°K. This temperature dependence indicates
that three-magnon processes may be responsible for the relaxation.

I. INTRODUCTION

THE magnetic properties of the hexagonal anti-
ferromagnet CsMnF; have been the subject of
several previous studies. Torsion measurements, sus-
ceptibility measurements, antiferromagnetic resonance
(AFR) studies, and electron-nuclear double-resonance
studies have been performed by Lee ef al.! Witt and
Portis used the method of electron-nuclear double

relaxation time? and to investigate the diffusion of
energy in the nuclear spin system.? Minkiewicz and
Nakamura* studied the Mn% nuclear magnetic res-
onance (NMR) directly.

In Sec. II we discuss the direct observation of a
second Mn® nuclear resonance mode in CsMnF;.
A four-sublattice model for CsMnF; is described which
accounts for the observed behavior of both NMR
modes. For the two inequivalent Mn?* sites the hyper-

resonance to measure the Mn® nuclear spin-lattice

t Supported by the U. S. Atomic Energy Commission through
Contract AT (11-1)-34 Project 47. Report Code UCB-§4P47-2.

* Present address: Department of Physics, University of
Pennsylvania, Philadelphia, Pennsylvania.

1K. Lee, A. M. Portis, and G. L. Witt, Phys. Rev. 132, 144

(1963).

fine coupling constants and the zero-point spin reduc-
tions are determined and compared with theory. From

2 G. L. Witt and A. M. Portis, Phys. Rev. 136, A136 (1964).

3G. L. Witt, thesis, University of California, 1964 (unpub-
lished).

* V. Minkiewicz and A. Nakamura, Phys. Rev. 143, 361 (1966).
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the temperature dependence of the exchange-like NMR
mode, we determine the temperature dependence of the
sublattice magnetization.

In Sec. III a spin-wave calculation is described which
is based on the four-sublattice model of Sec. IT. This
spin-wave calculation can account for the observed
temperature dependence of the sublattice magnetization
when ferromagnetic intrasublattice exchange is in-
cluded. Agreement is obtained when this exchange is
equal to 329, of the intersublattice antiferromagnetic
exchange.

In Sec. IV we describe direct measurements of the
Mn?% nuclear spin-lattice relaxation times. The temper-
ature dependence of these relaxation times indicates
that three magnon processes are responsible for the
nuclear spin-lattice relaxation.

II. NUCLEAR-RESONANCE MODES
IN CsMnF;

Structure

The crystal structure of CsMnF; is the same as the
hexagonal form of BaTiO;.® Figure 1 shows one-half of
the unit cell. The unit cell has the dimensions a=6.213
40.003 A and ¢=15.074+:0.004 A. The space group
P63/mmc. The full unit cell contains six formula
weights. One-third of the manganese sites (denoted
Mn1) are surrounded by fluorines having one type of
distortion. The other two-thirds of the manganese
sites (denoted Mn2) are surrounded by fluorines having
two different distortions. The Mnl sites have the
point symmetry 3m (D3q) and have six nearest neighbors
of type Mn2. The Mn2 sites have the point symmetry
3m (Cs,) with three nearest neighbors of type Mnl
and one type Mn2. Within the basal plane each site
has six next-nearest neighbors of the same type.

The orientation of the electron spins is determined
by a strong uniaxial anisotropy which makes the basal
plane an easy plane. Anisotropy in the basal plane is
essentially zero,l* the preferred direction of the spins
being established when external fields are applied. As
a result, the electron spins are always perpendicular to
the applied field regardless of the direction in which
the field is applied (i.e., the spin-flop field is zero). The
electron spins lie perpendicular to the hexagonal ¢ axis
in ferromagnetic planes. These ferromagnetic planes are
stacked antiferromagnetically along the ¢ axis. Each
ferromagnetic plane contains only one type of Mn®®
site. The stacking along the ¢ axis may be denoted by
where (+) and (—) refer to the electron spin direction
in space, A refers to an Mnl type of ferromagnetic
plane, and B and C refer to Mn2 type ferromagnetic
planes.

Because of the lack of in-plane anisotropy, CsMnF3
has one low-frequency AFR mode which is observable

5 A. Zalkin, K. Lee, and D. H. Templeton, J. Chem. Phys. 37,
697 (1962).
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Space group : P6,/mmc

F1c. 1. Half of the chemical cell of CsMnF;.

at X-band frequencies. The behaviors of this AFR
mode and the MNR modes are strikingly altered by
the coupling of the electrons and the nuclei through
the hyperfine interaction —am-M, where m refers to
the nuclear magnetization and M refers to the electronic
magnetization. De Gennes ef al.® have discussed this
effect in some detail for both ferromagnets and anti-
ferromagnets. In terms of a two-sublattice model for
CsMnF;! the NMR frequency is altered to

w?= (yaM)?(1—T22H gom/Qs) 69)
where the low-frequency AFR mode is given by
Q2=T2(H2>+2H gam) (2)

and Hp is the exchange field, H the applied field, v the
nuclear gyromagnetic ratio, and T' the electronic
gyromagnetic ratio. These coupling effects are also
present in KMnF3,7 RbMnF;,8 and MnCOy® but are
less pronounced.

Four-Sublattice Model of CsMnF;

In this section we wish to consider a general four-
sublattice model of CsMnF; which will be valid for
calculations involving uniform-mode resonances and
long-wavelength spin waves. The unit cell contains six
different ferromagnetic planes. The sites on planes
A (+) and 4 (—) possess inversion symmetry. The sites
on B(+) are related to the sites on C(+) by inversion
symmetry. The same relation holds between the sites
on the B(—) and C(—) planes. From the four planes
B(+), C(+), B(—), and C(—), two planes can be

8P. G. de Gennes, P. A. Pincus, F. Hartmann-Boutron, and
J. M. Winter, Phys. Rev. 129, 1105 (1963).

7V. Minkiewicz and A. Nakamura, Phys. Rev. 143, 365 (1966).
(1; 612) J. Heeger and D. T. Teaney, J. Appl. Phys. Suppl. 35, 846

9H. ']'. Fink and D. Shaltiel, Phys. Rev. 136, A218 (1964).
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Fic. 2. Coordinate system and equilibrium positions of the
electronic and nuclear magnetizations for the four-sublattice
model of CsMnF;. The magnetic field is applied in the basal plane.

constructed which have the average properties of the
original planes. Planes B(+) and C(+4) are added
together to form one (+) sublattice and planes B(—)
and C(—) are added together to form one (—) sub-
lattice. The resulting sublattices D(+) and D(—)
contain twice the number of magnetic ions of the
sublattices 4 (+4) and A(—). The properties of the
sublattices D(+) and D(—) will be the average proper-
ties of planes B(+), C(4+) and B(—), C(—) which
implies the new sublattices also possess inversion
symmetry.

The exchange interactions between the ferromagnetic
planes are antiferromagnetic. The strength of the
Mnl1-Mn2 exchange interaction is measured by the
exchange constant A,/ and the Mn2-Mn2 exchange
interaction by A¢'. In terms of the sublattice mangetiza-
tions the total isotropic exchange energy for the original
six planes is

Uesx=MMuay Mpy+Mey) MMy Mz,

FMMa Moy +Mew)+3Mey-Mey. (3)
Equation (3) reduces to
Uex=MMay Mpy+Mac) M)
+XeMp(y-Mpyy), (4)

where A;=2)\; and \.=2)\;. The magnetizations
Mp ), and Mp(,) are one-half the actual D-sublattice

magnetization. )
The total energy of the magnetic system Is

U=\ (M;-My+M;-My)+NMs-M;
—H- (M,;+2M,+2M;+M,)+ (K/M?)
X (M 124 2M 2,2+ 2M 3,2+ M 1)
—H (m;+2me+ 2m7+mg) —a .My -m;—2asM,-mg
——2adM3'm7—OlaM4'm3. (5)

The sublattice notations are 4 (+)—1, D(—)— 2,
D(+) — 3, A(—) — 4. The parameters A1, Ny, K,
o, and aq are positive; K is the anisotropy constant;
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a, and a4 are the respective hyperfine interaction
constants between the electron and nuclear magnetiza-
tions for the Mnl and Mn2 sites. With the magnetic
field applied in the basal plane, the sublattice magnetiza-
tions take the orientations shown in Fig. 2.

The equilibrium positions of the electron magnetiza-
tions are in the basal plane. These positions are deter-
mined by setting the first derivatives of the total energy
with respect to the polar coordinate angles 6; and ¢,
equal to zero. The M, and M, sublattice magnetizations
are tilted through an angle € toward the applied field,
and the magnetizations My and M; are tilted toward
the field through an angle ¢ where these angles are
given by

e~ (2a—N)H/(OA\oM), €~H/(2NM). (6)
Note that if Ne=\;, then ¢=e and all sublattice
magnetizations are tilted toward the field by the same
amount. The equilibrium positions for the nuclei are
ee=¢+H/(a.M) for the nuclear magnetizations m;
and mg, and ez= €'+ H/(agM) for mg and m;.

Minkiewicz and Nakamura! pointed out that the
presence of two inequivalent Mn® sites introduces a
second NMR mode. This second NMR mode always
lies above the mode which they observed and is only
slightly depressed in frequency as a result of the coupling
between the electron and nuclear modes. The AFR
and NMR frequencies can be calculated from Eq. (5).
In order to do this we make the assumption that all
ATFR frequencies are much larger than the NMR
frequencies. In this case the nuclear spins will not
respond to the AFR frequencies. The electron spins
will only feel the average value of the nuclear magnetiza-
tion. This reduces the effect of the hyperfine interaction
to that of an effective nuclear-induced anisotropy field
on the electron spins. This field acts in the equilibrium
directions of the nuclear spins.

In order to calculate the AFR frequencies, Eq. (5) is
treated in polar coordinates where the polar axis is
chosen as the hexagonal ¢ axis. Equation (5) is expanded
to second order in the angular deviations 86; and d¢;
about the equilibrium positions 6;p and ¢g. The first-
order terms in 66; and d¢; vanish as a result of the
equilibrium conditions. The resonance matrix from
which the secular equation is obtained is calculated
from the equations of motion in polar coordinate form.
For sublattices 1 and 4 these are

a8¢; T oU dd i I' oU
=, =TT T, 7:=1>4- (7)
. M dbe; a1 M 360;
For sublattices 2 and 3 the equations of motion are
a80; T aU dd; T U
= —=——— =2 3. (8)
It 2M dd¢; a¢ 2M 956,
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The four resulting AFR modes are

Q*=T*(H*+2HEH ar1) , ©
Q2 =T2(2H gH 4+4-2H gH 47— 3H2/4),  (10)
Qs?~3T2H /4 (11)
Q2~302H 2/4 (12)

where Hp=\M, H,=2K/M=7500 QOe, and Hur
= (g+20q)M/3=9.15/Tx Oe. The first-two modes
are similar to those obtained by Lee ef al! using a
simple two-sublattice model. The last two modes are
high-frequency exchange modes.

The NMR frequencies are obtained by assuming the
electron spins can follow adiabatically fields which
vary at the NMR frequencies. From the full-equilibrium
conditions for the electron spins we have

U
—=0,
060,

U
—=0,

1=1, 2,3, 4.
dd¢;

(13)

The electron angular deviations can be determined as
functions of the nuclear angular deviations 86; and d¢;
where i=35 to 8. Using these relations, Eq. (5) may be
expressed entirely in terms of the nuclear angular
deviations. The resonance matrix for the NMR modes
is then obtained from the equations of motion which
are given by

960; v oU  0ddg; vy oU

- =———), i=5,8 (14)
at  m, 0d¢; at m, 060,
65&; Y oU 5540,' Y oU
— = i=6,7. (15)
at  2maddei ot 2mq 060;

Four NMR solutions result which are coupled together
in pairs. The solutions of interest are given by

w12w22=wa2wd2[1 —P2 (4IJATd+ 21{AT,,>HE/3912] y
witw?=w(1—21H 47,H /32
+w,12 (1 —4I‘2HAT‘1HE/3912) 5

(16)

where wo=vya.M, wa=vaaM, H 41,= e, H ar;= agma.
The other pair of solutions involves ©; and shows
negligible coupling effects.

The behavior of the two solutions w; and ws is quite
different. The lower solution, w;, exhibits the same
behavior as the NMR mode obtained from the simple
two-sublattice model and corresponds to the NMR
mode observed by Minkiewicz and Nakamura.! The
upper solution, ws, is only slightly depressed in frequency
from the value w, and wq.

Using the resonance matrix of the nuclei which is
generated by Eqs. (14) and (15), the relative normal-
mode amplitudes of the nuclear magnetizations for the
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Fi16. 3. Diagram of the normal-mode patterns for the acoustic
and exchange NMR modes in CsMnF;. The nuclear magnetization
ms and m; are in phase with ms and ms for the acoustic NMR
mode, but they are 180° out of phase with m; and ms for the
exchange NMR mode.

solutions w; and ws can be determined. Assuming 2>,
where w satisfies Eq. (16), the relative normal-mode
amplitudes are given by

5(p5=5¢3, 5(p6=5§07, 505=503, 50(5:507,
dor 807 wi—w,? W, a7
—_—=—= , 005~1—0¢s.
dps 005 wl—wg? w

When w=w;, the nuclear magnetizations m; and mg are
in phase with m, and ms, giving a net oscillating
moment per unit cell which is the sum of the individual
oscillating moments. When w=ws, however, the m;
and mg magnetizations are 180° out of phase with mg
and my as shown in Fig. 3 The oscillations of mg and
m; nearly cancel those of m; and mg in this region as
shown below. This produces a much smaller net oscillat-
ing moment per unit cell, which results in a large
reduction in the net power absorbed from an rf field.
Since the magnetizations oscillate in phase in the region
where w=w;, the lower mode resembles an acoustic
electron spin-wave mode. The upper mode, where w=w,,
resembles an electron spin-wave exchange mode in that
neighboring magnetizations oscillate out of phase.
De Gennes® has pointed out that nuclear spin waves
are well defined excitations at low temperatures when
the electron and nuclear modes are strongly coupled.
This coupling results in nuclear spin-wave dispersion
relations which are depressed in frequency only for
long wavelengths. The dispersion relation of the low
NMR mode resembles the dispersion relation for the
acoustic branch of the electron spin-wave spectrum,
and the dispersion relation for the upper mode resembles
that of the exchange branch of the electron spin-wave
spectrum. In what follows, these two modes will be
referred to as the acoustic and exchange NMR modes.
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Fi16. 4. Dependence of the acoustic NMR mode linewidths on the
inverse frequency depression 8y =27 (wg—w;) ™.

Experimental Results

The exchange NMR mode has been observed directly
in a single crystal of CsMnF; using techniques similar
to those used in the observation of the acoustic NMR
mode. The single crystal of CsMnF; was supplied by
Dr. R. W. H. Stevenson of the University of Aberdeen.
The crystal was mounted near the shorted end of a
coaxial line. The static and rf fields were applied in the
basal plane with the 1f field perpendicular to the static
field. The observations were made by sweeping the rf
frequency through the resonant frequency. The detec-
tion system was tuned to the absorptive part of the
nuclear resonance by placing the detecting crystal at an
electric field maximum. The Q of the detecting system
was approximately 50 giving a bandwidth of roughly
10 Mc/sec at the resonant frequency. As the linewidth
of the exchange mode was 0.2 Mc/sec, the distortion of
the exchange-mode resonance by the Q of the detecting
system was negligible. Field modulation and lock-in
phase detection were used to give the necessary signal-
to-noise ratio.

The exchange-mode NMR signal is much weaker than
the acoustic-mode signal. The linewidths of the exchange
mode are larger than those of the acoustic mode. At
5000 Oe the exchange-mode linewidth is 0.224-0.03
Mc/sec while the acoustic-mode linewidth is 0.042
+0.003 Mc/sec. The exchange-mode linewidth increases
with field from =0.18 Mc/sec at 2500 Oe to =04
Mc/sec at 7500 Oe. Within experimental error no
variation of the exchange-mode linewidth was observed

as the temperature was varied from 1.35 to 4.2°K at-

fixed field. The field dependence of the acoustic-mode
linewidth is more complicated. At fields less than
1000 Oe, the field linewidths of the acoustic NMR mode
and the low-lying AFR mode are the same and they
increase rapidly as the field is lowered to zero.!” These
linewidths are thought to result from crystal imperfec-
tions. The linewidths of the acoustic mode between
2500 and 7000 Oe at 4.2°K are shown in Fig. 4. The

0], B. Welsh, thesis, University of California, 1966 (un-
published).
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linewidth measurements were made using field modula-
tion with lock-in phase detection. The amplitude of the
field modulation was small compared to the NMR
field linewidth so the derivative of the absorption curve
was observed. The linewidths shown in Fig. 4 are the
frequency difference of the two peaks plotted as a
function of 6v'=2r(wg—wi)~l. The shape of the
acoustic NMR line was found to be Lorentzian out to
more than four linewidths.

675.5 I
NMR of CsMnF; nuclear exchange mode
Field dependence at 4.2°K
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F16. 5. Field dependence of the Mn® exchange NMR mode at
T'=4.2°K with the applied magnetic field at the basal plane.
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The field dependence of the exchange mode for fields
between 2500 Oe and 8000 Oe at 4.2°K is shown in
Fig. 5. No angular dependence was observed in the
basal plane in agreement with the NMR results on the
acoustic mode.* The temperature dependence of the
exchange NMR mode is shown in Fig. 6 for tempera-
tures between 1.35 and 4.2°K at 5000 Oe. Apart from
the field dependence of w, the same temperature
dependence is observed at other fields within exper-
imental error.

Discussion of Results

The linewidths of both the exchange and acoustic
NMR modes are much narrower than the full linewidth
of 1.4 Mc/sec predicted for the second moment by the
Suhl-Nakamura theory'®? using the results of the
spin-wave calculations of Sec. ITI. For 6y~ less than 0.05
(fields less than 4500), the increase in linewidth is
thought to result from crystal imperfections which
broaden the AFR line and hence the NMR line. For
low fields this contribution to the linewidth appears
to dominate as discussed elsewhere.' For higher applied

1 H. Suhl, Phys. Rev. 109, 606 (1958).
2T, Nakamura, Progr. Theoret. Phys. (Kyoto) 20, 542 (1958).
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fields w; becomes less sensitive to variations in the AFR
frequency, so the observed linewidths above é»~1=0.06
are probably not affected by crystal imperfections.
The behavior of the acoustic-mode linewidth is essen-
tially linear with §v—* for 6»=1>0.07. This indicates the
linewidths at very small frequency depressions may be
considerably broader than those observed here. Small
frequency depressions correspond to very little coupling
between nuclear spins and the infinite nuclear tempera-
ture approximation should apply.''? It would be
interesting to see if a calculation of both the second and
fourth moments in the finite-nuclear-temperature ap-
proximation could account for the observed linewidths
and the Lorentzian line shape.

The field dependence of the exchange NMR mode
shown in Fig. 5 can be explained in terms of Egs. (16)
if the hyperfine interaction constant «, is greater than
aq. Good agreement between the observed NMR
frequencies of both modes and Eqgs. (16) result with the
choice of parameters: Hg=23.3540.05X10° Oe, w,/27
=676.85£0.1 Mc/sec, and wq/2m=666.04-0.2 Mc/sec
at 4.2°K. This agreement is shown in Fig. 5 for the
exchange mode and in Fig. 7 for both the acoustic and
exchange modes.
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Fic. 6. Temperature dependence of the exchange NMR mode
at 5000 Oe with the applied magnetic field in the basal plane.

The solid curve is the calculated temperature dependence assum-
ing no temperature variation of the sublattice magnetization.

The values of w,/27 and ws/2m are lower than the
frequencies determined from the free ion hyperfine
interaction This reduction is attributable to corrections
which must be made for both covalency effects and zero-
point spin-wave reductions. Covalency effects may be
taken into account by making corrections for the volume
of the F~ octahedrons. Estimates of these corrections
based on the paramagnetic resonance studies of Ogawal!®
have been made by Lee ef al.! They obtain frequencies
of 69247 Mc/sec for the Mnl site and 6887 Mc/sec
for the Mn2 site. If the difference between these fre-
quencies and the experimentally determined frequencies

S, Ogawa, J. Phys. Soc. Japan 15, 1475 (1960).
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is attributed solely to the zero-point spin-wave reduc-
tion, the reductions are (2.241.0)%, for the Mnl site
and (3.2+£1.0)9, for the Mn2 site. It is interesting to
compare these values with the linked-spin-cluster
expansion calculations done by Davis.* Figure 1 shows
the Mn1 sites have six nearest neighbors and the Mn2
sites have four nearest neighbors. Davis calculated his
results for several lattices. The simple cubic (sc)
lattice best fits the Mn1 site and has a 2.499, reduction.
The Mn2 site may be crudely approximated by a
planar lattice which has a 4.369, reduction. These
reductions are in reasonable agreement with the
estimated reductions based on the observed hyperfine
interaction constants.

The absorptions of the acoustic and exchange NMR
modes may be calculated from the imaginary part of
the rf susceptibilities. These are obtained by calculating
the response of the nuclear magnetizations to an rf
field, assuming no damping. The rf field, h, adds the
energy

Uws=—h- (m;+42me+2m7+4-my) , (18)
to the total energy of the nuclei. Equation (18) adds a
forcing function involving h to the resonance matrix
generated by Egs. (14) and (15). Then X’ is obtained
from X using the substitutions w;— wi+iAw; and
ws— wetiAws, where Awi/2m and Awy/2m are the
linewidths of the NMR modes. Since we have X=X’
—iX", X" can be determined. When the frequency of
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F16. 7. Field dependence of the exchange and acoustic Mn5s
NMR modes in CsMnF; with the applied magnetic field in the
basal plane.

14 H. L. Davis, Phys. Rev. 120, 789 (1960).
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the rf field is w=w; or w, we have

Xill (w) = ma’YE (w2___wd2) €qlq

—wagYHT4H gH 47,/30%*]/0Q, i=5,8; (19)
X () =2may[ (W —w.b)eawa
+w, yHI?22H gH 47,/302)/Q, 1=6,7; (20)

where Q=2wiAw1(ws?—w?)+2wsAws(wi?—w?). The ab-
sorbed power is P=3wX”/2. Since we have ws—w<Kw
at 5000 Oe and the amplitude of the rf field was the
same in the observation of both modes, the ratio of the
signals is 3. X" (w1)/2_: X" (ws) where the detecting
crystal is operated in the square law region. This ratio
is 80 at 5000 Oe. Field-modulation techniques were
used in the observation of the exchange NMR mode.
This requires that the ratio above be multiplied by the
factor 36H/(4AH ) for a Lorentzian line where the peak
to peak af field amplitude 6H is much less than the full
linewidth in field AHy. The calculated ratio of the
acoustic-mode signal to the exchange-mode signal is
roughly 2700 at 5000 Oe assuming both NMR modes
have Lorentzian line shapes. Considering the uncertain-
ties in the NMR mode linewidths and in the observed
ratio, the calculated and observed ratios are consistent.
This result supports the identification of the higher
NMR signal with the exchange NMR mode predicted
by the four-sublattice model presented here.

The comparison of the temperature dependence data
for the exchange NMR mode with the expected behavior
calculated from Egs. (16) is shown in Fig. 6. The
temperature dependence of Eq. (16) differs considerably
from the observed temperature dependence. This
difference is shown in Fig. 8. The exchange and hyper-
fine constants are normally assumed to remain constant
in the paramagnetic and ordered states so the tempera-
ture variation of N and « should be negligible between
1 and 4°K. Since no anisotropies are involved in the
AFR mode i, the only temperature-dependent
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Fi6. 8. Deviation of the observed Mn% exchange NMR fre-
quency temperature dependence from the computed temperature-
dependence assuming the sublattice magnetization is temperature-
independent. The solid curve is the computed deviation obtained
from electron spin-wave calculations.

L. B. WELSH

156
z & z
g,
e A5 e
g,
—Hw—f——x —H atil—
\{
1
s F1e. 9. The £ », ¢
¢ coordinate systems
. /@2 z for the electron spins.
5
L .
et o
3
—H \~—€ — X —H —iz - X
2

S,

quantities in Eqs. (16) are Har, w, and wg. The
temperature dependence of w, and wg results from their
dependence on the sublattice magnetization. If the
assumption is made that the variation of the sublattice
magnetization with temperature is the same for Mn1
sites and Mn2 sites, the changes in w, and wg with
temperature will be the same. Then as long as the static
field is large, the variation of the exchange NMR
frequency ws/27 equals the variation of w,/2r and
wa/2m to within 0.19. The above assumption will be
considered in the next section where a calculation of the
temperature dependence of the sublattice magnetization
is described.

III. TEMPERATURE DEPENDENCE OF THE
SUBLATTICE MAGNETIZATION

In order to calculate the temperature dependence of
the sublattice magnetization, the electron spin-wave
spectrum and the spin-wave amplitudes must be known.
These may be calculated from the total energy of the
electron spin system. In terms of the spin variables the
electronic part of Eq. (5) is

5(3:2]1(2 Sj‘Sn“i— Z SlSm)+2J2 Z Sn'sm
Jn l,m n,m

_PhH(Z] SJ:C+ZZ Slz+2m Smx"}'Zn Snr)
+K (3 S+ 21 S+ m Su 2 m Sa)
—K"(stjhz—{—‘zlslhz—i—zmSmg'zz"*‘Znthz). (21)

The spins S;, S, S,, and S, are associated with the
sublattices 4 (+), 4(—=), D(+), and D(—), respec-
tively, so there are twice as many S,, and S, spins as
S; and S; spins; K, represents the nuclear-induced
anisotropy; #, ¥, z are the crystalline axes oriented such
that the y axis is along the crystalline ¢ axis as shown
in Fig. 2. The static magnetic field is applied in the
negative x direction for this calculation. The electron
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spins are tilted from the z axes through the angles e and
¢ which are given by the equilibrium conditions
[Egs. (6)]. The axes of quantization of the electron
spins S, Si, S, and S, are {1, —{1, ¢2, and —{, respec-

tively. Equation (21) is rewritten in terms of the
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tilted coordinate systems shown in Fig. 9: &, 71, {1
for S]: El, N1, _g‘l for Sl’ 52) N2, ?2 for Sm; and 52) n2, —§2
for S, as described by Keffer and Oguchi.!®

Using the Holstein-Primakoff transformation to
spin-wave variables,'® the Hamiltonian is reduced to

= 3 A(atatawla i tbietbtb_ o)+ B (eleitcxle it ditdi+d_itd 1) +C(axasx+artax

k>0

+ by 10y T bd g+ el _x e e ditd T dpd )+ D (axd x4 a_wdi i+ by e b s textFartd_y
+a_x fdk'i- bkc——kT"I_ b—kaT) +E (akdk+ a_xd_x+byfoxt by TC—kT'*“ atdy 4oy td_ T4 bycx+b_x C—k)
+D' (de—k e wdi i+ Ckfd—-k‘,‘c——kidk) +El (dek+ Cxd_xFctde T4 C—k+d—kT) y (2 2)

where

A=[27:57 cos(e+¢)+THH sine+K'S+2SK,],
B=[J1SZ cos(e+¢€)+2J2S cos(2¢)

+T4H sine+K'S+25K ],
C=—SK',

D=JSZy,{cos(e+€)—1]/V2,
D'=TJSya[cos(2¢)—1],
E=7J1SZ~icos(et€)+1]/V2,
E'=JySya[cos(2¢)+1],

(23)

and @, b, ¢, and d are the operators for the sublattices
1, 4, 3, and 2, respectively. The v factors are given by

1
vi=—2 el dr=1—q2k(sin%) /4 — a2k?(cos?0)/2, (24)

YA
Yn=cosk-890=1—a32k2(cos?9)/2 , (25)
in the long-wavelength approximation; 6 is measured
from the ¢ axis. The vectors 8,5 are the vectors from one
Mn1 site to its Z nearest neighbors in Mn2 sites. The
vector 9ss is from one Mn?2 site to its nearest neighbor
Mn2 site; @ is the projection of the Mn1-Mn2 distance
in the basal plane; a. is the projection of the Mn1-Mn2
on the ¢ axis; a3 is the distance between the Mn2 sites;
(11=3.58 A, dz=2.27 A, and (1323.00 A
The spin-wave spectrum and amplitudes of Eq. (22)
can be obtained using the techniques of White et al.!”
Equation (22) is rewritten in the form

je=XtHX, (26)
where
XT = (dkta_.kd_kfdkb_kfbkﬁk TC_k) . (27)
The transformation which diagonalizes (26) is
X=SX', (28)
where
X't= (oxloriBiBiXxXioxlo i) . (29)

15 T, Oguchi and F. Keffer, J. Phys. Chem. Solids 25, 405 (1964).

16 T, Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

7R. M. White, M. Sparks, and I. Ortenburger, Phys. Rev.
139, A450 (1965).

The calculations of the eigenvalues and of the
elements of the matrix S are considered elsewhere.'
Four branches of the spin-wave spectrum result which
for k=0 are identical to the AFR modes of Eqgs. (9)
through (12). The energies of magnons in the two
exchange modes (11) and (12) are of order #lHg~kp
X 60°K. The energy of magnons in mode (10) are of
order T%(2H gH 4)"2=kpX12°K for k=0. Since the
experiments discussed here were performed in the
temperature range of 1.35 to 4.2°K, the populations of
the spin-wave modes in the upper three branches will be
negligible. Only results for the low-frequency spin-wave
branch («) need be considered here. Figure 10 shows
the computed spin-wave spectrum @y (k)/2r versus k for
k both perpendicular and parallel to the ¢ axis at 5000
Oe, at 4.2°K, and with A;=\.. The spectrum is
anisotropic. For a given wavelength, the frequency of
the spin-wave mode is lower if k is perpendicular to
the ¢ axis. The anisotropy in the spectrum as a function

50 1 T
8=0°
k1l ¢)

R=1
H = 5000 Oe

Spin wave frequency Q,(k)/2m (Gc/sec)

Spin-wave spectrum of
low-lying AFR mode

0 | |
0 10° 2x10°

Wave vector k {cm™')

Fic. 10. Computed spin-wave spectrum of the low-lying
branch for k perpendicular and parallel to the hexagonal ¢ axis
and for R=1.
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F1e. 11. Anisotropy of the spin-wave spectrum of the low-lying
branch as a function of R for fixed |k|.

of R=X\y/\=J,/3J; is shown in Fig. 11 by plotting
the values of Q;(k)/27r for both §=0° and §=90° with
fixed |k|. The uniform mode is held constant as a
function of R by requiring J»+3J; be constant. The
spectrum is nearly isotropic for R<1 but anisotropic
for R>1. The spin-wave amplitudes (the elements of
S) are proportional to [©(k)J"2. The proportionality
constants are a maximum when R=1,

The effects of dipolar fields have been neglected in
the above calculation. These effects have been discussed
by several authors.’®® They show that the dipolar
effects are proportional to k-M,, where M, is the
amplitude of the spin wave. For the Q;(k) branch the
spin-wave modes are, in effect, linearly polarized in the
basal plane for low k. The effective anisotropy field for
the spin waves of this branch is Har+He for \y=X,.
Referring to the paper by Harris®® we expect the dipolar
interactions to cause an increase in the exchange
constant by 4rM or 0.29, (M =13 850 emu/mole) and
an additional anisotropy in Q(k) of order I?(H sr+He)
X4nwM 5/Q1 (k) =29, Both of these effects are negligible.

The spin-wave dispersion relation may be written in
the form

Q1 (k) = (@24 0k? sin?0-+ %2 cos?9)1/2. (30)
For low k the square of the spin-wave amplitudes may
be written as
Sit=K7/(k), 31)
where «, 8, and K;; are determined from the results of
the calculations described above and are functions of R.
Using Egs. (30) and (31) the temperature dependences
of w, and wg can be calculated. The temperature
dependence of w, is

Awo(T) /2= (A/h)>« axlax/N ,

= (4/h) Xk (S1*+S12)entou)/N .

18 R. Loudon and P. Pincus, Phys. Rev. 132, 673 (1963).
19 A, Brooks Harris, Phys. Rev. 143, 353 (1966).

(32)
33)
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The sum can be converted to the integral
Awa(T)/21r= [A (K112+K122)/h]
fmax N (Q)dQ
X[ 3
o, Q(ePUHBT_1)

where ©,/2r is the uniform mode frequency and Dinax/ 2
is the frequency at the zone boundary. The density of
spin-wave states for the single branch @, (k) is

v dVi v, QQ2—Q,2)V2
N@)= —_—=— (35)
(27)3 dQ 2x? B

where V3 is the volume of £ space about k=0, and v,
is the volume of the unit cell (v,=5.0X10-2 cmd).
Making the substitution ®=#Q/kzT in the integral,
the temperature dependence of Aw,/2r is

Aw,(7) omax (g2—g,2)1/2
=AT? / =7 i (36)
2w 2 e*—1
where
A=Ak (K12 K o)/ Qnthida®8).  (37)

The solid curve of Fig. 8 is for A=0.048 Mc/sec.
Equation (37) gives A=0.129, 0.108, and 0.226 Mc/sec
for R=0.1, 1, and 10, respectively. The value of A from
Eq. (37) is fairly insensitive to R and larger than the
resonance value of A for all R. The calculation for
Awq/2m gives the same temperature dependence.
Agreement between the theoretical calculations for
this model and the experimental results may be obtained
by introducing ferromagnetic next-nearest-neighbor
(nnn) exchange within the sublattices. The most
likely path of exchange would be Mn-F-F-Mn, where
the fluorine and manganese ions belong to neighboring
octahedra. Since this exchange occurs in the basal
plane, the spin-wave frequencies of modes with k
parallel to the ¢ axis will not be affected. The total

100
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Fi16. 13. Dependence of the AFR and acoustic NMR modes on the
nuclear spin temperature at fixed applied magnetic field.

energy of the electron system is changed by

AU==2J"( §;-8;+2% Si-Sw
73" [

+ Z Sm'sm’+ len'Sn'). (38)

m,m’

As this is an intrasublattice interaction, neither the
equilibrium positions of the sublattices nor the uniform
mode resonance frequencies will be affected. In Egs.
(23), A and B are modified by the addition of the term
47'SZ'(1—+"), where the number of next-nearest
neighbors is Z'=6, and ~'=1—a%?(sin%)/4. The
resulting modification of ©;(k) for R=1 is shown in
Fig. 12 for several values of R’. The parameter R'=2J'/
J1 is the ratio of the intra-sublattice ferromagnetic
exchange constant to the intersublattice antiferro-
magnetic exchange constant. Agreement between the
theoretical and experimental values of A can be obtained
when R’ is 0.32. The actual value of R is uncertain so
this value of R’ is only approximate. But since A is
relatively insensitive to R and is quite sensitive to R/,
the value of R’ will not vary greatly over the range of R.

Incomplete susceptibility measurements in the para-
magnetic region obtained by Lee et al.! indicate the
paramagnetic constant 6 is of the order of 55°K. In
terms of the two-sublattice model, ferromagnetic nnn
exchange lowers 6. Then §=C(\;—X\’), where C is the
Curie constant and N\ is the ferromagnetic exchange
constant. The 6 we obtain is 36°K. It would be useful
to have a complete set of susceptibility measurements in
the paramagnetic region in order to determine 6
accurately.

The four-sublattice model of CsMnF; described here
accounts for the presence and observed behavior of the
exchange NMR mode. The temperature dependence of
the exchange NMR mode allows the temperature
dependence of the sublattice magnetization to be
determined. The spin-wave calculation based on the
four-sublattice model can account for the observed
temperature dependence of the sublattice magnetiza-
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tion when intrasublattice ferromagnetic exchange is
included.

IV. NUCLEAR SPIN-LATTICE RELAXATION
Theory

Because of the strong coupling of the low-lying AFR
mode with the NMR modes, the frequencies of these
modes are strongly dependent on the nuclear tempera-
ture, Tn. Figure 13 shows this dependence for the
low-lying AFR mode and the acoustic NMR mode
calculated from Egs. (9) and (16) at fixed field. This
dependence on Ty allows the study of nuclear spin-
lattice relaxation by monitoring the recovery of either
the AFR mode or the acoustic NMR mode. If the
nuclear spin system is in equilibrium with the lattice,
Tw=Ty where T is the lattice temperature. The
corresponding AFR and NMR frequencies are 2(7'z)/ 27
and w(7'z)/2r. Because of the existence of crystalline
imperfections it is possible to partially saturate the
nuclei at a frequency, w(7)/2r, between w(TL)/2w
and yaM/2x' (See Fig. 13). This absorption of rf
power off resonance has been discussed by Witt and
Portis? in terms of a spin-pinning model. Applying rf
power at w(7)/2x heats the nuclei to the temperature
T, and lowers the AFR frequency to Q(7%)/2w. The
relaxation measurements are made by monitoring the
AFR or NMR signal at several intermediate frequencies
Q(Tx)/2m or w(Ta)/2m and measuring the elapsed time
between turning the rf power at w(7)/2r off and the
appearance of an AFR or NMR signal at the inter-
mediate frequency.

The relaxation of the nuclear magnetization to
equilibrium is assumed to be exponential so that we have

dm(Tw)/dt=—[m(Ty)—m(T1)]/T1.  (39)

At time =0, Txy=T,. Then at time #y, the nuclear
spins have relaxed to the temperature 7'y=Ty. If the
assumption is made that T'H>w(T'r), then for the
relations between the monitoring frequencies and the
elapsed time, #y, at fixed field we have

[1/0(T1) —1/w(Ta)*]/[1/w(TL)*—1/w(To)*]

=exp[—tu/T1], (40)
when the NMR signal is monitored, and we have
[Q(T2)*—Q(T2)*]/ [T L) —2(T0)2]

=exp[—tu/T1], (41)

when monitoring the AFR signal.

Experimental Results

The relaxation of the acoustic NMR mode was
observed by switching between two coaxial circuits.
One circuit providing power in excess of 10 W at the
frequency w(Z)/2w partially saturates the nuclei at
To>Tyr. In times of the order of ten milliseconds the
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w{Ty)/27 = 633.00 Mc/sec

w(Tyl/ 27 = 633.16 Mc/sec

w(Ty)/27 = 63417 Mc/sec

w(T,)/2m = 638.12 Mc/sec

T=23.32°K H = 4000 Oe

w(T\)/27 = 632.76 Mc/sec

F16. 14. Sample traces of the relaxation of the acoustic NMR
signal for several different monitoring frequencies.

shorted coaxial line containing the CsMnF; crystal was
switched from this circuit to the second coaxial circuit.
This circuit monitors the acoustic NMR signal at the
frequency w(7'y)/2w. The output of the detecting diode
was fed into a high dc-gain oscilloscope. Using the
turn-off of the rf power to trigger the oscilloscope,
traces of the type shown in Fig. 14 were obtained as
the monitoring frequency was varied. As w(T)/2m
approaches w(7'z)/2m, the NMR signal takes longer to
appear at w(Ta)/27 and is also broader in time since
the frequency of the resonance is changing more slowly
with time. At the lowest temperatures ‘“capture” of
the NMR line at w(73)/27 occurred if the monitoring
power level was too high. Monitoring power levels were
lowered until no effect upon the traces was detected
by further reduction.

The monitor circuit could be used at microwave
frequencies with the addition of waveguide-to-coaxial
line adapters. This allowed similar data to be obtained
by monitoring the AFR signal. This type of exper-

! N T T T T T J 100
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T, = 735 msec \ B

- H =5000 Oe \
" w(T) = 630.288 Mc/sec
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Fic. 15. Determination of the Mn55 spin-lattice relaxation time
by monitoring the acoustic NMR mode after partial saturation.
The inverse relaxation time 1/7" is obtained from the slope of the
solid curve.
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iment is very similar to the transient electron-nuclear-
double-resonance experiments described by Witt and
Portis.?

Figure 15 shows the relaxation of the acoustic mode
to its equilibrium value w(7'1)/2w for Tr=1.93°K and
H=35000 Oe. The relaxation of the nuclear magnetiza-
tion Ty to T for Ty close to Ty is governed by a
somewhat faster relaxation time than when T is close
to 7T'z. In what follows, the relaxation times referred to
are those for 7'y within 1 deg of the lattice temperature.
In this region the relaxation is definitely exponential.
The field dependence of the relaxation time is plotted
in Fig. 16 for fields between 600 and 5000 Oe at 4.2°K.
The temperature dependence of the relaxation times
between 1.35°K and 4.2°K is plotted in Fig. 17 for an
applied field of 5000 Oe. For this field 7o 74964003,
Temperature dependences at lower fields give a power
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law which varies more slowly (7% for the temperature
dependence at 1500 Oe).

It is also possible to use the exchange NMR mode in
relaxation experiments. The steady-state electron-
nuclear-double-resonance experiments of Lee ef al!
show that the nuclei can be partially saturated when rf
power is supplied at exchange-mode frequencies. The
powers needed to obtain a partial saturation of the
exchange mode are comparable to those needed to
obtain a complete shift of the NMR and AFR lines by
partial saturation of the acoustic mode. The shifts
obtained through the excitation of the exchange mode
are very power-dependent and are probably the result
of the direct absorption of energy in the wings of the
line. Figure 18 shows the relaxation of the acoustic
mode at 4.2°K and 3300 Oe with the rf power supplied
at 676.78 Mc/sec. This relaxation curve extrapolates to
an effective w(7y)/2w for the acoustic mode of 648
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Mc/sec which corresponds to 7¢'=8.5°K. The same
relaxation times are obtained whether the nuclear spin
system is excited through the exchange NMR mode or
the acoustic NMR mode.

Discussion of Results

These relaxation times are considerably longer than
those observed by Witt and Portis? on samples prepared
by Lee. Their data were obtained using electron-
nuclear double resonance techniques. At the same
applied fields their data show a 7% temperature
dependence and at 2°K are more than an order of
magnitude faster. In order to insure that the direct
observation of the NMR signal and the double res-
onance method give the same results, the relaxation of
the AFR signal was studied at X-band frequencies. The
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relaxation times obtained by these two methods agree
within experimental error as shown in Fig. 19; the
temperature dependence of the relaxation times at
3300 Oe. The relaxation times observed by Witt and
Portis are believed to be the result of magnetic impuri-
ties. These impurities may also be responsible for the
weak sixfold anisotropy in the basal plane observed by
Lee ef al.! in their samples. Minkiewicz and Nakamura?
estimated the amount of the Fe* ion needed to give
this anisotropy was of the order of 0.04%. As noted
above, the NMR and AFR experiments on the CsMnF;
sample obtained from Stevenson show no sixfold
anisotropy.

At present the spin-lattice relaxation times reported
here have not been explained theoretically. Using the
temperature dependence of the relaxation as the key to
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Fi1G. 18. Determination of the Mn55 spin-lattice relaxation time
for nuclear excitation through the.exchange NMR mode. The
acoustic NMR mode is monitored. The relaxation times obtained
this way agree with those obtained when the nuclei are excited
through the acoustic NMR mode.

its origin, three-magnon processes would seem to be
the reasonable explanation. Three-magnon calculations
of the relaxation times have been performed.® The
transverse part of the hyperfine interaction is expanded
in the electronic spin-wave creation and annihilation
operators and only the terms involving three spin-wave
operators are kept. Using the computed spin-wave
spectrum for CsMnF;, these calculations give a temper-
ature dependence of 73 7-54 at 5000 Oe and a
dependence of T’y 75! at 1500 Oe. However these
calculations do not account for the field dependence of
Ty and result in relaxation times which are 10% too long.
These calculations have not considered the exchange-
scattering correction discussed by Pincus® which may
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2 P, Pincus, Phys. Rev. Letters 16, 398 (1966).
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be as large as a factor of ten (which would reduce the
disagreement to a factor of 10?).

Summary

The four-sublattice model of CsMnF; presented here
predicts that the exchange NMR mode, in which the
neighboring nuclear spins oscillate 180° out of phase,
will be observable when the hyperfine interaction
constants differ for the Mn1 and the Mn2 sites. This
exchange NMR mode has been observed directly.
These observations show the Mnl sites have the
stronger hyperfine coupling which is w./2w=A4(Mnl)
X(S)/h=676.85+0.1 Mc/sec while the coupling for the
Mn2 sites is wa/2m =4 Mn2){S)/h=666.0+0.2 Mc/sec.
The zero-point reductions for the electron spins are
estimated to be 2.24+1.09, for the Mnl site and
3.24+1.09, for the Mn2 site. These reductions are in
reasonable agreement with theory.

The temperature dependence of the sublattice mag-
netization has been determined from the tempera-
ture dependence of the exchange NMR mode on the
basis of the four-sublattice model of CsMnFs. Electron
spin-wave calculations based on the four-sublattice
model of CsMnF; are also discussed. The lowest branch
of the spin-wave spectrum is shown to be nearly iso-
tropic when Mn2-Mn2 coupling is of the order of the
Mn1-Mn2 coupling (R<1), but is anisotropic when
the Mn2-Mn2 coupling is much larger than the Mnl-
Mn2 coupling (R>1). Agreement of the measured
temperature dependence of the sublattice magnetization
with that calculated from the computed spin-wave
spectrum can be obtained when ferromagnetic intra-
sublattice coupling is included which is equal to 329,
of the intersublattice antiferromagnetic coupling (as-
suming R=1).

WELSH 156

The observed linewidths of both the acoustic and
exchange NMR modes are considerably narrower than
those calculated from the Suhl-Nakamura theory using
the results of the spin-wave calculation presented here.
This theory gives a full linewidth of 1.4 Mc/sec. This
is more than a factor of 10 broader than the observed
full linewidth of the acoustic NMR mode which is
0.042 Mc/sec at 5000 Oe and 4.2°K. This discrepancy
may result from the use of the infinite nuclear tem-
perature approximation in calculating the second
and the fourth moments of the Suhl-Nakamura inter-
action.

The spin-lattice relaxation times of the Mn® nuclear
spins have been determined. Assuming the electron and
nuclear spins to be coupled by the hyperfine interaction
AIL-S, the temperature dependence of the relaxation
times is Ty oc T—49640.08 a4 5000 Qe. This is indicative of
three-magnon processes where 7'y 754 at 5000 Oe.
However the observed relaxation times at 5000 Oe
range from 17 msec at 4.2°K to 3.7 sec at 1.4°K, and
they are faster than the calculated relaxation times by a
factor of 103%. Furthermore, three-magnon processes do
not account for the observed field dependence of the
relaxation times. Thus, although the coupling mecha-
nism between the electron and nuclear spins is not
understood, three-magnon processes seem to be respon-
sible for the observed relaxation times.
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wiTul/2m = 633.00 Mc/sec

w(TWl/ 27 = 633.16 Mc/sec

w(T,)/27 = 63417 Mc/sec

w(T ) /27 = 638.12 Mc/sec

T=3.32°K H = 4000 Oe w(1)/27 = 632,76 Mc¢/sec

I'16. 14. Sample traces of the relaxation of the acoustic NMR
signal for several different monitoring frequencies.



