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Monte Carlo Calculations of Electron Scattering in Photoemission*
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Calculations have been made of the escape probability of a photoelectron after undergoing 0, 1, 2, ~ ~ ~

electron-phonon scattering events. Parameters include the mean free path for scattering by phonons, l„, the
mean free path for scattering by electrons, l„an optical-absorption coeKcient, and a surface escape cone.
Results have been tabulated so as to be of use in the analysis of photoemission data. Application of the
results to experimental data on aluminum indicate l~=130A and l, =500'. for electrons 9 eV above the
Fermi energy.

I. INTRODUCTION

'PHOTOEMISSION has attracted considerable in-
terest in the past two or three years as a means

of studying the electronic band structure of solids. ' 7

The experiments consist primarily of measurements of
the energy distribution of photoelectrons emitted by
monochromatic radiation, usually for a number of
photon energies in the range 1.5 to 11.5 eV. Structure
which is observed in the external energy distribution
can then be related to structure in the density of elec-
tronic states p(E) of the material studied. To aid in. the
interpretation of the energy distribution, the quantum
yield (electrons emitted per photon absorbed) is also

determined.
Because the electrons may undergo scattering before

emission, structure in the external energy distribution

may be considerably distorted compared with the initial

energy distribution of the photoexcited electrons. This
means that while the photoemission measurements
contain information on p(E) and various scattering
mechanisms, extracting the information contained in

the data can be a very difficult task when scattering

plays an important role. Part of the difhculty arises

simply because neither diffusion theory nor age theory
is completely adequate for problems in which the source

is located within a few mean free paths of the surface.
However, the problem can be treated as accurately as

desired by the Monte Carlo method.
In the present work, we have modified the model

used earlier for the analysis of hot-electron a,ttenuation
lengths in metals. We have made a number of Monte
Carlo calculations for a range of scattering parameters

*Work performed under the auspices of the U. S. Atomic
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which are of practical interest. It was not feasible to
consider band structures as such. Rather, we have
considered some special cases which illustrate in a
quantitative way the role that scattering can play. The
situation we have studied is that in which all electrons
are initially excited to the same energy. The parameters
which have been included are: (1) i„ the mean free

path for electron-electron (e-e) scattering; (2) l„, the
mean free path for electron-phonon (e-p) scattering;
(3) an angle for the escape cone at the surface; (4) a
surface scattering mechanism (specular or diffuse); and

(5) a surface reflection coefficient.
Our aim has been to obtain results which, while

specialized, would nonetheless be useful as an aid in
the' analysis of experiments. We have emphasized the
role of electron-phonon scattering because it is precise]y
such nearly elastic scattering which is most dificult to
include in a simple analytic theory. The present calcula-

tions thus serve as a check on the range of validity of
analytical expressions, e.g. , that of Berglund and Spicer
which includes once-scattered (e-e scattering) electrons,
but does not include e-p scattering. ' As an illustra, tive

example, we have used the present calculations to
approximately determine the mean free paths for scat-
tering in aluminum at energies 9 eV above the Fermi

energy.

II. CALCULATIONS

In this section, we give a brief description of the

physical model used and the assignment of parameters.
A description of the essential fea, tures of the Monte
Car]o program itself has been given in an earlier paper
on hot electrons in metals. '

The parameters which must be assigned are concerned
with: (1) the photoexcitation of electrons, (2) the scat-
tering of excited electrons, and (3) the escape of photo-
electrons over the surfa, ce potential barrier.

A. Optical Excitation

The optical absorption producing excited electrons is

assumed to follow the usual exponential law, and an

absorption coefficient e of 10' cm ' wa, s used. This is

close to the coefficient for most metals in the visible and
ultraviolet ranges. A different value of n can be used,
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however, by simple scaling. An example of such scaling
is given in Sec. V.

It is assumed that photoelectrons are excited in
random directions. Such isotropic scattering during the
excitation process has been assumed in previous analyses
and seems to give reasonable agreement with experi-
ments. ' ' Some degree of isotropic scattering during the
excitation process is to be expected for volume photo-
emission, and is in agreement with the work of Juenker
el ul."

B. Scattering Cross Sections

Scattering events can be divided into bulk and surface
scattering. The latter is included in a discussion of
boundary conditions in Sec. II C. Scattering within the
bulk is considered in terms of two types of scattering,
inelastic and nearly elastic. Nearly elastic scattering is
denoted here simply by electron-phonon scattering.
Scattering by impurities, defects, and grain boundaries,
all of which are nearly elastic, ca,n be included under
electron-phonon scattering.

The mean free path for scattering by phonons, t„,
was taken as an adjustable parameter. It is, in fact, the
parameter of greatest interest here. To determine how
many electrons escaped after having undergone 0, 1, 2,
3, scatterings by phonons, a small energy loss was
assigned to each such collision. Then, by keeping ac-
count of the energy of each electron, it was easily deter-
mined how many e-p scattering events each photoelec-
tron had su6ered. Note that, in the present ca,se, the
assignment of an energy loss is purely a, convenient
bookkeeping scheme.

Inelastic collisions consist of electron-electron scat-
tering and, for electrons with suAicient energy, electron-
plasmon excitation. Both processes can be included
under e-e scattering here, since we are concerned only
with the mean free path for inelastic scattering of
electrons of a single initial energy and not with what
happens after they have suffered a large energy loss.

Electron-electron scattering is assumed to be such
that all possible transitions are equally probable. That
is, the transitions are taken to be dependent upon the
product of initial and final densities of states for all
energy-conserving transitions. In such a case, the
probability that an electron with energy E will be
scattered to an energy between E' and (8'+dE') is
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FlG. 1. Separation of electron-electron scattering from electron-
phonon scattering for l, =600 A, l„=100A and an escape cone of
2m sr. Most of the inelastically scattered electrons have been
scattered to below the vacuum level (E=O). An energy loss of 0.1
eV was assigned to each e-p scattering event.

The integration over E"is such as to include all possible
energy-conserving secondary excitations of electrons
from below the Fermi energy E~. The probability that
an electron with energy E will be scattered to some
other energy is then

P(F)= P(E,E')dE'.

With appropriate units having been chosen for the
density of states, the constant k in Eq. (1) is then a
parameter which determines the cross section for e-e

scattering.
In the present calculation, the initial energy of the

excited electrons was chosen such that E Ef))E (pho-—
non). That is, the total range of energy losses available
was such that e-p scattering could be unambiguously
distinguished from e-e scattering. This is illustrated
graphically in Fig. 1.

Since the concern here is with scattering of an electron
from a particular energy interval and not with the
energy after scattering, a constant density of states was
assumed for convenience. The constant k in Eq. (1)
was then chosen to give the desired cross section, or
mean free path /„ for e-e scattering.

P(h, h)d J" C. Boundary Conditions

During the course of its random motion through a
crystal, an electron may reach the vacuum surface. If
its normal component of momentum corresponds to an
energy greater than the surface-barrier height, it is
counted as an escaping electron, and its external kinetic
energy is recorded. From 50 000 to 250 000, such calcu-
lations were made for each set of parameters. The data
were then printed in tabular form and also presented
graphically, as in Fig. 1.

' F. Wooten, T. Huen, and R. N. Stuart, in Optical I'roperties
arid Electromc Structure of Metals and Alloys, edited by F. Abeles
(North-Holland Publishing Company, Amsterdam, 1966), p. 333."D. W. Juenker, J. P. Waldron, and R. J. Jaccodine, J. Opt.
Soc. Am. 54, 216 (1964).
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40 100 250

/, =15 x
600 1000

~=0
1
2
3
4

0.0254
0.0051
0.0013
0.0003
0.0002
0.0323

0.0304 0.0336
0.0029 0.0014
0.0003

0,033 0.0357
0.0005 0.0003

0.0336 0.0350 0.0335 0.0360

m=0
1
2
3

5—9

0.0442
0,0160
0.0064
0.0030
0.0013
0.0008
0.0717

/, =40 x
0.0602
0.0123
0.0027
0.0006

0.0712
0.0070
0,0006

0.0771 0.0779
0.0032 0.0019

0.0758 0.0788 0.0803 0,0798

/, = 100'.

Thsz.z I. Escape probability for an escape cone of 2m sr. The
mean free path for electron-electron scattering is denoted by /.
and for electron-phonon scattering by /„. The number of electron-
phonon scattering events before escape is denoted by an integer n.
The escape probability is given for each value of n. The total
escape probability for electrons escaping after only undergoing
nearly elastic collisions is given in the row labeled g .

All calculations were made with a convenient set of
energy parameters; that is, a convenient choice of E, Ey,
band minimum, and work function. Rather than pre-
senting results in terms of energy, however, we have
calculated the solid angle of the escape cone for the
particular set of energy parameters used. The results
are thus tabulated here in a more generally useful
form.

Should the electron not have enough momentum to
escape, it is scattered back into the crystal. It is assumed
that no energy loss is associated with surface scattering.
Nearly all calculations have been made for specular
surface scattering, that is, for scattering in which the
angles of incidence and reflection are equal. A few
calculations were made for diffuse scattering in which
the rejected electrons follow I,ambert's law. The calcu-
lations show, as will be seen later, that the kind of
surface scattering does not really matter.

A few calculations were made with a surface-trans-
mission coeKcient less than unity. These cases are
labeled as such. Otherwise, all results are for a trans-
mission coefficient of unity, as imp]ied above.

~=0
1
2
3

5—9
10-19

n=o
1
2
3
4

5—9
10-19
10-29

m=0
1
2
3
4

5—9
10-19
20-29
)30

n=o
1
2
3
4

5—9
10-19
20-29
&30

0.0616
0.0322
0.0187
0.011.4
0.0062
0.0107
0.0011
0.1419

0.0718
0.0442
0.0290
0.0216
0.0162
0.0381
0.0149
0.0024
0.2382

0.0749
0.0507
0.0366
0.0283
0.0232
0.0669
0,0466
0.0138
0.0085
0.3263

0.0768
0.0528
0.0392
0.0310
0.0258
0.0810
0.0682
0.0259
0.0232
0.4239

0.0950
0.0336
0.0128
0.0050
0.0024
0.0013

0.1224
0.0237
0.0051
0.0010
0.0003

0.1390 0.1459
0.0138 0.0090
0.0014 0.0003

0.1195
0.0592
0.0312
0.0181
0.0104
0.0154
0.0016

0.1742
0.0539
0.0182
0.0066
0.0029
0,0018

0.2107 0.2243
0.0360 0.0250
0.0066 0.0030
0.0018 0.0006

0.2554 0.2576 0.2551 0.2529

/, =600 ~
0.1371
0.0778
0.0479
0.0325
0.0224
0.0480
0.0157
0.0014

0.2070
0.0848
0.0410
0.0205
0.0117
0.0103
0.0165

0.2690
0.0690
0.0216
0.0070
0.0027
0.0014

0.2923
0.0533
0.0117
0.0027
0.0006

0.3828 0.3918 0.3707 0.3606

/, =1000x
0.1451
0.0842
0.0549
0.0394
0.0285
0.0666
0.0320
0.0061
0.0022
0.4590

0.2216
0.0998
0.0518
0.0314
0.0174
0.0301
0,0037

0.2928
0.0894
0.0325
0.0133
0.0067
0.0054

0.3208
0.0722
0.0206
0.0074
0.0022
0.0013

0.4558 0.4401 0.4245

0.1501 0.1525 0.1542 0.1552

/, =250 i.

IH. RESULTS

Table I gives the escape probability for an escape
cone of 2x sr. Since, for that escape cone, all electrons
which arrive at the surface also escape, Table I gives
also the probability of arrival at the surface.

Tables II—IV give the escape probability for escape
cones of 1.18m, 0.586m, and 0.211~ sr. Note that, be-
cause the probability of escape is biased in favor of
those electrons which are headed perpendicular to the
surface, the escape probability is not proportional to
the solid angle of the escape cone.

Specu]ar surface scattering has been used for Tables
I—IV (clearly irrelevant for Table I, but not necessarily
a priori so for Tables II—IV).

Table V gives the escape probability for an escape
cone of 0.586m sr, a transmission coefhcient of 0.5, and
specu]ar surface scattering. The intent was to study a
situation in which l„«l„so that the effect of phonon
scattering on electrons reflected by a quantum-mechani-
cal reQection coefficient could be studied. As expected,
the number of electrons escaping after only a few
phonon scatterings is cut in half (compare with column
I of Table III). Over all, because of an enhancement
from e-p scattering, the yield is not reduced by S0%.
For those more likely situations, however, in which

l~ l„ the effect of a transmission coefficient is simply
to multiply the yield (calculated without a transmission
coefFicient) by the transmission coefficient.

Table VI was calculated for the same set of pa-
rameters as Table V, except for the fact that diffuse

surface scattering was used. It is clear that the type of
surface scattering has no significant effect on the escape
probability.
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40 100 250 600 1000

n=0
1
2
3

n=o
1
2
3
4

5—9

n=0

2
3

5 9
10-19

n=o
1
2
3
4

5—9
10-19

0.0211
0.0046
0.0012
0.0003
0.0272

0.0355
0.0152
0.0064
0.0026
0.0013
0.0008
0.0618

0.0491
0.0288
0.0174
0.0106
0.0066
0.0099
0.0011
0.1235

0.0554
0.0389
0.0267
0.0202
0.0146
0.0342
0.0117
0.2017

l, =15 A

0.0248 0.0267
0.0026 0.0011
0.0003 0.0002

0.0269 0.02'?4
0.0005 0.0002

0.0277 0.0280 0.0274 0.0276

l, =40 x
0.0477 0.0566
0.0109 0.0061
0.0026 0.0006
0.0006 0.0002
0.0002

0.0605 0.0618
0.0029 0.0018

0.0620 0.0635 0.0634 0.0636

l.= 100i
0.0762 0.0978
0.0302 0.0211
0.0122 0.0046
0.0051 0.0011
0.0024 0.0003
0.0014

0.1098 0.1149
0.0110 0.0075
0.0014 0.0005
0.0003

0.1275 0.1249 0.1225 0.1229

1,=250 L
0.0973 0.1357
0.0518 0.0477
0.0294 0.0179
0.0171 0.0069
0.0102 0.0024
0.0147 0.0016
0.0018
0.2223

0.1619
0.0310
0.0064
0.0014
0.0003

0.1706
0.0222
0.0032
0.0006

0.2122 0.2010 0.1966

n=0
1
2
3
4

5—9
10-19

0.0578
0.0443
0.0328
0.0264
0.0203
0.0610
0.0323
0.2749

l, =600 A

0.1077 0.1605
0.0691 0.0760
0.0454 0.0387
0.0314 0.0203
0.0219 0.0115
0.0480 0.0142
0.0074 0.0010
0.3309 0.3222

0.1986
0.0616
0.0206
0.0074
0.0029
0.0015

0.2117
0.0469
0.0115
0.0032
0.0008

0.2926 0.2741

n=0
1
2
3

5—9
10-19
20-29
&30

0.0610
0.0470
0.0371
0.0304
0.0251
0.0819
0.0682
0.0277
0.0253
0.4037

0.1123
0.0750
0,0523
0.0378
0.0291
0.0699
0.0342
0.0066
0.0013
0.4185

1000 x
0.1698
0.0886
0.0493
0.0299
0.0181
0.0296
0.0042

0.2107
0.0797
0.0315
0.0149
0.0072
0.0072

0.2268
0.0659
0.0214
0.0058
0.0026
0.0015

0.3895 0.3512 0.3241

IV. DISCUSSION

Scattering by phonons sometimes plays an important
role, and it is a role that is easily overlooked. One of the

TABLE II. Escape probability for an escape cone of 1.18m sr.
The mean free path for electron-electron scattering is denoted by
l, and for electron-phonon scattering by l„. The number of
electron-phonon scattering events before escape is denoted by an
integer n. The escape probability is given for each value of n. The
total escape probability for electrons escaping after only under-
going nearly elastic collisions is given in the row labeled g„.

main effects is to increase the average total path
traveled by an electron for a particular net displace-
ment. E]ectron-phonon scattering thus increases the
probability of e-e scattering for a particular net dis-
placement, and may result in a reduced quantum yield.
It may also increase the quantum yield by increasing
the escape probability. This can happen because an
electron which reaches the surface and does not escape,
but is reflected from the surface back into the solid,
may then be redirected towards the surface by later
scattering events and thus have several more chances
to escape. Which of the effects dominates depends on
the relative values of n ', l„and l„, as well as the
escape cone.

If /„&l„and the escape cone is large (Tables I and
II), e-p scattering need not be considered. Even though
some electrons escape after having undergone several
e-p scattering events, the total escape probability re-
mains essentially constant for electrons escaping with
no appreciable energy loss. Only when /„ is less than the
mean optical-absorption depth 0. ' is there a decrease
in the quantum yield. The latter is an example of a
decrease in yield arising from increased e-e scattering
which, in turn, is brought about by increased e-p scat-
tering. Electrons excited at depths greater than /„ below
the surface then have significantly less chance of reach-
ing the surface.

The calculations show that, for high-energy electrons,
where the total escape probability is almost constant
for all values of l~&l, and n ', one should not expect
any appreciable change in photoemission with tem-
perature. This is generally found to be true experi-
mentally. A lower temperature might sharpen up
structure slightly by decreasing the amount of e-p
scattering, but no significant temperature dependence
of the fundamental optical excitation is likely when
well above the absorption threshold. "

A erst conclusion is that analytical approximations
need not include scattering by phonons whenever the
escape cone is large and l„&l, and o. '. Since the latter
condition probably holds in most metals for electrons
more than a few eV above the Fermi energy, the validity
of analytical expressions may often be quite good for
electrons emitted at very high energies, i.e., the high-
energy tail of the energy distribution when hv is
large.

For electrons emitted at low energies or, more cor-
rectly, with a small escape cone, a great deal of care is
required. This is the region which is most dificult to
study. Here, the photoelectrons may include many
electrons not optically excited to the low-energy region,
but scattered there from higher energies. The whole
situation may then be further complicated by a very
significant effect from phonon scattering. Tables III

» An important exception may arise when the optical properties
are affected by a coupling of transverse electromagnetic waves to
longitudinal plasmons via phonons. See, e.g., J.J. Hopfield, phys.
Rev. 139, A419 (1965).
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TABLE III. Escape probability for an escape cone of 0.586m sr.
The mean free path for electron-electron scattering is denoted by
l, and for electron-phonon scattering by /„. The number of
electron-phonon scattering events before escape is denoted by an
integer n. The escape probability is given for each value of n.
'The total escape probability for electrons escaping after only un-
dergoing nearly elastic collisions is given in the row labeled g„.

and IV show that e-p scattering cannot be ignored at
low energy.

The increase in total escape probability at low energy
due to e-p scattering is easy to understand. If an electron
has energy only slightly in excess of that required for
emission, it must be headed a1most perpendicular to
the surface in order to escape. Otherwise, the electron
will be reflected back into the solid. Now, as mentioned
earlier, the electron may have several chances to escape
before it suffers an e-e scattering event, especially if
l„(/, Furthermore, it is just at low energies that the
ratio l„(l, is smallest.

It is clear that it is generally necessary to consider
e-p scattering in the analysis of low-energy photo-
emission data. A method of procedure valid in some
cases is to first analyze the high-energy tail of the
photoelectron distribution with the help of Tables
I—IV. The main difficulty is in estimating the escape
cone when treating the excited electrons as a free-
electron gas. When the method is feasible, a value of /,
can. be determined for the high-energy electrons. "Then,
assuming that the density of states is known, one can
calculate l, (L') from Eq. (2), after liaving chosen k from
Eq. (1) to give agreement with the known /. .

To determine the complete energy distribution and
the contribution of scattered electrons, an analytical
approximation can be used. Perhaps the most appro-
priate is that of Berglund and Spicer. ' It does not
include e-p scattering explicitly. Nonetheless, particu-
larly as used by Blodgett and Spicer, 4 it accounts for
such scattering, to a large extent, by an escape function
T(E), which is determined empirically from the data.
Tables I—IV can then be of help in determining the
self-consistency of the solution.

250 100010040 600

l, =15x
0.0144 0.0155
0.0018 0,0008
0.0003

0.0157
0.0002

0.0162
0.0002

0.0120
0.0030
0.0008
0.0002
0.0002
0.0162

e=o
1
2
3

0.01590.01640.0165 0.0163

/, =40 i.
0.0272 0.0323
0.0074 0.0037
0.0018 0.0005
0.0005 0.0002
0.0002

0.0347
0.0019

0.0346
0.0011
0,0002

0.0203
0.0094
0.0042
0.0021
0.0010
0.0008
0.0378

~=0
1
2
3
4

5-9
0.03590.0371 0.0367 0.0366

I,= 100 i.
0.0430 0.0549
0.0187 0.0130
0.0082 0.0034
0.0038 0.0008
0.0018 0.0003
0.0016 0.0002

n, =o
1
2
3

5—9
10-19

Z

0.0642
0.0048
0.0003

0.0622
0.0069
0.0010
0.0002

0.0280
0.0182
0.0112
0.0074
0.0051
0.0085
0.0010
0.0371 0.0771 0.0726 0.0703 0.0693

1,=250 x
0.0549 0.0762
0.0328 0.0293
0.0198 0.0118
0.0123 0.0050
0.0077 0.0022
0.0115 0.0016
0.0014

0.0914
0.0138
0.0019
0.0003

0.0880
0.0192
0.0045
0.0006
0.0002
0.0002

0.0302
0.0250
0.0184
0.0147
0.0117
0.0317
0.0149
0.0022
0.0002
0.1490

n, =o
1
2
3

5-9
10-19
20-29
&30

Z

V. APPLICATION To ALUMINUM

0.1404 0.1261 0.1127 0,1074

3,=600 L
0.614 0.1008
0.434 0.0458
0.0307 0.0259
0.0226 0.0154
0.0170 0.0086
0.0406 0.0133
0.0160 0.0010
0.0024
0.0003
0.2344 0.2108

n=o

2
3

5—9
10-19
20-29
&30

0.1107
0.0286
0.0085
0.0024
0.0008
0.0003

0.1256
0.0376
0.0141
0.0061
0.0024
0.0019

0.342
0.0280
0.0237
0.0197
0.0163
0.0544
0.0446
0.0155
0.0115
0.2479 0.1877 0.1513

/, = 1000 X

0.0627 0.0914
0.0467 0.0541
0.0355 0.0344
0.0275 0.0227
O.O218 O.O146
0.0594 0.0288
0.0341 0.0054
0.0078
0.0027
0.2982 0.2514

0.0349
0.0302
0.0259
0.0224
0.0189
0.0656
0.0637
0.0286
0.0301
0,3203

0.1179
0.0406
0.0147
0.0056
0.0026
0.0021

0.1114
0.0478
0.0230
0.0114
0.0056
0.0070
0.0006

N=o
1
2
3

5-9
10-19
20-29
&30

"One of the virtues of photoemission experiments is that they
can often be used to determine scattering cross sections in an
energy range not generally accessible by other means. Berglund
and Spicer (Ref. 2) estimated l. in Cu from lifetime broadening
effects in the photoelectron energy distribution. Obtaining l,
directly from the yield and Tables I—IV is a more sensitive method
~vhen feasible.

0.2068 0.1835

The external energy distribution and quantum yield
has been measured for aluminum in the vacuum ultra-
violet range. From this information, the differential
quantum yield (electrons per photon per eV) can be
calculated. With monochromatic light of energy 9.18
eV, the diBerential quantum yield for electrons excited
from just below the Fermi level to nearly 5 eV above
the va, cuurn level (the work ftmction is 4.2 eV) is ap-
p'roximately 0.014. To determine the escape probability
for these elections, we now need to calculate the density
in energy (electrons per eV) of electrons excited from
just below the Fermi level per absorbed photon.

The total number of transitions possible is given by a
product of initia] and final densities of state's integrated
over the range of possible transitions. For aluminum,
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TABLE IV. Escape probability for an escape cone of 0.21iw sr.
The mean free path for electron-electron scattering is denoted by
l. and for electron-phonon scattering by l„. The number of
electron-phonon scattering events before escape is denoted by an
integer n. The escape probability is given for each value of e. The
total escape probability for electrons escaping after only under-
going nearly elastic collisions is given in the row labeled Q„.

TABLE V. Escape probability for an escape cone of 0.586~ sr, a
transmission coefficient of 0.5, and specular surface scattering. The
mean free path for electron-electron scattering is 1000 A. and for
electron-phonon scattering 40 A. 1he number of electron-phonon
scattering events before escape is denoted by an integer n. The
escape probability is given for each value of n. The total escape
probability for electrons escaping after only undergoing nearly
elastic collisions is given in the row labeled g„.

100 250 600 1000

w=o
1
2
3

e=o
1
2
3

5-9

n=o
1
2
3

5-9
10-19

0.0053
0.0014
0.0004
0.0001
0.0072

0.0085
0.0042
0.0020
0.0010
0.0004
0.0003
0.0164

0.0109
0.0077
0.0052
0.0033
0.0023
0.0041
0.0008
0.0342

l, =15'.
0.0063 0.0065
0.0008 0.0005
0.0001

0.0072 0.0070

0.0157 0.0149

l, =100 A

0.0168 0.0204
0.0077 0.0057
0.0038 0.0014
0.0016 0.0004
0.0007 0.0002
0.0005

0.0315 0.0281

l.=40 i.
0.0114 0.0129
0.0033 0.0018
0.0008 0.0002
0.0002

0.0068
0.0002

0.0070

0.0144
0.0011

0.0155

0.0240
0.0029
0.0003
0.0001

0.0273

0.0063

0.0063

0.0140
0.0006

0.0146

0.0250
0.0020
0.0001

0.0271

l, = 1000 A,

/„=40 L

N=o
2

2
3

5—9
10-19
20-29
&30

0.0178
0.0155
0.0138
0.0115
0.0104
0.0392
0,0440
0.0213
0.0278
0.2013

which is a nearly free-electron gas metal, the density of
states is given approximately by p(E)=CE'~'. Thus,
the total number of energy-conserving transitions is

Ey

E'"(E+hv)"'dE (3)
Ey—hv

The density of excitations from the Fermi energy,
N(EI), is then

n=o
1
2
3

5—9
10-19
20-29
&30

Z

n=o
1
2
3

5—9
10-19
20-29
&30

Z.

0.0122
0.0108
0.0087
0.0072
0.0057
0.0159
0.0089
0.0016
0.0006
0.0713

0.0126
0.0124
0.0102
0.0088
0.0081
0.0284
0.0285
0.0117
0.0211
0.1418

l, =250 L
0.0212 0.0278
0.0138 0.0126
0.0089 0.0056
0.0056 0.0024
0.0035 0.0012
0.0058
0.0011

0.0327
0.0083
0.0022
0.0005
O.OOO1

0.0001

0.0350
0.0055
0.0010
0.0002
0.0001

l, =600 x
0.0224 0.0329
0.0180 0.0202
0.0137 0.0122
0.0110 0.0070
0.0085 0.0044
0.0235 0.0077
0.0117 0.0011
0.0018
0.0004
0.1110 0.0855

0.0393
0.0162
0.0068
0.0028
0.0015
0.0013

0.0679

0.0429
0.0121
0.0037
0.0013
0.0005
0.0004

0.0609

0.0599 0.0506 0.0439 0.0418

n (Er) =p (Er)p (Er+hv)/cV, (4)

provided all transitions are equally probable. The latter
requirement seems to be satisfied quite well in a large
number of cases. ' ''

Evaluating Eqs. (3) and (4) with Ey=11.7 eU and
he=9.18 ev yields

TABLE VI. Escape probability for an escape cone of 0.586~ sr, a
transmission coefficient of 0.5, and disuse surface scattering. The
mean free path for electron-electron scattering is 1000 3 and for
electron-phonon scattering 40 A.. The number of electron-phonon
scattering events before escape is denoted by an integer e. The
escape probability is given for each value of e. The total escape
probability for electrons escaping after only undergoing nearly
elastic collisions is given in the row labeled g„.

tt(Er) =0.123 electrons per photon per eV.

Thus, the escape probability for electrons excited to 5
eV above the vacuum level is 0.014/0. 123=0.114.

n =.0
1
2
3

5—9
10-19
20-29
&30

0.0134
0.0124
0.0112
0.0103
0.0098
0.0352
0.0403
0.0208
0.0170
0.1704

l, = 1000 A.

0.0236 0.0337
0.0194 0.0227
0.0157 0.0153
0.0120 0.0100
0.0105 0.0072
0.0318 0.0156
0.0219 0.0043
0.0054 0.0003
0.0023
0.1426 0.1091

0.0424
0.0199
0.0103
0.0053
0.0030
0.0034
0.0003

0.0434
0.0168
0,0067
0.0027
0.0014
0.0010

0.0846 0.0720

e=o
1
2
3

9
10-19
20-29
&30

0.0170
0.0157
0.0139
0.0122
0.0106
0.0416
0.0461
0.0226
0.0280
0.2077

l, = 1000 i.
/„=40 '.
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The minimum energy necessary for escape is Er+eP
or, in aluminum, 15.9 eV. Electrons excited from near
the Fermi energy by absorpton of photons with hv
=9.18 eV have an energy of nearly 20.9 eV. The escape
cone for these electrons is easily determined and is
found to be approximately 0.267i-.

The escape cone for Table IV is not much less than
0.267t.. Sy interpolating between Tables III and IV, it
is seen that the escape probability is tatisfied by mean

free paths between l„=100A, /, =600 A and l„=250 A,

/. = 1000 A. Because o ' for aluminum is 67 A while the
tables were constructed for n '=100 A, it is necessary

to scale the results. Thus, for electrons in aluminum,

which are about 9 eV above the Fermi energy, the mean
free paths are between l„=67 A, /, =400A and l„
= 167 A, /. = 667 A. This just spans the values l„
= 130 A, l, = 510 A which were found to give the best
ht when a detailed analysis was made of the entire
energy distribution of electrons emitted from alumi-
num. ' It should be noted, though, that Quinn's theo-
retical calculation of I„ in aluminum" indicates a value
of about 50A for electrons of energy greater than 5
eV above the Fermi energy, and appears to be in sub-
stantial disagreement with our analysis of the experi-
mental results.

"J.J. Quinn, Phys. Rev. 126, 1453 (1962).
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Properties of the Mn" Nuclear-Magnetic-Resonance Mopes
in CsMnF, t

L. B. WKLsH*

Department of Physics, University of California, Berkeley, California

(Received 20 June 1966)

A new N&R mode of the Mn" nuclei in the hexagonal antiferromagnet CsMnF3 has been observed directly
between 673 and 676 Mc/sec. This mode results from the difference in the hyperGne couplings for nuclei of
the Mn1 and Mn2 sites when the nuclei are strongly coupled by the Suhl-Nakamura {SX)interaction. The
new NMR mode resembles an antiferromagnetic (AFM) exchange mode, while the NMR mode observed
by Minkiewicz resembles an acoustic AFM mode. The linewidths of the acoustic and exchange NMR
modes at 5000 Oe are 0.042 and 0.22 Mc/sec, respectively. These are a factor of ten narrower than predicted
from the SN interaction. A four-sublattice model of CsMnF3 is proposed which accounts for the Geld de-
pendence of both NMR modes, The NMR frequencies extrapolated to inGnite nuclear temperature are
666.0+0.2 Mc/sec for the Mn2 site and 676.8S&0.1. Mc/sec for the Mn1 site. This suggests zero-point
spin-wave reductions of (2.2+1.0)'Po and (3.2&1.0)% for the Mn1 and Mn2 sites; Davis's calculation pre-
dicts 2.49% and 4.36%, respectively. The temperature dependence of the electron-sublattice magnetization
is determined from the temperature dependence of the exchange NMR mode. Four-sublattice-model spin-
wave calculations account for this temperature dependence when an intrasublattice ferromagnetic exchange
energy is included which is 32/o of the antiferromagnetic intersublattice exchange energy. The Mn ' nuclear
spin-lattice relaxation times have been determined for Gelds between 600 and 5000 Oe and for temperatures
between 1.4 and 4.2'K. The Geld dependence and magnitude of the relaxation times are not understood,
but at f000 Oe, T,o:T—' '+"' with TI equal to 3.7 sec at 1.4'K. This temperature dependence indicates
that three-magnon processes may be responsible for the relaxation.

I. INTRODUCTION

'HE magnetic properties of the hexagonal anti-

ferromagnet CsMnF3 have been the subject of

several previous studies. Torsion measurements, sus-

ceptibility measurements, antiferromagnetic resonance

(AFR) studies, and electron-nuclear double-resonance

studies have been performed by I ee et a/. ' Witt and

Portis used the method of electron-nuclear double

resonance to measure the Mn'5 nuclear spin-lattice

t Supported by the U. S. Atomic Energy Commission through
Contract AT(11-1)-34 Project 47. Report Code UCB-34P47-2.

+ Present address: Department of Physics, University of
Pennsylvania, Philadelphia, Pennsylvania.

'K. Lee, A. M. Portis, and G. L. Witt, Phys. Rev. 132, 144
11963).

relaxation time' and to investigate the diffusion of
energy in the nuclear spin system. ' Minkiewicz and
Nakamura4 studied the Mn" nuclear magnetic res-
onance (NMR) directly.

In Sec. II we discuss the direct observation of a
second Mn" nuclear resonance mode in CsMnF3.
A four-sublattice model for CsMnF3 is described which
accounts for the observed behavior of both NMR
modes. For the two inequivalent Mn'+ sites the hyper-
fine coupling constants and the zero-point spin reduc-
tions are determined and compared with theory. From

2 G. L. Witt and A. M. Portis, Phys. Rev. 136, A136 (1964).
G. L. Witt, thesis, University of California, 1964 (unpub-

lished).
4 P. Minkiewicz and A. Nakamura, Phys. Rev. 143, 361 (1966).


