
I II VS I CAL REVIEW VOLUM E 156, NUMBER 2 10 APRIL 1967

Quantum Theory of a Gas Laser*
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We derive the equation of motion for the quantum-mechanical radiation density matrix of a gas laser to
lowest order in the dimensionless coupling constant. Our derivation is fully quantum mechanical and we can
calculp, te the coherence properties from the radiation density matrix. Our model consists of N two-level

systems interacting with radiation in a cavity in the presence of dissipation, pumping, and collisions. The
method we use is a generalization of the Bogoliubov derivation of the kinetic equation for a small parameter.
Our derivation holds for any physically realizable pump power, and near threshold reduces to Lamb' s
near-threshold theory. With the equation of motion for the radiation density matrix, we obtain solutions
both for when the average 6eld is nonzero and for when it is zero. The steady-state electromagnetic density
is the same in both cases except for a small spontaneous-emission term. We show that the reason gas lasers
do not satisfy rate equations is the existence of zeroth-order correlations between the internal atomic
variables and atomic center-of-mass variables. It is these same zeroth-order correlations which are re-
sponsible for the Lamb dip. Our derivation includes collisions and reduces the calculations of their effect
to quadrature.

I. I5TRODUCTION
' 'N this paper we derive the equation of motion for the
~ ~ quantum-mechanical radiation density matrix of a
gas laser to lowest order in the dimensionless coupling
constant. Our deviation holds for all physically realizable

pump power and includes Lamb's theory' as a special
case. We find. exact solutions in special cases for arbitrary
power levels.

In a previous paper' we derived and partially solved
the kinetic equations for the single-particle density
matrix and the electromagnetic-Beld density matrix
for a system of 1V two-level systems interacting with

radiation in a cavity. We includ, ed dissipation, pumping,
and center-of-mass motion. The method. we used was a

generalization of the Bogoliubov' deriva, tion of the
kinetic equations for a small parameter. However, all

methods of derivation yield the same result at least to
lowest order in the dimensionless radiation-matter
coupling constant y. In I we assumed that the center-
of-mass variables were initially uncorrelated with both
the internal atomic variables and. the radiation variables.
We further assumed that the velocity distribution of the
center-of-mass motion was given, which meant that
we neglected recoil on absorption and emission. One

of the consequences of the present paper is to show

explicitly that the recoil terms are small. The assump-

tion of no zeroth-order initial correlation between
center-of-mass variables and internal atomic variables
led directly to the result that the average electro-
magnetic energy and average particle occupation num-

bers satisfied rate equations.

*The research reported in this paper was sponsored in part by
the U. S. Air Force Cambridge Research Laboratories, Once of
Aerospace Research. A preliminary report on the results of this
paper appeared in Phys. Letters 21, 634 {1966).

~ W. E. Lamb, Phys. Rev. 134, A1429 (1964}.
C. R. %illis, Phys. Rev. 147, 406 (1966);hereafter referred to

as I.
N. N. Bogoliubov, in StgChes in Statistical Mechanics, edited

by J. de Boer and G. E. Uhlenbeck (North-Holland Publishing
Company, Amsterdam, 1962), pp. 5—118.
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We now assume only that the matter and radiation
variables are initially uncorrelated; i.e., there are no
initial zeroth-order correlations between center-of-mass
variables and internal atomic variables. Two of the
consequences of this zeroth-order correlation are that the
average electromagnetic energy and particle occupation
numbers do not satisfy rate equations and that there
is a Lamb dip in the power-versus-detuning curve.

We use the generalized Bogoliubov derivation of the
kinetic equations developed in I. However, now the
single-particle density matrix p is an operator in the
two-dimensional internal va, riable space and also a
density matrix in the center-of-mass variables. A
typical matrix element is p +(x,x', t), where + repre-
sents the excited state, —the ground state of the two-
level system, and (x,x') indicates the dependence of
matrix elements on the center-of-mass variables x.
Although the center-of-mass motion is classical, it is
convenient to treat it quantum mechanically and in the
last steps of the derivation take the classical limit of
the center-of-mass motion. As a consequence we have
the operator equation of motion for p(x,e,l), where e

is the classical velocity of the center of mass.
First we obtain the coupled. kinetic equations for p

and the radiation density matrix R. The kinetic equa-
tion for p depends on the electromagnetic field variables
through the average electromagnetic energy, hQ(ate),
where Q is the cavity frequency and at and a are the
usual creation and annihilation operators for the electro-
magnetic held. We formally solve the kinetic equation
of motion for p, substitute the result in the kinetic
equation for E and obtain a nonlinear equation for R
alone. The nonlinearity arises because R now depends
on (ate) which is TrataR, where the trace is over a,

complete set of variables for the electromagnetic held.
Next we 6nd (utu) by multiplying the equation of mo-
tion for E. by uta and taking the trace. In this manner
we obtain a closed nonlinear diGerential equation for
(ala). We are able to solve the equation of motion for
(ate) exactly in special cases.
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Since we obtain the kinetic equation for the radiation
density matrix E, we can evaluate all moments and solve
for the coherence properties of our model. Furthermore,
we show that the steady-state electromagnetic energy
density is the same whether or not the electromagnetic
fields (a) and (at) are zero or nonzero. Our derivation is
fully quantum mechanical and holds for all physically
realizable pump powers. For pump power slightly above
threshold our results reduce to Lamb's near-threshold
theory. In particular, we show that if our results are
expanded to first order in Lamb's "saturation param-
eter, "then we obtain Lamb's near-threshold theory. We
include collisions and reduce the treatment of collisions
to quadrature.

In Sec. II we derive the kinetic equation for E.
Section III contains the derivation of the kinetic equa-
tion for p. In Sec. IV we obtain the equation of motion
for (ata), and in Sec. V we find the stationary solutions
for (ata). We find the equations of motion for (at) and
(a) in Sec. VI and show our results reduce to Lamb' s
near threshold. Section VII is a comparison of our equa-
tion with rate equations. In Sec. VIII we discuss higher-
order kinetic equations. Appendix A contains a deriva-
tion of the cavity frequency shift valid for all pump
power. In Appendix 8 we show that the average electric
field vanishes because of spontaneous emission.

where

H(1V) =h(N)+Hf+H, +Hg, (2.1)

AMp N

h(iV) = P o. ; Ht= An(ata+ ',), -

II. DERIVATION OF THE KINETIC
EQUATION FOR R

Our Hamiltonian for N two-level systems interacting
with a single mode of the electromagnetic field is

equation for our total system to order p' is

00

$H-I,R]+X R—y»o) p' Tr, Tr, dr
0

X [Hi, LHi(r), Rp5:]], (2.2a)

Bp Z—= ——Lh(1),p]+X;„,p —y'coo'Tr, Tr, dr

X [Hi, )Hx(r), RpF]]. (2.2b)

We assumed the matter density matrix was a product
pP of the density matrix p for the internal variables and
the center-of-mass density matrix K The operator X,
refers to the interaction of the radiation with the
radiation reservoir and X; ~ refers to the interaction of
the internal variables with the pump and matter
reservoir. The operators X„and X;„~ are of the same
general structure as the Wangsness-Bloch' ' reservoir
operators. The symbols Tr„Tr„Tr, refer to traces
over a complete set of variables for the internal atomic
variables, the center of mass, and the electromagnetic
field, respectively.

The product assumption p(x, t)= p(t)P(x, t) in Eqs.
(2.2a) and (2.2b) implies that there are no zeroth-order
correlations between internal atomic variables and
center-of-mass variables. It is necessary to treat the
interaction with the reservoirs with more care when we
retain correlations between internal atomic and center
of mass variables. Consequently, when we repeat the
derivation. leading to Kqs. (2.2a) and (2.2b) without the
product assumption on the matter density matrix we
obtain

Z

[HJ,R]+X—,R— (ys&o)'X Tr, T—r, Tr„.
h

X dr[Hi, LHy(r), Rp(x, t)P]], (2.3a)

Hg=hcopyg I'(X )Lato +ao i], ap(x, t) I'2
= —-[h(1),p (*,t)]——,p (x,t)

h 2m

I' 2 N N

H. =Q + ', Q V(X —Xe-)+Q Q U(X„—g;),
a 2m ap a

7= (Acoo) '(An) e(ai e rib)(4'/y)"

The normalized eigenfunction of the cavity correspond-
ing to the frequency 0 evaluated at the position of the
nth particle is E(X ). A full discussion of the terms in
the Hamiltonian is given in I.

In I we showed, by means of a straightforward
generalization of the Bogoliubov' derivation of the
kinetic equations, that the solution of the Liouville

+X;.tp(x, t)+Z. (x,t) p(x, t) (yo&p)' Tr. T—r...
X d7 [H)LHg(r), Rp(x, t)P]], (2.3b)

where we have explicitly introduced the matter and
radiation reservoir density matrix P. The symbol Tr,
stands for a trace over a complete set of states of the
matter and radiation reservoir. The operator 2, repre-
sents a collision operator for the center-of-mass vari-
ables. In a gas laser the density is sufEciently low so

4 R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 {1953).
~ C. R. Willis and P. G. Bergmann, Phys. Rev. 128, 391 {1962).
6 W. Weidlich and F. Haake, Z. Physik 185, 30 {1965);186, 203

(1965l.



322 CHARLES R. WILLIS 156

that 2, is a linear Soltzmann operator representing
collisions with both system atoms and pump atoms. To
be precise we have carried out the derivation of the
kinetic equations y' approaches zero at the same time
as we let the density of atoms approach zero.

The symbol Hi(r) represents the radiation-matter
interaction at time 7 where the development in time
is generated by all terms in the Hamiltonian except
the radiation-matter interaction potential. The reservoir
Hamiltonian and the reservoir-system Hamiltonian
contribute to Hi(r). To clarify the meaning of Hi(r)
we consider the special case of no reservoirs and no
collisions. Then Hi(r) is

Hi(r) =I'[X, +(P, /m)r][algae'~'+aate '~'5,

where

exp(iHrr)at exp( —iHrr) = at exp( —iver),

exp[ih (1)r]o exp[—ih(1) r]=o exp(koor),

X(r) =X.,+(P.,/m)r, A=(oo —0,

and P,„ is the momentum operator for the center of
mass. The mass m is the mass of the two-level system.

When we take the trace over the reservoir of the
double commutators in Eqs. (2.3a) and (2.3b) we obtain

T „.[H, ,[II,( )R P]]=H,(H, ( )),R —(H, ( )) R H,
HiRp(Hi(r—))p+Rp(Hi(r)) pHi, (2.4)

where

(Hi(r))p=r[X(r)]((at(r)o (r))p+ (a(r)at(r)) p)
=r[x( )5(( '( )) & ( )) + & (.)) ( '( )) )

and the definition of the average (0)p of any operator
0 is

(0)p=—Tr„,OP.

The reservoir average (at(r)o (r))p can be written as a
product (at(r))p(a(r))p because the radiation and

matter reservoirs are independent of each other.
The equations of motion satisfied by (at)p, (a)p,

(ot)p, and &o.)p are" '

d(at) p/df= iQ—(a~)p (v—„/2) &at)p, (2.5a)

d(a) p/df = iQ(a)p —(v,/2) (a)p, (2.5b)

d (at) p/d3 = 1'

p�(at)
p —vy (at)p, (2.5c)

d(o') p/d$= —i(up(a) p —v2(o.)p. (2.5d)

When we substitute the solutions of Eqs. (2.5) in

the definition of Hi(r) we obtain

(»()) =r[X()]e p —
L +("/2)5

y {atae'~~+ aate '~'] (2.6)
where we ha, ve used

( (0)).=.~, (.(o)),=., (. (o)).=. , (.(o)).=..
When we substitute Eq. (2.6) in the double commu-

tator appearing in Eqs. (2.3a) and (2.3b), we obtain

[H,[(H (r))p,Rp]]= —exp[ —(vq ih)r]at—Ra (rspoor(r)+I'(r)a par)
—exp[—(v~+ih) r]aRa(I'o t po tr (r)+r (r)o tpo tr)+ exp[ (v2+ id) r—](oo trr (r) p [at,[a,R]]
+[ra,I'(r)of p][a,R]at+ra[I'(r)at, p5[at, Ra]+ [I'o,[I'(r)o.",p]]Raat)+exp[ —(v2 —iA) r]

X( t I'I'( )p[a, [at,R]]+[rat,r(r)o p][at,R]a+rot[r(r)o, p][a,Rat]+[rat, [r( )a,p]]Ra«), (2.7)

where r (r) = I'[X(r)].The order of the factors r, r (r), and p is important because they are noncommuting oper-

ator functions of the center-of-mass variables. In Eq. (2.'I) we have neglected v„/2 compared with v2.

To obtain the kinetic equation for R we take the trace of Eq. (2.7) over the internal atomic variables and the

center-of-mass variables, and substitute the result in Eq. (2.4a):

BE z

[Hf,R]+X—,R— y'Nco p'—
Bt

{exp[—(.,+is)r]f((rr( )) —(r(,)r),)[a&Ra]+(rr( )) [a&,[aR]g

where
+exp[—(v2—iA) r]f((I'I'(r))+ —(I'(r)r) )[a,Ra&5+ (rr (r))+ [a,[at,R]]$]dr, (2.8)

(rr (r)) =Tr„.IT(r)a ta p= Tr,(rr (r) Tr.l.,+p),

(rr(r)) =Tr... r( r) ro.~apTr, (rr(r) Tr,e. p).

The operators N,v+ are the number operators for the excited (+) and ground (—) states of a single two-level

system. To get a self-contained equation of motion for R we need explicit expressions for &rr (r))~ in terms of R.
This we do in the next section.

At this point it is possible to see that the equations of motion for E depend on only the diagonal matrix elements

of the internal variable part of p because

Tr.e.v+p= p++(x,x', t); Tr,m.v
——p (x,x'i) .

7 M. Lax, Phys. Rev. 145, 110 (1966).' H. Haken, Z. Physik 190, 327 (1966).
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However, p++ and p are nondiagonal operators in the center-of-mass space. Thus, even in the case that R has
nondiagonal matrix elements (nonvanishing electric 6eld), the radiation "sees" the matter internal degrees of
freedom only through the diagonal matrix elements of p. We return to this point in Secs. VI and VII.

III. DERIVATION OF THE KINETIC EQUATION FOR y(x, f)

The derivation of the kinetic equation for p is more complicated than the derivation of the kinetic equation for E
because p depends on two sets of variables, the internal variables and the center-of-mass variables. In order to ob-
tain the kinetic equation for p we need the following trace of Eq. (2.7) over the electromagnetic Geld variables:

Tr, [(K(r))p,&p]]=exp[ —(v —iA) r]([Fat,F(r)a'p] Tr [at,R]a+ [Fo t,[F(r)o,p]](ata)
—(I'o poF(r)+I'(r)o poI')(atat))+exp[ —(v2+iA)r]([Fo, l'(r)otp] Tr,[a,R]at

+[Fa,[F(r)of,p]](aat) (Fo—tpotF(r)+F(r)otpotI'')(aa)). (3.1)

The moments (atat) and (aa) satisfy linear homogeneous equations so if they are zero initially, they remain zero.
In any case they vanish in a time v„' which is of the order of 10 ' sec; thus, we neglect them.

When we substitute Eq. (3.1) in Eq. (2.3b) and separate real and imaginary parts, we obtain

where

Bp Z t'i p—= —— [&(1),p]—~
—,p +&.p+X'-~p+&,

Bf k kk 2es
(3.2)

dr exp[—v2r] cosAr {(ata)(2FF(r)[o,[at,p]J+[F,[F(r),p]J+F[o,[F(r),p]of]+F[ot,[F(r),p]o]
0

+[F,F()L 'P]1 +P, [F( ) L P]]3 ')+[F tF( ) P]—LF,F( ) 'P]+[F,[F() ',P]l}

iy'cu—,' dr exp[—v2r] sinAr( (ata)([Fcrt, [F(r)o,p]] [Fo.,[F—(r)o.",p]])

+ [F &,F(,),]+[F,F( ) tp] —[F,[F( ) ',p]])
and where we use (aat) = (ata)+1.

The only term in 8' that makes an observable contribution to E is the first term. The reason for this is that
except for the spontaneous emission terms all the other terms are proportional to (bk/mar) and (kk/nor)', where
vr is the thermal velocity (3kT/m)'~'. The dimensionless ratio (kk/mar) is the percentage change of momentum of
the two-level system on absorption or emission of a laser photon. The ratio is less than 10 ' for neon.

To prove the statement about 0 in the previous paragraph we introduce the dimensionless variables

V2= v2/MD /=kgb f=MDf, A=A/ND, )=5/r T

where a bar indicates a time or frequency made dimensionless with or&, the Doppler frequency. The statement about
8 is true for both quantum-mechanical and classical center-of-mass motion. However, for convenience we introduce
the classical nature of the center-of-mass motion by replacing commutators of center-of-mass variables by (—k/i)
times the Poisson brackets.

The expression for 8 in dimensionless variables and with classical center-of-mass variables is

gap 1
kiP~oo, p] — —((a'a&lo, [o',p]J+o([o [ot p]J+[o',op] [o,o'p]))—

T(x,k)

where

2 =z(ata) cosA exp[rP r][(F(r) 0 pot+0 tptT}+ (F I (r) (0tp(T+0 po't)) I (F(r) p)]dr

cosZr exp[—v2r][{FF(r))[ot p]o —(I',F(r) p) o.—I'(r){p F}otoJdr —(ata) sinZr

Xexp[—vms][I'(r) (F, a tpoopo t) {F(r),.F—(o tpo —apo t)) ]dr—

8= ((ata)+o to) exp[ —v2r] cosZr(F, (F(r),p) }dr.
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The symbol {C,D] is the Poisson brackets of C and D
taken with respect to the center-of-mass variables. The
dirnensionless "relaxation time" T(y, )) is defined as
follows:

[T(y,))] '=2 dr exp[—Por] cosAr(rr(r)). (3.4)
p

where

((B/Bt)n~(y, g,t));,=Tr,o toX;,ip.

The term Tr,a.to.X;„~p contains the pump and matter
reservoir interactions.

The equation for m is

"jCOp

B o(y, ~) =l( & )
GOD p

d7=

The equations (3.6), (3.7), and (2.8) form a complete
nonlinear equation for the radiation density matrix
R. In order to see this more clearly we take the classical
limit of the center-of-mass motion in Eq. (2.8). After
separating real and imaginary parts in Eq. (2.8), we
obtain the following equation of motion for R:

Xexp[—) 2r] sinZr(rr(r)) .

The terms A and 8 represent the eBect of absorption
and emission on the center-of-mass motion. The
operator 8 is a generalized Brownian motion of the
center-of-mass motion due to the repeated small recoils
when a two-level system absorbs or emits a photon.
However, the coeflicient (kk/nii)r)' makes the magnitude
of 8 of the order of 10 ' times the f]rst term in 8 and
thus negligible. In summary, the reaction of the electro-
magnetic Geld on the center of mass is negligible so we

drop the operators A and B. However, the action of
the center-of-mass motion on the electromagnetic field
variables is important and appears through T(y, )) '.

Finally the kinetic equation for p(y, (,t) is

E P&p= —i[(D+BQ)ata, R]+X,R.——
dydee

&(y,5)

X fnp(y, &t) ([a,Rat]—[at,Ra]+ [a,[at,R]])

+e (y, g,t)([at,Ra] [a,Ra—t]+ [at,[a,R]])$, (3.8)

where

+ 7+p
BQ=— dr exp[—Por] sinZr dydtrr(r)

2 cog)
Bp(y, bt)

+&.p(y, P)
8$

Bp(y, &,t)

X(n, (y, (,t) —n (y, P,t)).

8 7GOp

The frequency-shift operator for the matter Hamiltonian ~—= k~—+&on———n— +
Bt By Bt;., o)& T(y, &)

X [(ata)[n~ n—]+n~] (3..7)

&[(o)o+BM—o) o,p(y, 4t)]+X;.ip(y, g)
p~o ' ~ (ata)

([o,[o',p]l+Io', [o,p]D
o)r) T(y, t) 2

+o ([~,[o',p]]+[at,op]—[,o'p]) (3 5)

The last three terms of Kq. (3.5) give rise to the spon-
taneous emission term.

The solution of Eq. (3.5) for p(y, (,t) contains all the
properties of the matter distribution but, as mentioned
in the previous section, the only properties of the matter
density matrix we need are p++(y, $,t) and p (y, $,t)
which we denote by n+(y, $,t) and e (y, P), respectively.
The probability of observing an atom in its excited
state at position y, with velocity &, at time t is

&n+(y, P).
When we multiply Eq. (3.5) by n„+=oto and take

the trace over the internal atomic variables, we obtain

When we substitute the solution of Eqs. (3.6) and

(3.7) in Eq. (3.8), the nonlinear dependence appears
through the dependence of (ata) on R.

Before finding the equation of motion for (ata) in
the next section it is appropriate at this point to observe
that although Kqs. (3.6), (3.7), and (3.8) appear rather
formidable they represent simple microscopic processes.
The underlying microscopic events are the first-order
Born-approximation absorption and emission of a quan-
tum of radiation by a two-level system with the ef-
fective lifetime v2 '.

IV. THE EQUATION OF MOTION FOR (ara)

%e need to know the time-dependent electromagnetic
energy AQ(ata) to complete our solution of the kinetic
equation for E. We obtain the following equation of
motion for (a&a) by multiplying Eq. (3.8) by ata and

taking the trace

Be~(y, &,t) Bn+(y, &,t)+& e+(y U)
B i'yo)o o

dydee—(a'a) =&I — (a"a) [n+(y, P) n (y,M)]--
Bt io)n T(y, $)

))'yo)o '
dydee

+Pl n+(y, g,t) p„(ata), (4.1)—
T(y, ~)

X [(ata)[n+(y, $,t) e(y, $,t)]+n+—(y, Q)], (3.6) where we use Tr,ajax„R= o, (a&a).
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2 re)—Z. t t' —
i (ata), -dt P1g exp —(r1—z.)(t—t'

)& exp
$

—I „(ata) . (4.5
2 3

e um, we obtainms~ RM, specify the pumps

o ev l cit integrals in Eqs.In order to ev cio evaluate the ve oci y
'

relaxation time
ness wc Rssunlc rcctRQgulR1 gcoxnc ry)=-.L;(~)- '(~)j=E-./(2 ) 3 m—=rI —I = - »p e (—~ 2). (4.2) ness we

Xexp( —8/2) (4 6)

-'.— . '"',""')' -, I;(p)- (~, »—2+2 -- PI I+
Bt T(p) ~(»D

p/

d (4 g) constitute a c ose

t

Equations (3 6)~ ( '
d ( t ) When we eljmlllate

~ p(gp)p
set of

equations for "+'"
s of Eqs. (3.6) and —(ata)=&

~ ( )(2 )In p &(5)
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f ta) alone. por gt D

uatloQ OI

ne lect the spontaneous emimission termscoHvcnlcncc wc ncg cc
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Q lS to I'ovl C R I'lgthcll main fuQctloQ g
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e can allow spatial
0
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Qc lect spontaneousspatial homogeneity, Qcg
4

ter

0

The solution of Eq. (4.2j Is

..)
o eneous part of Eq. (4.2).+a solution of the homogeneo p 4.2 .

2 (ata},.dt' r1 exp (—P/2)
&(~) ~

+, — t = 2~)-'" dr exp —(rI—Z.)(t—r~, (t,t)-~ Kt)=(2 i- '

cos67' sinks sin xdT CXP —Pq7. C ~

solution of the equation of motion forwhere g(r') ls the solution 11 for
ss in the presence o co

' 'the center of mass in p
-Shimon 9 dc6nition o ethc Lebo%'ltz- lnl y o c
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atoms Rlc ctll He). Tllell' de nI 10I1

function D is

= D,&. )+ L(xp I x'p')D(x'p')dg'dp'

D(xp) L(pt'p'i ptp)dx'—dp', (4.7

x s ) 'the probabIlltp peI' 11111t
~ 0

nit tlnle of R

q . he osition coordinate isEquation (4.7) for the posi ion

—=—(/); pt(t) =~+ P(t')dt',
dt m

~ & Ph .Rpv. 128, 1945 (1962).~ J.LeboVritZ and A. 3hlmogy, Phyg.

(aiba)e 'rM p PI'"' "'= " ' '.
(O (2.)

g exp i, (4.4)
2 i

where R subscript s indicates steady state.

( )~ t the average value z.,B~~t~, & representsThe I,
' subscript on, ] t e

aluated at time t. e so
8 c uRtlon d,ccays ln plhoInogcQcous cqu p

-10 scc ln R typlca
s in . . ) d (4.3) is importants in E s. (4.2 anorder of fRctox'8 ln q .
l the collision berne81QCC] ln gCQCX'R

p

mute with T($).
The steady-state solution o q.
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where V is the velocity of the center of mass. To deter-
mine the time dependence of V(t), we need to solve the
collision problem. Thus collisions enter our theory in
two ways: First, they enter through 2, in the equation
for p, and second, they enter through T($).

When we do the integrations in the definition of
T($), Kq. (3.4), for the case of no collisions we obtain.

Sin gP
2

Born approximation e times. A completely rigorous
solution of the full problem would mean that the y'"
term in the solution of (ate) would contain all processes

up to the mth-order Born approximation and would
contain the average value of I u~'s and e e's such as
(ate ata)

In the next section we find some stationary-state
solutions to our equations.

where we use x{t)=x+ Vt.
We now have the kinetic equation for the density

matrix R. The first step is to solve Kq. (4.5) for (uta)
and then to substitute the solution for (a"a) into Eq.
(4.3).The final step is to substitute the resultant expres-
sion for (e+—e ) into Kq. (2.8) for R. The resultant
equatloll fol' R is Hneal with tile known function (6 8)
as a coeKcient in the equation. That is, when we solve
the ordinary diRerential (3.4) for the c-number function
(ate), we reduce the nonlinear operator equation of
motion for R to a linear-operator equation.

The time-dependent Eq. (4.5) and the stationary-
state Eq. {4.6) for (a"a) contain all positive powers of
y'. We observe that we start with kinetic equations for
R and p valid to order y', but that the elimination of
the matter variables leads to an equation for (ate)
which contains all positive powers of y'. If we solve
Eq. (4.6) exactly, does this mean we have a solution of
the original problem to all orders in 7'P Unfortunately,
the answer is no. The next step in an exact solution is to
derive kinetic equations for E. and p to order y'. This
means that we must derive kinetic equations where the
microscopic event is not just a 6rst-order Born approxi-
Ination but also a second-order Born approximation
between a single atom and the radiation field and the
virtual exchange of a photon between two different
atoms. We then get a new equation for (uta) which
contains terms such as (utaata). We will carry out the
derivation of the kinetic equations to order p4 in a future
publication. The term proportional to p'" in the solution
of Eq. (4.6) is the result of the iteration of the first-order

The threshold number of atoms required to start
laser action is

M~
X = P (2~)""

Mg) P&

Ep=
QG)o I(Pg, k)

I(v2, Z) = dx expL —(Pmx+x'/2)] costs.

The stationary-state equation for (aiba), is rather
complicated for arbitrary detuning h. However, for
g= 0 and P2((1 we can solve for (ate) for all pump power

g. When we substitute Eq. (5.1) in Eq. (4.6), we obtain

where we put (ate), equal to zero in Eq. (4.6). In a gas
laser the magnitude of Z, is proportional to the collision

frequency y, which is usuaHy much smaHer than pq so

we neglect g, in the remainder of this paper. As a result
we can explicitly carry out some of the integrals without
a detailed analysis of coHisions. When we substitute

Eq. (4.8) in Eq. (5.1), we obtain

dx exp| —(v~'&+ ~/2)]

&*expL —(v,~+~'/2) %1+2(~'a).(~«)'(»») 'j'"
(5.3)

(a"o).(V~~)' '"
P2'= P2 1+2

fOriTl:

viv2 XI(Pg', 0)
(ata), =--

2(yeso)2 ErI{P2,0)

We rewrite Eq. (53) in the following more suggestive

PyP2 —1, (5.4)
2 (yeso) 2
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which shows that for &2&&1 the steady-state electro-
magnetic density depends quadratically on Ã. If p& is
not small, then Eq. (5.4) is a transcendental equation'
for (a a), because f 2' depends on (u a)..

When we divide the integral appearing in Eq. (2.8)
for R into its real and imaginary parts, we find that the
imaginary part is a commutator of the energy operator
a a with R. We rewrite Eq. (3.8) to explicitly display
the cavity frequency shift

E y(uo 2 d$= —~[(Q+~D)a&a, Z]——
2'(&)

where

&& C(~ (P)—~-(4~))([~,&o'j—I
o' ~&j)

+( (Gt)+ -(P))t ',[ &jj3+X.&

E$7M0
M= —

I d$ d7 exp( —f2') sinZ7 cos$r
2 k(dii 0

X[I+(&,i)—~ (P,f)].
The steady-state frequency shift we obtain when we

substitute Eq. (4.4) in the expression for 80 is very
complicated for arbitrary Ã and A. In the Appendix we
show that to first order in 6 and for f2«1 the frequency
shift for arbitrary pump power is given by Eq. (A5).

Near threshold we obtain the Lamb dip of Ref. 1. A
study of Kq. (4.6) shows that the dip eventually disap-
pears for X)&Ãp. The precise value of E where the dip
disappears is the solution of a very complicated trans-
cendental equation.

Thus, the smallness of Lamb's "saturation parameter"
requires the system to be near threshold. The only
requirement on X in our theory is that (&&co/MD)'X&&1.
For the He—Ne laser this condition is equivalent to

"W. E. Lamb, Quantum Mechanical Amplifiers in Lectures in
Theoretical Physics, edited by W. E. Britten and B. W. Downs
(Interscience Publishers, Inc. , New York, j.960).

VI. COMPARISON' WITH THE LAMB THEORY

Reference 1 actually contains two different theories.
The explicit results of the first theory depend on the
condition that the system be near threshold. The second
theory is a plausible generalization of a previous theory"
which did not contain center-of-mass motion. The
generalization is discussed in Secs. 16—20 of Ref. 1.

We first show that our results reduce to Lamb' s
near-threshold theory when Lamb's "saturation param-
eter" is small compared to 1. The definition of the
"saturation parameter" is (p'(u a)Mp'/vip2). We re-
express the "saturation parameter" in terms of the
parameters of the radiation matter system plus reservoir
with the help of Eq. (5.4)

y'(ata), coo' 1 ( E ' 1V
1» =—

I

—1 = —1. (6.1)

X&2.5X10'Ez. Consequently, the Lamb near threshold
theory is a special case of our results and in fact is the
erst term in the infinite series expansion of the denomi-
nators of Secs. IV and V.

When we substitute Eq. (5.2) in Kq. (4.6), set Z=O,
and rearrange terms, we obtai. n

Ãz 1
(2ir)-'"

I(v2, 0)

dP exp( —P/2)
(6 2)

„P+)22[1+2(ata),y'coo'(viv2) ']—

When the integral is expanded to first order in
(y'coo'(fata)/viv2), the result is equivalent to Lamb' s
Eq. (87). For arbitrary Z, Eq. (4.6) to first order in the
"saturation parameter" reduces to Eq. (96) of Reference
1.A more detailed analysis of the time-dependent equa-
tion for (ata) shows that to first order in the "saturation
parameter, "Eq. (4.5) is the same as Eq. (81) of Ref. 1.
Since near threshold our results reduce to those of
Lamb, we obtain the same Lamb dip."When we expand
Eq. (5.6) about threshold, our result reduces to the
line shift calculated by Lamb in his Eq. (89).

Thus, in the limit E—+ET our theory reproduces
Lamb's near-threshold dynamics and his stationary
state exactly. In some cases it is possible to calculate
properties for all Ã in closed form. However, the correc-
tions to the Lamb theory for all values of 6 and F 2 can
easily be obtained by expanding Eq. (4.6) to second or
higher powers of (y'&oo'(ata), / vi v2). Calculation of
higher-order integrals in Eq. (4.6) is much easier than
attempting to generalize Lamb's method to order y'.

The agreement with Lamb's theory is at first surpris-
ing because Lamb's theory is based on the electromag-
netic fields (a) and (ut&, not on the electromagnetic
energy density (ate&. The important point is that the
electromagnetic density matrix R (whether diagonal
or not) depends on the matter through only the diagonal
matter matrix elements e+(f,t) and n ($,t), which in
turn depend on the radiation only through (ate). As a
result, except for the small spontaneous emission term,
the steady-state equations for (ate) and (a) are the
same as for (ata). We prove that the stationary state
(neglecting the spontaneous emission term) for (at)
and (a& is the same as for (fata& by multiplying Eq. (5.5)
by ut and taking the trace of the resultant equation

d E yeso 2—(~'&=— (o'&
4f 2 MD

» Thus the statement in Ref. 2 that the Lamb dip requires
kinetic equations rigorous to order p4 applies only to the case of
laser models that do not have center-of-mass internal-variable
correlations. The theory of Ref. 1 and the present theory obtain
the Lamb dip with kinetic equations correct to order 7'.
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The equation of motion for (u) is the same as for («).
We see that Eq. (6.3) differs from Eq. (4.1) for (ate) in
two ways. There is no spontaneous emission term and
there is a factor of ~ in each term on the right-hand side
of Eq. (6.3). This factor of s~is just what we expect for
the difference between the amplitude and intensity.
To obtain the steady state we set the time derivative
equal to zero in Kq. (6.3) and the resultant equation is
the same as the steady state Eq. (4.1) minus the spon-
taneous-emission term. In Appendix 8 we show that the
average field goes to zero due to spontaneous emission.

When we assume (ate)i- in Eq. (4.3) is "slowly
varying, " we can do the integrals, and for t& f& ' we
obtain

2(a a), y(»,))' —'

!~+(&,t) —m ((,t)= 1+
~(k) ~n &

Xexp (—P/2), (6.4)

where we have neglected collisions. The substitution of
Eq. (6.4) in (6.3) yields

d N/y(»0 ' (at) " dr"—(«)=—
I

Ch 2( a) g . 2'(()

exp (—P/2) —v, («) . (6.5)
L1+2( &

& (v o)'2-'(&) .-"-'I
It is interesting to observe that if we replace («a) by
(at)(a) in Eq. (6.5), we obtain Eq. (184) of Ref. 1.

geneous case in the following suggestive f'orm:

8(«u) (y(»p)' n+((()),
((«a)+1)

at &~n) &(&)

exp —' 2-l ( --)-( ))(~'~) -"(~'~)
2'(r) &(~)

(7 2)

where
~+(0) " ~+(P)

d$.
T(&) . 2'(&)

Consequently, («u) satishes a rate equation with

(I+($ t)/T($)) replacing n~(t). If (n+ ($,t)/T($)) satisfies
a similar equation, then the modified second moments
of l(!and p(&,t) with zeroth-order correlations also satisfy
rate equations.

We And the equation of motion for (n~($, t)/2'(])) by
~~ltiplyi~g Eq. (42) by T($) ' and averaging over
velocity. The result is

&(I+((,()) (v )'

x (&~'~)+&)(-
'

)—&~'~)(
'

)(
..(u) -(&,f)

t

((~+(t,()) (~m(
—

('/2)))

VII. GAS LA.SERS AND RATE EQUATIONS

In I we showed that, if initially there is no correlation
between the center-of-mass variables and the internal
atomic variables, the second moments of E and p
satisfy the following rate equations:

d (6"(i) tt'7(»p
= 2i)I)'! Cs(n+((ata)+1) —(1—m+)(a)a))

d r &(»r)
&r——(ata), (7.1a)
2

(&"01
! Ca(N+((«o)+1) —(1—~+) ((i'~))

—r, (e+—1), (7,1b)

where n+ is not a function of velocity, but only of time.
The symbol C& is a function of 6 and P2 and is obtained
from an integration over velocity space.

We wish to determine whether or not the second
moments of R and p($, t) of the present paper satisfy
rate equations. By inspection it is clear that Eq. (4.1)
and the velocity integral of Eq. (4.2) do not satisfy the
simple rate Eqs, (7.1a) and (7.1b). However, perhaps
the second moments of R and p($, t) satisfy a more
complicated type of rate equation. We investigate this
possibility by rewriting Eq. (4.1) for the spatial homo-

The right-hand side of Kq. (7.3) contains (n+ (p)/T'($) )
instead of (g+($,f)/T($)). Consequently, the modified
second moments of R and p(p, t) do not satisfy rate
equations if there are zeroth-order correlations between
the center-of-mass and internal-atomic variables. The
equations (7.2) and (7.3) do not even form a closed set
of equations because, in order to evaluate (n~(&,t)/
T'($)), we need (e+($,)t)/T'(()) and so on. Thus, the
He—Ne laser which does have zeroth-order correlations
cannot be described by rate equations.

There are several differences between the solution of
the equations of the present paper and rate equations.
One of the more important differences is the steady-state
X dependence. In I we showed the steady-state electro-
magnetic energy density of the rate equations is pro-
portional to (E X&), where ou—r steady-state Eq. (5.4)
is proportional to t (iV/il&'r)' —1j.

VIQ. CONCLUSIONS

We showed that the lowest-order kinetic equation
with zeroth-order correlations between internal atomic
and center-of-mass variables is more general than
existing gas laser theories in fi.ve ways. First, we derived
the self-contained nonlinear equation of motion for the
full radiation density matrix. Second, our derivation is

fully quantum mechanical. Third, our derivation holds
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(V~o)'—&ut) =N &ut)
2coD

X {/t+(g, t) vt—(p, t) } —&u—I), 81a

d(u) (v«)'
u

2&on .T(~)

X{~+(&,t) —~ (g, t)}—(u).——u . Bib

When the definitions

&ut)= fe'v and (u)= fe "
81a and (Bib) we obtainare substituted into Eqs. (81a) an

(82)f= —,'Of and /p=0,
where

APPENDIX 8
aneous emission caus

~ ~

es the aver-We show that spontan
age electric efi ld to vanish as t —&~. e eq
satisfied by &ui) and (u) are

where

N(V~o)'

2opn(utu), „T(&)
—

&ulu) -i/P
C—=f(0)

—(uuo

N(yp/p) P

Xexp ——
2GOD

~+(k, t)

&(&)(u'u)

Xexp( —nt„),

stead state. Thus at t —+~ the spon-y
causes the averagetaneous emission term c

to vanish.
s and for 6=0, the solutionIn the absence of collisions an or

for e+'(&) is

—2 2e+'(&) =2—'(2~)-'/P exp( —
& 2

X 1+[1+2& ").T-'(r)(v o)' -"—
When Eq. is s86) substituted in the dedefinition of o. we
obta, in

n+(],t) —r/ (g, t)}—v„..T(r)

for the electromagnetic energy isThe equation of motion or e

[I(vp, 0)
4p/n(u~u),

+[1+2&.t.),(v )'( )- ]- "Ip(vp', 0)], (87)

d &u~u) (yp/p)
'

= R&utu)+N "(&,t), (83)
&(t)

where

Ip(y, 0) -= dxe v'exp( —x'/2),

v p'= vp[1+2—&utu), (yp/p)'(viv, )
—']'".

5.3 in Eq. (87) we obtain%hen we substitute Eq. . in

N (y/d )'1 Nr v,
Q= —I(v,) 1+

N 4(u~u). Nra~a , 2

1 d N (yp/p)''f —-(u'u)—
dt (u~u) dt (utu) p/n

d$
r/+(e, t)

&(~)
(84)

2p/n ( )

second equahty follows from the definition
of Nr given in Eq. (5.2 . W en we us

utu, —+ &m),N —+ N+Np, Nr~ N, Np, —
The solution of Eq. (84/ is

—
&utu)

—1 /p

f(t)=f(o)

N (pp~o)'
Xexp ——

2 M~ p

and
Vg &V" dp~ (~,t')

(BS) the expression for o. becomes
-- 2'(&) &«u)

1 v 1 N+Np
)

4 Q (e)-N.—Npand f(0) are the initial energy density anwhere (utu)p an
h nonvanishing electriclitude. In order to have a nonva

'

'
hin field initially. It is no ne

e t the quantities (u u),b nonzero. In a time „e
reach their steady-state value .

For t&t„ the solution of Kq. is

rm asE . (9) of Ref. 13.Thus thewhich has the same form a q
t for the average electric e as edecay

r or not we inc u e e
motion. Note, owever, a a, isa i e

h th center-of-m. assthe parameters of the ys stem w en e
~ ~

otion is inclu e .ed.

.Letters 16, 853 1"M.Scully an d %'. E.Lamb, Phys. Rev. Letf(t) =Ce

rm in E . (83) is due to spontaneous
d (83) obtemission. Combining q .E s. (82) an


