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The concept of a quantum heat pump is proposed as a convenient model in the thermodynamic interpreta-
tion of certain multilevel processes. The ideal quanium heat engine is defined as an idealization of realistic
pumped multilevel systems in much the same way that the well-known Carnot cycle is an idealization of
physically realizable, classical processes or engines. There is evidence that the conventional Carnot cycle
can be operated only between reservoirs at absolute temperatures of identical sign. No such restriction
applies, however, to the quantum heat engine. Thus it may be used to calibrate negative absolute tempera-
tures by relating them directly to positive temperatures. Negative efficiencies or efficiencies greater than
unity have particularly simple interpretations in the quantum-heat-engine model. An important application
of these concepts isin the calculation of optical maser parameters.

1. THE CONCEPT OF NEGATIVE ABSOLUTE
TEMPERATURES

HE concept of a negative absolute temperature
was first associated with “inverted” systems
(that is, systems where higher energy levels possess
greater populations than those below) by Pound and
Purcell.! Later the maser principle was realized experi-
mentally by Townes and co-workers.? Since then the
terms ‘‘negative temperature” and “maser action” have
become more or less synonymous for the emissive state
shown by pairs of energy levels with inverted popula-
tions. Obviously, both terms emphasize different
aspects of this state; the first relates primarily to the
thermodynamics, statistical mechanics, and perhaps to
the form of Planck’s radiation law that is applicable,
while the second emphasizes the possibility of obtaining
amplification or oscillation.

A thermodynamic justification of the negative-
temperature definition was given in a most stimulating
paper by Ramsey.® He named the conditions under
which systems such as nuclear or electronic spins are
able to assume a positive or negative temperature (a
“spin temperature”) different from the necessaryily
positive temperature of the surrounding lattice. He
indicated the changes necessary in the classical formu-
lations of the three laws of thermodynamics if they
should remain valid for negative temperatures, too. He
showed that the conventional thermodynamical func-
tions like entropy, internal energy, and specific heat can
be derived without difficulty from statistical mechanics.
Entropy and specific heat are even functions of tem-
perature, the internal energy odd, provided the
Hamiltonian of the spin system is written to have a
vanishing trace.

Following Ramsey’s publication, several authors
examined the concept of spin temperature as distinct
from lattice temperature and, especially, negative
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absolute temperatures. The term “spin temperature,”
of course, derives from nuclear spin systems which
historically were the first to show negative tempera-
tures. Since then, the evolution of the maser field,
especially in the optical range, has shown that many
other systems can be made to show negative tempera-
tures. Abragam and Proctor*—® discussed the usefulness
of the spin-temperature concept and demonstrated it
experimentally by a kind of spin calorimetry. Fick?:3
showed that one is entitled to distinguish spin and
orbit temperatures as independent parameters for
particles obeying Boltzman statistics whereas thermo-
dynamic functions for Fermi or Bose particles involve
both parameters owing to the requirement of over-all
symmetric or antisymmetric wave functions. Coleman
and Noll° proved that at negative absolute tempera-
tures an equilibrium is defined by maximum entropy at
given energy or maximum energy at given entropy. This
second condition is opposite to what is valid at positive
temperatures. Hecht'® derived that internal energy,
enthalpy, Helmholtz and Gibbs free energy are maximal
at negative temperatures and given entropy. Lands-
berg' pointed out that negative temperatures can be
accommodated without inconsistency in Carathéodory’s
axiomatic thermodynamics. Desloge and Barker were
critical of the spin-temperature concept and proposed
to describe the spectroscopic situation by chemical
potentials and ambient temperature.

Another field where the concept of a negative tem-
perature proves rather useful and meaningful is in
discussions of noise generation due to spontaneous
emission from inverted systems. It was proved in the
original treatments of maser noise by Pound, 3 Shimoda,
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Takahasi, and Townes,” and Strandberg!® that this
emission is still governed by the Planck radiation law.
In the Planck formula, however, the negative spin
temperature of the transition under consideration has
to be entered. A seeming paradox exists since the
emission according to this formula is negative for
negative temperatures. The absorption coefficient
associated with the transition, however, also changes
sign as the temperature becomes negative and since the
observed power is always the product of absorption
coefficient and the specific emission, the observed power
is necessarily positive as it should be.1

The present discussion is in response to Ramsey’s
statement? that “no means has yet been devised by
which a Carnot cycle can be operated between positive
and negative temperatures . . . . As a result, the ratio
of a positive temperature to a negative one has not been
determined by operating a Carnot cycle between the
two temperatures.” Schopf'” presents an even stronger
statement based on a discussion using the methods of
axiomatic thermodynamics. He showed that no Carnot
cycle can be constructed with one isotherm at a positive,
the other at a negative absolute temperature.

In this paper we wish to demonstrate a cyclic process
which, although different in many ways from a Carnot
cycle, still has important features in common with it.
Most important, however, it exceeds the capabilities of
the Carnot cycle in that it can operate between reser-
voirs of positive and negative temperatures.

Our process is basically an idealization of the three-
level maser scheme due independently to Basov and
Prokhorov!® and, in a form more suited for experimental
realization, to Bloembergen.'® The most general form of
our process may be called a heat pump and it consists
of a three-level scheme connected selectively, for each
of the three transitions, to three heat reservoirs at
different temperatures. The identification of three (or
more) level systems with heat pumps offers a rather
direct approach for evaluating maser efficiency and it
provides, in the case of optically pumped lasers, a
method of determining the minimum pump color tem-
perature needed to obtain oscillation or a given amount
of gain from a particular maser material. This is of some
significance since many optical masers are limited in
their performance by the equivalent black-body tem-
perature of available pump lamps. Such a treatment also
makes apparent the features required in an efficient
maser meterial, some of which are at variance with
widely held notions. Similarly, it suggests ways to pre-
dict the performance of real maser materials in view of
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their realistic, less-than-optimum characteristics.?® Re-
cently, it was shown that the color temperature of the
pump lamp needed for oscillation threshold can be
accurately predicted from such heat-pump considera-
tions.2 Furthermore, for a nearly ideal laser crystal,
i.e., one that is nearly reversible in the thermodynamic
sense, such as Nd* in yttrium-aluminum garnet, one
concludes that it should be able to function as the
working substance in a refrigerator. In this type of
operation, the crystal is made to absorb laser radiation
from a similar crystal, it emits what would normally be
called pump radiation, and in the process it will cool
down its crystal lattice.

In the following, we outline definitions of classical
cyclic processes such as the heat pump, the heat engine,
and the refrigerator, in a form suitable for the sub-
sequent discussion. We then introduce their quantum
counterparts, in particular the quantum heat engine,
and discuss its operation between reservoirs at positive
and negative temperatures.

II. CLASSICAL HEAT-PUMP AND
HEAT-ENGINE CYCLES

As sketched in Fig. 1(a), a heat pump is a device
connected to three reservoirs a, b, ¢, being, respectively,
at the temperatures T's, T's, T.. The heat pump is cycled
through a sequence of processes. Ideally, the processes

A. RESERVOIR O

RESERVOIR C

F1c. 1. Operation
of the classical heat
pump. (a) Schematic
diagram of heat and
entropy flow; (b)
distributive  opera-
tion; (c) combina-
tory operation.

TEMPERATURE

(120 ,L.) E. Geusic and H. E. D. Scovil, Rept. Progr. Phys. 27, 241
964).
2 7, E. Geusic (unpublished).
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are either isothermal or adiabatic. Through this opera-
tion, amounts of heat dQ,, dQs, dQ, are accepted or
rejected by the pump from the respective reservoirs.
As a convention, heat going to the pump is considered
positive, that leaving it negative. Energy conservation
requires

dQa+dQs+dQ.=0. (1)

Note that by the convention adopted in this equation,
one or two terms in the sum are necessarily negative.
Concurrent with the flow of heat, there is a flow of
entropy,

dS,'=in/T,', i=d, b,C. (2)
With classical heat pumps, the temperature is restricted
to positive values so that heat and entropy both flow in
the same direction. The second law of thermodynamics
requires

dS.+dSy+dS.20. 3

The equality sign applies if the heat pump is ideal,
that is, reversible. For the following we are concerned
exclusively with reversible cycles. There are two modes
of operation for the heat pump. The first may be called
distributive. As indicated in Fig. 1(b), heat is extracted
from a reservoir at intermediate temperature and is
distributed to two reservoirs, one each at a lower and a
higher temperature. The reverse operation may be
called combinatory and it is shown in Fig. 1(c). Heat
both from a high- and a low-temperature reservoir is
combined and passed on to one at intermediate
temperature.

A limiting case of a heat pump is the heat engine. It
is obtained by letting the hot reservoir assume infinite
temperature. Heat transferred to or from a reservoir at
infinite temperature is equivalent to work. This can be
appreciated directly by noting that the transfer of this
type of heat is not accompanied by entropy flow, or it
can be verified indirectly by assuming an additional
ideal Carnot engine connected to the heat pump. This
Carnot engine accepts heat from the reservoir at infinite
temperature as input quantity and it is connected to
an additional reservoir at a finite temperature. Thus it
is able to convert the input heat with unity efficiency
into work.

The reversible heat engine is, of course, equivalent
to the Carnot engine. One can define various efficiencies
for it, depending on the mode of operation and on the
(somewhat arbitrary) selection of two of the connections
as output and input ports. The distributive mode of
operation is the usual heat-engine sketched in Fig. 2(a).
Heat dQ; is taken from the hot reservoir at T'i; part of
it leaves the device in terms of heat —dQ, at tempera-
ture Ty and part of it is work —dW. In the usual
efficiency definition, dQ; is the input quantity and —dW
the useful output. In this case, one obtains from (1),

QUANTUM EQUIVALENT OF CARNOT CYCLE
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F16. 2. Operation
of the classical heat
engine or Carnot
cycle. (a) Distribu-
tive operation or
operation as an
engine; (b) com-
binatory operation
which also may be
called operation as
a refrigerator (the
cold reservoir is
cooled further) or as
a heater (the hot
reservoir is heated
further).

COLD
RESERVOIR

B.
INPUT
WORK
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(2), and (3) the Carnot efficiency
—daW T1—T,

Aoy T

(4a)

Ne

The device run in reverse is a refrigerator. Work, i.e.,
heat at an infinite temperature, and heat from the low-
temperature reservoir enter the engine and are dis-
charged in combination as heat at the higher tempera-
ture, as indicated in Fig. 2(b). Two kinds of efficiencies
are conveniently defined. The cooling efficiency as a
refrigerator would be the heat extracted at the low
temperature related to the input work,

aQy T
NR=—"=

AW Ti—T,

(4b)

Similarly the efficiency as a heater is the amount of
heat at the higher temperature obtained from the
input work,

=

—dQ: T, 1
= =1+np=—.

= (4¢)
aw  T1—T, Ne
For positive finite temperatures and with the conven-
tion T'1> T, one has 0<79,<1, nz>1, and 72>0.

The general heat pump of Fig. 1(a) is equivalent to
a tandem arrangement of two heat engines, one run as
an engine, the other as a refrigerator as shown in Fig. 3.
If one considers dQ, as input quantity and —d(Q, as the
useful output, the efficiency can be evaluated either
directly from (1), (2), and (3) or by considering the
equivalent scheme of Fig. 3 and the applicable efficiency
formulas (4a) and (4c). The resulting heat pump
efficiency is
dQs To—Ty T.

Q. T. T.—Ts

NHP= —

©



346 GEUSIC,

CARNOT
CYCLE
RUN AS
HEAT
ENGINE

CARNOT
CYCLE

RUN AS
REFRIGERATOR e

RESERVOIR
C

RESERVOIR
a

RESERVOIR

Fi1c. 3. Equivalence of a heat pump with the tandem arrange-
ment of two Carnot cycles. Arrows show the flow of heat and work
for the case where 7% is the lowest temperature and heat flows
from a and toward c.

This expression may assume any positive or negative
value depending on the choice of 7'y, T's, T, A negative
efficiency indicates that dQ. and dQ. simultaneously
flow either to or from the heat pump.

III. THE QUANTUM HEAT-PUMP AND
HEAT-ENGINE CYCLES

Consider an ensemble of particles which are able to
occupy one of a number of energy levels and which obey
Boltzmann statistics. The ensemble may be represented
by an energy-level diagram such as shown in Figs. 4(a)
and 4(b). Here, as usual, the vertical spacing of the
lines is made proportional to the energy-level separa-
tion. As an additional convention, the length of the
horizontal lines is drawn proportional to the logarithm
of the average population (ensemble or time average) of
that level. This choice results in a graph where the end-
points of the energy-level lines lie on a straight line if
the ensemble is in the thermal equilibrium. An example

—— logn;

A. B.

Fic. 4. Diagram of a multilevel system. (a) In thermal equi-
librium at a single temperature; (b) not in thermal equilibrium—
note transitions that are appreciably colder and hotter than
average.
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for this is shown in Fig. 4(a). Clearly, the connecting
line becomes steeper for higher temperatures when the
populations tend to differ less.

Figure 4(b) shows the diagram of an ensemble not in
thermal equilibrium. The study of ensembles in thermal
nonequilibrium is perhaps more important than that of
ensembles in equilibrium because it is only in the former
situation that nontrivial energy-transfer processes
occur. Under natural or experimental conditions a non-
equilibrium situation can be maintained in the steady
state only if there are at least two reservoirs at different
temperatures, which, in maintaining the steady state,
supply or withdraw energy quanta to or from the
ensemble.

To illustrate this point, we may mention two typical
systems which are also important for laser purposes.
One is a gas-discharge plasma, and the other is a crystal
containing impurities with optical transitions. The
ensemble of particles able to occupy quantized energy
levels is, in one case, the atoms, molecules, or ions in
the discharge, and, in the other case, the impurity ions
within the crystal. The hot reservoir should be identified
with the collection of free electrons in the discharge
whose Maxwell temperature may easily reach several
thousand degrees, or alternatively, with the radiation
of a pump lamp of a high equivalent black-body tem-
perature. Similarly, the cold reservoir is represented by
the cold wall of the discharge vessel or the cold lattice
of the host crystal.

In the discussion of such systems, it is convenient
although necessarily somewhat arbitrary to distinguish
between three classes of transitions. Transitions which
predominantly interact with the hot reservoir tend to
assume its temperature. The resulting “hot” transitions
are usually characterized by high transition frequencies
and large electron collision or optical cross sections, for
the two systems discussed. Similarly, transitions which
predominantly interact with the cold reservoir tend to
assume its temperature. These transitions usually have
a lower transition frequency, and it is interesting to
note that their mode of interaction with the reservoir
is also typically different from that of the hot transi-
tions. In the discharge, these transitions interact
through wall or neutral-gas collisions, and in the
illuminated crystal, the interaction is via phonons. The
remaining third class of transitions may be called
“uncommitted.” Their interaction with either the hot
or cold reservoir is weaker than the interactions taking
place in the other transitions. As a result, the popula-
tions of the two terminal states of such an uncommitted
transition are not related to any physical temperature
which would be “seen” by this transition. It is there-
fore possible, for example, that such a transition may
assume a temperature substantially lower than that of
the cold reservoir. This possibility is the essence of the
Overhauser effect” and the term “spin refrigeration”

2 A. W. Overhauser, Phys. Rev. 92, 411 (1953).
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has been used for such a process applied to electron
spins in ruby.? Another possibility is the opposite case
where the uncommitted transition assumes a tempera-
ture substantially higher than the hot reservoir. This
includes the possibility of a negative temperature which,
as pointed out by Ramsey, should be considered hotter
than any positive temperature. This situation is com-
monly referred to as “population inversion” and it is
the prerequisite for maser action.

A. The Quantum Heat Pump

For a discussion of the quantum heat pump we con-
sider a system capable of occupying three energy levels
as shown in Fig. 5. A greater number of levels is fre-
quently involved in cases of practical interest. In an
earlier evaluation of maser pumping efficiency® it was
convenient to consider four-level systems and there the
extension to the general multilevel case was clearly
indicated. However, three levels suffice to demonstrate
the principle. It is assumed that the three-level system
is not in thermal equilibrium at a single temperature
and, further, that there are no phase-coherent transi-
tions between the levels, i.e., that the off-diagonal
elements of the density matrix for the three level
system be negligible.

It is further assumed that the widths of the energy
levels and, correspondingly, the linewidths of the
transitions are vanishingly small. This idealization is
consistent with the reversible operation of a heat pump:
Reversibility requires that energy is exchanged at a
vanishingly slow rate, hence the transition frequencies
may bearbitrarily sharp. In a more practical sense, it is
adequate for our considerations if the linewidths are
small compared to the line frequencies.

Under these circumstances, the state of the three-
level system is described by the level populations #;,
i=1,2,3. The population ratio for any one of the
transitions ¢— j with transition frequency vij=—v;;
may then formally be related to a temperature T'y;=T;
by a Boltzmann relation

ni/nj=exp(hvi;/kT:), 1, j=1,2,3. (6)

In addition there is the identity relation

N1 e Ny
—— =1, )

ne N3 N1

At this point it may be argued that the temperatures
Ts; thus introduced are fictitious quantities. Notice,
however, that it is the temperature 7';; which governs
the interaction of radiation of frequency »; with the
three-level system. More specifically, T';; determines
the relative strengths of stimulated absorption, stimu-
lated emission, and spontaneous emission.

% J. E. Geusic, R. W. DeGrasse, E. O. Schulz-DuBois, and
H. E. D. Scovil, J. Appl. Phys. 30, 1113 (1959).
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Fic. 5. Schematic illustration of a three-level quantum heat
pump whose transitions are selectively in equilibrium with three
thermal reservoirs at different temperatures.

Even more significance is given to this temperature
concept if the three-level system is assumed to be in
contact with three heat reservoirs as sketched in
Fig. 5. Note that one is not at liberty to choose the
three temperatures arbitrarily; rather the third tem-
perature is given by the other two and the transition
frequencies in terms of relation (9) below. With this
proviso, it is clear that in the situation depicted, the
temperature of each one of the transitions and the
corresponding reservoir will become equal under steady-
state conditions if a direct exchange of quanta is possible
only between each one of the transitions in the three-
level system with the corresponding reservoir. This
requires an idealized three-level system in which there
are no nonradiative transitions or interactions other
than these with the respective reservoirs.

With these idealizations the scheme of Fig. 5 per-
forms as a reversible heat pump. From self-consistency
considerations we have the relation

vistvutrvu=0, )

where f, k£, [ assume the values 1, 2, 3 in some cyclic
fashion. Notice that the convention adopted in Eq. (8)
makes one or two frequencies negative. This equation,
by multiplication with Planck’s constant, will be
interpreted as energy conservation in the cyclic heat-
pump process in which one particle in the ensemble of
three-level systems is taken just once through the
three levels. Thus relation (8) is analogous to (1).
From (7) we find, by forming the logarithm and ob-
serving (6),
hy/[k hll]cl hvli

— =0. )
Tik Tkl Tli

This relation is analogous to (3) and it expresses the
fact that entropy is conserved in an ideal, i.e., reversible,
heat pump.

As with the classical heat pump, there are two modes
of operation, the distributive one and the combinatory
one. In the distributive mode, heat flows from left to
right in the arrangement of Fig. 5. In the cyclic process,
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a particle in the three-level system is raised from level 1
to 3 by absorbing a quantum /%»y3 from the black-body
spectrum of reservoir 1,3. Subsequently it rejects
quanta hves and hvye into the reservoirs 2,3 and 1,2,
respectively, by first dropping to level 2 and then back
to 1. In the combinatory mode, this sequence is reversed
and heat flows from right to left in the diagram.

From Egs. (8) and (9) we can obtain the efficiency of
the quantum heat pump. In the operation of the pump
cycle, one quantum of one frequency is exchanged for
one quantum of another frequency. Thus the efficiency
is simply given by a frequency ratio. The sign of the
efficiency is determined by the convention that a
positive efficiency relates a useful output quantity to
the necessary input quantity. This requirement pro-
duces the negative sign in the following Eq. (10) for
the efficiency of the quantum heat pump:

14723 Ttk— Tkl Tll
NEP= ——= . (10)
Vik T’Lk Tli—_ T/cl

Again there is analogy with Eq. (5) for a classical heat
pump. In Eq. (10), the indices 1, &, I may be identified
with any permutation of 1, 2, 3.

The quantum heat engine* is a special case of the
heat pump with one of the transitions at infinite tem-
perature. For example, let 7;;— . Then the quantum
hvy; is a quantum of work and the efficiency of the
quantum heat engine is

NEE= ——=
Vik T

vii Ta—Tw ' 1)

Note that
Vii Vi Vi

Vik Vik Vki

In the following this formula is applied to situations
where T and T are both positive, or positive and
negative, or both negative. Before doing that, however,
it may be well to add some remarks on nonideal heat
pumps.

For the proposed embodiment of a heat pump, it is
particularly easy to see why practical heat pumps have
less than the optimum thermodynamic efficiency. One
reason is the unavoidable presence of processes by
which energy is given to or accepted from reservoirs
other than the three considered. Some of these inter-
actions would be described by friction or leakage in a
classical system. These interactions essentially violate
the energy conservation (1) or (8) within the cycle.
Another and perhaps more fundamental limitation is
related to loading of the heat pump. This refers to the
requirement that the pump should deliver a certain
amount of heat in a finite time to one of the reservoirs.

2% H. E. D. Scovil and E. O. Schulz-DuBois, Phys. Rev. Letters
2, 262 (1959).
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The efficiency (5) can be realized only in the adiabatic
sense, i.e., if finite amounts of heat are delivered in
infinite time. From heat-conduction considerations it
is clear that, for example in the distributive mode of
operation discussed with Fig. 5, a finite power flow from
the reservoir 1,3 to the transition 1 — 3 will take place
only if the former is hotter. Similarly, the transitions
1— 2 and 2 — 3 should be hotter than the correspond-
ing reservoirs to guarantee appreciable heat transfer.
This then has the consequence that the entropy balance
(9), written with the lemperatures of the reservoirs,
exceeds zero. Thus the process is not isentropic, hence
it is irreversible and less efficient than indicated by (5).
At the same time, however, the three-level system itself
is still reversible having an entropy balance of zero in
(9), when the actual transition temperatures are used in
this expression. In view of the temperature differences
between the reservoirs and the corresponding transi-
tions, it is clear that the operation of the loaded heat
pump involves nonisothermal interactions. We thus
have a result which is well known for classical heat
pumps. By loading the heat pump, i.e., by extracting
finite amounts of power, the device becomes less
efficient than indicated in Eq. (10), it becomes ir-
reversible, and it does that by violating simultaneously
two conditions, namely that the cyclic operation con-
sists of Zsothermal and of isentropic interactions.

B. The Quantum Heat Engine Operating between
Reservoirs at Positive Temperatures

We consider a three-level system with one transition
at infinite temperature and the remaining two transi-
tions at positive finite temperatures. There are only two
ways in which this situation can be realized and they
are illustrated in Figs. 6(a) and 6(b). We may introduce
maser terminology by identifying the outer ‘hot”
transition with the pump transition so that the pump

CoLD
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ﬁ
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Vs OUTPUT
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- Gt

HOT
RESERVOIR
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RESERVOIR

Fic. 6. Schematic illustration of three-level systems operating
as quantum heat engines. In (a) the transition exchanging work
is the bottom one; in (b), the top one.
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frequency is » p=y,3. Similarly we identify the transition
at infinite temperature with the signal transition so
that the signal frequency is vg=vs in the situation of
Fig. 6(a) or »s= 1,3 in the situation of Fig. 6(b). Finally
the remaining “cold” transition is identified as the idler
with frequency »;. In agreement with thermodynamic
usage we call the temperature of the pump reservoir T
and that of the idler reservoir 7. It is understood
that 71> T.

By applying Eq. (11), we obtain the efficiency of the
quantum heat engine

Vs Tl'— To

nHE-}-__'— ——
ve T,

(11)

Numerically gugy is positive and smaller than unity.

Relation (11') allows a direct calibration for the
temperature of a transition and thus, in a more general
sense, the establishment of a temperature scale as one
or more parameters are varied. In practice the calibra-
tion procedure will primarily involve spectroscopic
measurements. We wish to outline the type of measure-
ments required in terms of a rather general example.
Referring to Fig. 6(b) we assume that it is possible to
determine in some direct way the hotter temperature,
T, and we propose to use the calibration procedure for
a determination of the temperature Ty of the lower
transition.

The calibration procedure involves four separate
statements. Two of them are frequency measurements,
namely measurements of vg and vp. The other two
statements specify the state of the corresponding
transitions, 2<>3 and 1< 3, respectively. In the
simplest case the statements would be that the signal
transition is with sufficient accuracy at infinite tempera-
ture and that the pump transition is with sufficient ac-
curacy at the temperature of a macroscopic reservoir
such as a crystalline lattice or a cryogenic bath which
may be determined with a thermometer. The infinite-
temperature condition of the signal transition can be
verified experimentally. It manifests itself by complete
transparency of the three-level material for signal-
frequency radiation, i.e., by mutual cancellation of
stimulated emission and absorption. Note, however,
that spontaneous emission is still observed under these
circumstances. If it is not possible to realize the infinite-
temperature condition with sufficient accuracy, then a
correction should be introduced through the heat-pump
formula (10).

The identification of the temperature Ty of the pump
transition with that of a macroscopic reservoir is
adequate only if there is a sufficiently strong coupling
between the two, for example by the exchange of
phonons. If this is not the case, it may be necessary to
determine 7 by a direct measurement. The measure-
ment procedure to be discussed is possible, at least in
principle, if the pump transition is radiative. If that is
the case, it is possible to arrange the host material of
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the heat-engine three-level system in such a way that
radiation of pump frequency is completely absorbed
within the three-level system, if only for one mode. For
this mode the three-level material, therefore, acts as
a blackbody and radiates, according to Planck,

1

- - 12
P exp (e kT —1 (12

photons per cycle, second and mode. If the radiation
mode is terminated in a thermally insulated, frequency
filtered, low-heat-capacity absorber, the absorber
material will under equilibrium conditions assume the
temperature 71 which then may be determined by any
conventional thermometer. The function of the absorber
just discussed is, of course, that of a radiation detector
and in fact any radiation detector capable of absolute
calibration can be used instead. Notice that this cali-
bration procedure for T is applicable only for 7' in the
positive-temperature regime. The reason is that the
Planck formula (12) is valid only for blackbodies, i.e.,
bodies where incident radiation of the same frequency
is completely absorbed. Since transitions at negative
temperatures emit rather than absorb, incident radia-
tion leaves a material with negative-temperature inter-
action (maser material) substantially unaltered except
for amplification and addition of noise, and thus it
should be characterized as optically thin as opposed to
optically thick or black.

C. The Quantum Heat Engine Operating between
Reservoirs at Absolute Temperatures of
Opposite Sign

The heat reservoirs used in the quantum heat engine
are not necessarily restricted to the positive-temperature
regime. We are at liberty to consider a three-level
quantum heat engine with one transition in equilibrium
with a reservoir at a positive temperature, the other
with a reservoir at a negative temperature. The situa-
tion is sketched in Fig. 7. While the positive-
temperature reservoir and interaction can be realized
in many ways and without restrictions, this is not true
for the negative-temperature reservoir and interaction
mechanism. As Ramsey has pointed out, the number of
physical systems capable of assuming a negative
temperature is limited to systems with a finite number
of energy levels and sufficient thermal insulation from
positive-temperature reservoirs. We like to add that
the equilibrating interaction between systems at
negative temperatures is also limited in kind. Bosons
such as photons or phonons are by themselves reservoirs
characterized by a necessarily positive temperature and
thus must be excluded as intermediaries between sys-
tems at negative temperatures. One may, however,
revert to a more direct energy exchange such as that
provided by resonant dipolar coupling. Although the
latter involves electric or magnetic fields, these are of



350 GEUSIC,
coLD
RESERVOIR FILTER
vI FILTER
i y INPUT OR
[ s OUTPUT
- i e WORK
Ve
HOTTEST FILTER
RESERVOIR 1 1R
Ve FILTER
INPUT OR
B. \ Vs OUTPUT
1_‘ [ WORK
co

LD FILTER
RESERVOIR

T16. 7. Schematic illustration of three-level systems operating
as quantum heat engines between reservoirs at absolute tem-
peratures of opposite sign. This operation may be used to calibrate
negative temperatures directly against positive ones. Since the
signal quantum or quantum of work is bigger than the pump
quantum, the efficiency is greater than unity.

the induction type and thus do not permit a photon
description.

As shown in Fig. 7, work is extracted at the outer
transition while the input quantities are heat at a
positive and negative temperature. In reversing this
cycle we obtain the operation of the three-level maser
scheme in the microwave range. There work or, more
realistically, heat at a very high equivalent radiation
temperature is used to bring the level pair 1,3 essen-
tially to population equalization. This then may produce
one transition at a negative temperature, the other at
a positive one. By realizing that the positive tempera-
ture transition cannot be colder than the crystal lattice
or an equivalent heat sink, one may arrive at realistic
limits for three-level maser performance.

In defining the efficiency there is some choice. We
follow the convention of associating 7'y and vp with the
hottest reservoir (provided the temperature 7 is not
infinite). And we follow Ramsey in recognizing that a
negative temperature must be considered hotter than
any positive temperature. The illustrations of Fig. 7
reflect this choice. The resulting heat-engine efficiency

Vs Tl— T()
NHEL=
vp T1

(11")

is identical with (11’) where here, however, the effi-
ciency is positive and greater than unity. This is in
agreement with the fact that the quantum of output
work /v g is greater than the quantum of input heat Av p.

Equation (11”") may be used to calibrate a negative
temperature by relating it directly to a positive one.
The calibration procedure is essentially the same as
that in the positive-temperature case. The four separate
statements needed are measurements of the frequencies
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vg and vp, establishment of the fact that the signal
transition is transparent, that is at infinite temperature,
and an absolute determination of the positive tem-
perature 1.

D. The Quantum Heat Engine Operating between
Reservoirs at Negative Absolute Temperatures

This operation is possible and it is illustrated in
Fig. 8. As in Fig. 6 before, the transition at infinite
temperature may be the upper or lower one and both
versions of Fig. 8 are simply upside-down versions
of Fig. 6.

In defining the efficiency we again follow the conven-
tion that 7 and »p apply to the hottest transition
(provided Ty is not infinite). And we again follow
Ramsey in recognizing that, of two negative tempera-
tures, the one with the smaller absolute value is the
hotter one. This choice makes |741|<|7o| and the
resulting associations are shown in Fig. 8.

For the efficiency one finds

Vs Tl_ To
NHE-= ——= , "
vp T1

a formula that differs by a sign from (11’) and (11").
The efficiency is negative and may assume any value
between 0 and — . The negative efficiency indicates
that one has to supply input heat from the hottest
reservoir and simultaneously input work in order to
obtain heat output at the idler frequency »i3. One
recognizes this type of heat-pump operation as the com-
binatory one in which heat from the hottest reservoir
(at T1) and the coldest one (i.e., work from a reservoir
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F16. 8. Schematic illustration of three-level systems operating
as quantum heat engines between reservoirs of negative absolute
temperatures. Note that work and pump quanta flow simul-
taneously to or from the engine, thus leading to a negative value
of efficiency. Also note the different symbol used for the reservoirs;
it points to the fact that a reservoir at negative temperature can
only be realized by a system of a limited number of energy levels,
while a positive temperature reservoir (see preceding ﬁgures)
may be realized by a system having an infinite number of levels
such as harmonic oscillators.
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effectively at infinite temperature) combine to produce
heat at an intermediate temperature (at T,). This
relation of input work to input heat through a negative
efficiency is in contrast to the more usual relation of
output work to input heat through a positive efficiency.

IV. SUMMARY

The proposed quantum heat engine appears to be a
quantum equivalent of the well-known Carnot cycle.
The efficiency expression for both is formally the same.
Unlike the classical Carnot engine, however, which
operates only between reservoirs at temperatures of the
same sign, the quantum engine is capable of operation
between reservoirs at temperatures of opposite sign.
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This capability would appear to make possible the
calibration of negative absolute temperatures in a
procedure through which one establishes a ratio of a
negative to a positive temperature in much the same
way that a Carnot cycle permits the evaluation of a
ratio between two positive temperatures.

Ramsey? has shown that the description of certain
classes of physical systems by a temperature variable
of negative absolute value is compatible with the tradi-
tional framework of classical thermodynamics. At that
time, however, no Carnot cycle or equivalent process
was known which would permit the calibration of a
negative temperature by determining a direct relation
between a positive and a negative temperature. This
gap seems to be filled by the quantum heat engine.
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Drift Velocity and Energy of Electrons in Liquid Argon*
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Measurements are reported of the energy required for injection of an electron into liquid argon and of the
drift velocity of electrons in liquid argon at moderate field strength. It is found that the barrier to electron
injection is —0.33 €V, in moderately good agreement with a theoretical estimate of —0.45 eV. The ob-
served field dependence of the drift velocity is in good agreement with the recent calculations of Lekner.

HIS paper reports on measurements of the field
dependence of the drift velocity and on a photo-
electric determination of the binding energy of electrons
injected into liquid argon. The drift-velocity measure-
ments are an extension to lower and higher fields of the
recent work of Schnyders, Rice, and Meyer.! The
photoelectric method of determining the energy re-
quired to inject electrons into liquids has been used by
Woolf and Rayfield? in liquid helium, but has not been
applied to other systems.

The drift-velocity measurements were made by the
electronic-gate method previously employed.! The only
modification in the present experiment is the use of a
glass apparatus of about 4-liter volume, containing
mass-spectrometer grade argon. The argon was speci-
fied as having 3 ppm N, and no other detectable
impurities. Further purification inside the sealed glass
system was provided by a tantalum getter. A field-
emission microscope incorporated into the system

* Supported in part by the Directorate of Chemical Sciences,
U. S. Air Force Office of Scientific Research.

L H. Schnyders, S. A. Rice, and L. Meyer, Phys. Rev. Letters
15, 187 (1965); H. Schnyders, S. A. Rice, and L. Meyer, Phys.
Rev. 150, 127 (1966).

2 M. A. Woolf and G. W. Rayfield, Phys. Rev. Letters 15, 235
(1965). We are grateful to J. Jortner for bringing this paper to
our attention.

enabled a visual test® for purity to be made. The im-
purity level was estimated to be less than 10~® ppm.
Measurements were made with two drift tubes, both
with a 5-mm drift space and 1-mm spacing between
grids. The grids were 859, transmission nickel electro-
mesh spot-welded to stainless-steel rings of 12-mm i.d.
Electrons were produced in the liquid by field emission
from tungsten tips. Currents of 107 to 10~ A were
obtained at the collector, that is, after passing through
five grids. The results obtained with the two drift tubes
are compared with previous data and with theory in
Fig. 1. The theoretical line is derived from the solution
of the Boltzmann equation in the single-scatterer
approximation,* as described in Ref. 5. We see that
nonohmic behavior does indeed set in at fields of about
200 V/cm, as predicted.* The dashed line gives the drift
velocity in the ohmic region, corrected for multiple
scattering (energy renormalization and effective mass)
following Wigner and Seitz and Bardeen, taken from
Ref. 5.

The photoelectric measurements were made with a
similar glass system, again with mass-spectrometer
grade argon and tantalum getter. The cathode and

3 B. Halpern and R. Gomer, J. Chem. Phys. 43, 1069 (1965).
4J. Lekner and M. H. Cohen, Phys. Rev. (to be published).
5 J. Lekner, Phys. Rev. (to be published).



