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We derive the equation of motion for the quantum-mechanical radiation density matrix of a gas laser to
lowest order in the dimensionless coupling constant. Our derivation is fully quantum mechanical and we can
calculate the coherence properties from the radiation density matrix. Our model consists of N two-level
systems interacting with radiation in a cavity in the presence of dissipation, pumping, and collisions. The
method we use is a generalization of the Bogoliubov derivation of the kinetic equation for a small parameter.
Our derivation holds for any physically realizable pump power, and near threshold reduces to Lamb’s
near-threshold theory. With the equation of motion for the radiation density matrix, we obtain solutions
both for when the average field is nonzero and for when it is zero. The steady-state electromagnetic density
is the same in both cases except for a small spontaneous-emission term. We show that the reason gas lasers
do not satisfy rate equations is the existence of zeroth-order correlations between the internal atomic
variables and atomic center-of-mass variables. It is these same zeroth-order correlations which are re-
sponsible for the Lamb dip. Our derivation includes collisions and reduces the calculations of their effect

to quadrature.

I. INTRODUCTION

IN this paper we derive the equation of motion for the

quantum-mechanical radiation density matrix of a
gas laser to lowest order in the dimensionless coupling
constant. Our deviation holds for all physically realizable
pump power and includes Lamb’s theory! as a special
case. We find exact solutions in special cases for arbitrary
power levels.

In a previous paper® we derived and partially solved
the kinetic equations for the single-particle density
matrix and the electromagnetic-field density matrix
for a system of N two-level systems interacting with
radiation in a cavity. We included dissipation, pumping,
and center-of-mass motion. The method we used was a
generalization of the Bogoliubov® derivation of the
kinetic equations for a small parameter. However, all
methods of derivation yield the same result at least to
lowest order in the dimensionless radiation-matter
coupling constant 7. In I we assumed that the center-
of-mass variables were initially uncorrelated with both
the internal atomic variables and the radiation variables.
We further assumed that the velocity distribution of the
center-of-mass motion was given, which meant that
we neglected recoil on absorption and emission. One
of the consequences of the present paper is to show
explicitly that the recoil terms are small. The assump-
tion of no zeroth-order initial correlation between
center-of-mass variables and internal atomic variables
led directly to the result that the average electro-
magnetic energy and average particle occupation num-
bers satisfied rate equations.

* The research reported in this paper was sponsored in part by
the U. S. Air Force Cambridge Research Laboratories, Office of
Acrospace Research. A preliminary report on the results of this
paper appeared in Phys. Letters 21, 634 (1966).

1W. E. Lamb, Phys. Rev. 134, A1429 (1964).

2 C. R. Willis, Phys. Rev. 147, 406 (1966) ; hereafter referred to

I.

3 N. N. Bogoliubov, in Studies in Statistical Mechanics, t;di@ed
by J. de Boer and G. E. Uhlenbeck (North-Holland Publishing
Company, Amsterdam, 1962), pp. 5-118.
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We now assume only that the matter and radiation
variables are initially uncorrelated; i.e., there are no
initial zeroth-order correlations between center-of-mass
variables and internal atomic variables. Two of the
consequences of this zeroth-order correlation are that the
average electromagnetic energy and particle occupation
numbers do not satisfy rate equations and that there
is a Lamb dip in the power-versus-detuning curve.

We use the generalized Bogoliubov derivation of the
kinetic equations developed in I. However, now the
single-particle density matrix p is an operator in the
two-dimensional internal variable space and also a
density matrix in the center-of-mass variables. A
typical matrix element is p_y(x,4’,f), where 4 repre-
sents the excited state, — the ground state of the two-
level system, and (x,x") indicates the dependence of
matrix elements on the center-of-mass variables z.
Although the center-of-mass motion is classical, it is
convenient to treat it quantum mechanically and in the
last steps of the derivation take the classical limit of
the center-of-mass motion. As a consequence we have
the operator equation of motion for p(x,7,f), where v
is the classical velocity of the center of mass.

First we obtain the coupled kinetic equations for p
and the radiation density matrix R. The kinetic equa-
tion for p depends on the electromagnetic field variables
through the average electromagnetic energy, #Q{a'a),
where Q is the cavity frequency and af and @ are the
usual creation and annihilation operators for the electro-
magnetic field. We formally solve the kinetic equation
of motion for p, substitute the result in the kinetic
equation for R and obtain a nonlinear equation for R
alone. The nonlinearity arises because R now depends
on (efe) which is TrafaR, where the trace is over a
complete set of variables for the electromagnetic field.
Next we find (a'e) by multiplying the equation of mo-
tion for R by a'e and taking the trace. In this manner
we obtain a closed nonlinear differential equation for
(ata). We are able to solve the equation of motion for
{ate) exactly in special cases.

320



156

Since we obtain the kinetic equation for the radiation
density matrix R, we can evaluate all moments and solve
for the coherence properties of our model. Furthermore,
we show that the steady-state electromagnetic energy
density is the same whether or not the electromagnetic
fields (e) and {at) are zero or nonzero. Our derivation is
fully quantum mechanical and holds for all physically
realizable pump powers. For pump power slightly above
threshold our results reduce to Lamb’s near-threshold
theory. In particular, we show that if our results are
expanded to first order in Lamb’s “saturation param-
eter,” then we obtain Lamb’s near-threshold theory. We
include collisions and reduce the treatment of collisions
to quadrature.

In Sec. II we derive the kinetic equation for R.
Section IIT contains the derivation of the kinetic equa-
tion for p. In Sec. IV we obtain the equation of motion
for (ata), and in Sec. V we find the stationary solutions
for {ala). We find the equations of motion for (at) and
{a) in Sec. VI and show our results reduce to Lamb’s
near threshold. Section VII is a comparison of our equa-
tion with rate equations. In Sec. VIII we discuss higher-
order kinetic equations. Appendix A contains a deriva-
tion of the cavity frequency shift valid for all pump
power. In Appendix B we show that the average electric
field vanishes because of spontaneous emission.

II. DERIVATION OF THE KINETIC
EQUATION FOR R

Our Hamiltonian for NV {wo-level systems interacting
with a single mode of the electromagnetic field is

H(N)=h(N)+Hs+Hom+Hi, (2.1)
where
hwo N
h(N)=7 > ba; Hy=1Q(ata+3),
Hy=hwgy 2° T'(Xo)[aloataoat],
P2 N N
Hc.m.=z T+% Zﬁ V(Xa—Xﬂ)+Z Z U(Xa_ﬂi);
a m a, « X

v= (o)™ () *e{a] e-7|b) (4m/ V)12,
I'(Xo)=E(X) V12,

The normalized eigenfunction of the cavity correspond-
ing to the frequency @ evaluated at the position of the
ath particle is E(X,). A full discussion of the terms in
the Hamiltonian is given in 1.

In I we showed, by means of a straightforward
generalization of the Bogoliubov? derivation of the
kinetic equations, that the solution of the Liouville
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equation for our total system to order 2 is

dR 7 w
—=—-H;R+%R—y*Nw? Tr, Tr, / dr
a h 5

X [Hla[Hl (T),Rpﬁz:ll ) (2-23')
ap i 0
—=——[%(1),p ]+ Kintp—y%w0? Trq Tr,/ ar
at /2 0
X[Hy,[Hi(7),RpF]]. (2.2b)

We assumed the matter density matrix was a product
pF of the density matrix p for the internal variables and
the center-of-mass density matrix §. The operator X,
refers to the interaction of the radiation with the
radiation reservoir and & refers to the interaction of
the internal variables with the pump and matter
reservoir. The operators &, and &in are of the same
general structure as the Wangsness-Bloch*=¢ reservoir
operators. The symbols Tr,, Tr,, Tr, refer to traces
over a complete set of variables for the internal atomic
variables, the center of mass, and the electromagnetic
field, respectively.

The product assumption p(x,t)=p#)F(x,) in Egs.
(2.2a) and (2.2b) implies that there are no zeroth-order
correlations between internal atomic variables and
center-of-mass variables. It is necessary to treat the
interaction with the reservoirs with more care when we
retain correlations between internal atomic and center
of mass variables. Consequently, when we repeat the
derivation leading to Egs. (2.2a) and (2.2b) without the
product assumption on the matter density matrix we
obtain

oR 1
o —Z[H £ RIH+%,R— (yw0)?N Tre Tty Trres
X / ) dr[Hu,[Hi(7),Ro(x,)P]], (2.3a)
0
5 _ —f[h<1>,p(x,tm—f[—}:z—,p(x,t)]
h WLl2m
+ Kinep (1) + L. (2,8) p (2,8) — (vw0)? Trg Trres

X / drlH,LHy ("), Ro(w)P ], (2.3b)

where we have explicitly introduced the matter and
radiation reservoir density matrix P. The symbol Tr;e
stands for a trace over a complete set of states of the
matter and radiation reservoir. The operator £, repre-
sents a collision operator for the center-of-mass vari-
ables. In a gas laser the density is sufficiently low so

4R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953).
¢ C. R. Willis and P. G. Bergmann, Phys. Rev. 128, 391 (1962).
(1;gV5) Weidlich and F. Haake, Z. Physik 185, 30 (1965) ; 186, 203
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that £, is a linear Boltzmann operator representing
collisions with both system atoms and pump atoms. To
be precise we have carried out the derivation of the
kinetic equations v? approaches zero at the same time
as we let the density of atoms approach zero.

The symbol Hi(r) represents the radiation-matter
interaction at time 7 where the development in time
is generated by all terms in the Hamiltonian except
the radiation-matter interaction potential. The reservoir
Hamiltonian and the reservoir-system Hamiltonian
contribute to Hi(7). To clarify the meaning of H,(7)
we consider the special case of no reservoirs and no
collisions. Then Hi(7) is

Hi(7)=T[Xop+ (Pop/m)r L aloe*"+acte 7],
where
exp(tH r)at exp(—iH ;) =at exp(—iQr),
exp[th(1)7]o exp[—ih(1)7]=0 exp (i),
X(1)=Xopt (Pop/m)r; A=wo—Q,

and P,, is the momentum operator for the center of
mass. The mass 7 is the mass of the two-level system.

When we take the trace over the reservoir of the
double commutators in Egs. (2.3a) and (2.3b) we obtain

Trres[H1,[ Hi(1)RpP 1= Hi(H1 (7)) pRp— (H1(7)) pRpH,
— HyRp{H:(7))p+Rp(H:(7))pH1, (2.4)
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where

(Hi(r))p=T[X (r)](a! (7)o (7)) p+(a(r)o?(7))r)
=T[X (1) ](e!(r) (o (r))p+(a()) (ot ())r)

and the definition of the average (O)p of any operator
Ois
{0)p=Tr;esOP.

The reservoir average (at(r)o(7))p can be written as a
product (at(7))p{o(r))r because the radiation and
matter reservoirs are independent of each other.

The equations of motion satisfied by (al)s, {(a)r,
(6T p, and (o)p are’®

d{atyp/dt=—1iQ(at)p— (v,/2){at)p, (2.5a)
d{a)p/di=1Q{a)p— (v./2){a)p, (2.5b)
d{otyp/di=1we{ot)p—va{at)p, (2.5¢)
d{c)p/di=—iwe{o)p—ve{o)p. (2.5d)

When we substitute the solutions of Egs. (2.5) in
the definition of Hy(7) we obtain

(H:(7))p=T[X ()] exp— [ va+ (v,/2)]

X {atge®™+acte~7},  (2.6)

where we have used
(at(0))p=at, (a(0))p=a, (1(0))p=0t, (¢(0))r=0.

When we substitute Eq. (2.6) in the double commu-
tator appearing in Eqs. (2.3a) and (2.3b), we obtain

[H,[{(H:(7))r,Rp]]= —exp[— (v2—iA)7 JaiRa!(Topol (r)+T' (7)o poT)
—exp[— (va+iA)rJaRa(Totpo!T () 4T (7)ot potT)+exp[ — (votiA) T J(eo'TT(r) plat,[a,R]]
+[To,I'(r)otp]a,R]at+To[ T (r)ot, 0] at,Ra]+[To,[T (7)ot,p]1Raat) +-exp[ — (vo—il)7]
X (oteTT(7) pla,Lat,R]H-[Tot, T (r)op]al,R]a+To![I' (7)o,p ] a,Rat ]+ Lot [T (r)o,p]IRata),  (2.7)
where I'(r) =T'[X (r)]. The order of the factors I', I'(r), and p is important because they are noncommuting oper-
ator functions of the center-of-mass variables. In Eq. (2.7) we have neglected »,/2 compared with vs.

To obtain the kinetic equation for R we take the trace of Eq. (2.7) over the internal atomic variables and the
center-of-mass variables, and substitute the result in Eq. (2.4a):

=—-[H R+ X.R—7Ne / {exp[— (vo+iA)rJLUCT (7))-— (U (NT)1)[a!,Ra1+ (T (r))-[a4,[o,RTIY

+exp[— (r2—iA)r JLUIT (7)) — (T (NT)-)[a,Rat ]+ (IT ()4 [a,[a,R] D} dr,  (2.8)
<PF (T) >+ =Tr,,IT (T)UTO'P= Trx(rr (T) Tranop+p) )
(I'T(7))_=Tt,,.IT(r)oct p="Tr, (LT () Tro oy p)-

The operators n,,% are the number operators for the excited (+) and ground (—) states of a single two-level
system. To get a self-contained equation of motion for R we need explicit expressions for (I'T(7)).. in terms of R.

IR 1
o &
where

This we do in the next section.

At this point it is possible to see that the equations of motion for R depend on only the diagonal matrix elements

of the internal variable part of p because

Trotoptp= pis (0,0",) ;  Tromop™=p_—_(%,2"1).

7M. Lax, Phys. Rev. 145, 110 (1966).
8 H. Haken, Z. Physik 190, 327 (1966).
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However, p;; and p__ are nondiagonal operators in the center-of-mass space. Thus, even in the case that R has
nondiagonal matrix elements (nonvanishing electric field), the radiation “sees” the matter internal degrees of
freedom only through the diagonal matrix elements of p. We return to this point in Secs. VI and VII.

III. DERIVATION OF THE KINETIC EQUATION FOR pg(x,f)

The derivation of the kinetic equation for p is more complicated than the derivation of the kinetic equation for R
because p depends on two sets of variables, the internal variables and the center-of-mass variables. In order to ob-
tain the kinetic equation for p we need the following trace of Eq. (2.7) over the electromagnetic field variables:

Tr(H () Rell= expl — (i) 1T T ()] Truo!, KJo-+ T, [T ()Tl ola)
— (CopoT' (r)+T (r)opoT){atat)) +exp[ — (vo+iA)7]([To,I'(r)otp] Tr.La,R]at
+[I',[T(r)ot,p](aat)— (CotpoiT (r)+T(r)otpo'T) (aa)) . (3.1)

The moments {afat) and (aa) satisfy linear homogeneous equations so if they are zero initially, they remain zero.
In any case they vanish in a time »,~ which is of the order of 10~ sec; thus, we neglect them.
When we substitute Eq. (3.1) in Eq. (2.3b) and separate real and imaginary parts, we obtain

dp i o\Wa
2 (Do) o |+t stmats, (5.2)
ot L h/L2m

where

9= _72‘002/ dr eXP[_ V2T] COSAT { <de> (ZFF (T) [‘T)EO'TJP:]]_I" [P:[P (T),p]]—l-P[O’,[r' (T),p:IO'T]—i-F[O'T,[P (T)3p:|‘7]
+[r,0()[ot,pJlo+ LT, [0 (7),[o,p 1 Xot) +[Tot,I (0)op]— [To,I () tp ]+ [T, [T (r)ot,0 11}

— iy / dr exp[— vor] sinAr{(ata)([[et,[T ()o,p]]— [[o,[T (r)ot,0]])
' +[To!, T (r)op]+[To,T (r)otp]— [Ta,[T (r)a' o1}
and where we use {aa’)= (ala)+1.

The only term in ¢ that makes an observable contribution to R is the first term. The reason for this is that
except for the spontaneous emission terms all the other terms are proportional to (%k/mvr) and (hk/mvr)?, where
vy is the thermal velocity (3%7/m)'/2. The dimensionless ratio (%%/mvr) is the percentage change of momentum of
the two-level system on absorption or emission of a laser photon. The ratio is less than 10~ for neon.

To prove the statement about 4 in the previous paragraph we introduce the dimensionless variables

172=V2/w1_), y=kx, i=w]_)t, A—":A/wp, £=‘Z)/'I)T,

where a bar indicates a time or frequency made dimensionless with wp, the Doppler frequency. The statement about
9 is true for both quantum-mechanical and classical center-of-mass motion. However, for convenience we introduce
the classical nature of the center-of-mass motion by replacing commutators of center-of-mass variables by (—#/4)
times the Poisson brackets.

The expression for 4 in dimensionless variables and with classical center-of-mass variables is

ywe\2 1
9= %’i[ﬁwoé’,p]— (“) { (aTa) [0'7[0'T7p]]+% ([U)[:O'Trp]]_‘— [0'1707’]— [U,O'Tp])}
wp T(y,f) Wk 9 P .
Y@o Y@o
+ZJT<ZZ> A+(m—w> (;) B, (.3)
where
A= i(aﬂl}/ cosAt exp[[— po7 J[{T' (%), opot—+otpo}+{T, T'(7) (cTpo+opat)} —T{T'(7), p} 17
—/ cosA7 exp[— 727 JI{T, T (7)} [ot,0Jo— {T,T(¥)p} 6 —T'(r){ p,T} oo )d 7— (a*a)/ sinA7
Xexp[— 727 [T (#){T, otpe—opat} —{T'(7), T (¢tpoc—apat)}1d7

and

B= ((ahz)—}—a’fa)/w exp[— 727 ] cosA7{T,{T'(7),0} }d7.
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The symbol {C,D} is the Poisson brackets of C and D
taken with respect to the center-of-mass variables. The
dimensionless ‘“relaxation time” T'(y,£) is defined as
follows:

[TGHT =2 /

0

0

d7 exp[— 757 ] cosA7(TT(7)). (3.4)

The frequency-shift operator for the matter Hamiltonian
is

aa)o(y,s>=%<afa><ﬁ°—°) / ar

Xexp[— 727 | sinA7(T'T(7)).

The terms A and B represent the effect of absorption
and emission on the center-of-mass motion. The
operator B is a generalized Brownian motion of the
center-of-mass motion due to the repeated small recoils
when a two-level system absorbs or emits a photon.
However, the coefficient (5k/mvr)? makes the magnitude
of B of the order of 1076 times the first term in ¢ and
thus negligible. In summary, the reaction of the electro-
magnetic field on the center of mass is negligible so we
drop the operators 4 and B. However, the action of
the center-of-mass motion on the electromagnetic field
variables is important and appears through 7' (y,£)7
Finally the kinetic equation for p(y,£}) is

0OED  IpbtD
at : dy
- %Z[ (&’0+ 55’0) &yp ()’: E:i):H_ Kintp (y:s:t-)

FLep (y’Eai)

o2 1 T[{ala)
- o, 0 ot.[o
(wb) T(y,g)[ 2 (lo,[ot,pT1+[o",[o,p11)

+%([a,[«f,p]1+[af,apj—[a,ow)]. (3.5)

The last three terms of Eq. (3.5) give rise to the spon-
taneous emission term.

The solution of Eq. (3.5) for p(y,£f) contains all the
properties of the matter distribution but, as mentioned
in the previous section, the only properties of the matter
density matrix we need are pi(y,8) and p__(3,£1)
which we denote by 7. (v,£1) and n_(y, E,t), respectively.
The probability of observing an atom in its excited
state at position y, with velocity £ at time ¢ is
N?’L+ (y;f;i)-

When we multiply Eq. (3.5) by #,T=0'c and take
the trace over the internal atomic variables, we obtain

6”—*— (y;f;i) }_ani- (y)‘i::t-)
. =7
ot oy

()
ot » >int wp/ T(yk)

X [(a'fa)[n+ (y7£7£) —n- (y7£7i)]+n+ (y;gyi)] )

+ .,Banr (y7£)i)

(3.6)
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where ] )
((6/8t)n4 (3,£))ine=TrooToKinep.

The term Tr,ofo&intp contains the pump and matter
reservoir interactions.
The equation for #_ is

i} ] ) yaoo\2 1
—M=——n+Ln_— (—_n‘> +(——> —
ot ay ot int T(y:f)

X[ata)ni—n_T+ni]. (3.7)

The equations (3.6), (3.7), and (2.8) form a complete
nonlinear equation for the radiation density matrix
R. In order to see this more clearly we take the classical
limit of the center-of-mass motion in Eq. (2.8). After
separating real and imaginary parts in Eq. (2.8), we
obtain the following equation of motion for R:

R S N [rywe\* 1
—— —i[@+o0)aa, R]+:s<:TR-_<*) / dyde——
2 \wp T(y,8)

X [’ﬂ+ (y:gz) ([a,RaT]— [:aT,Ra]-l— [G,EGT,R]])
+n-(9,&1)([o",Ra]—[a,Rat]+[a!,[a,RID], (3.8)

where

- N fywo\? [* -
6&2=——<——)/ d7 exp[— o7 ] sinA’r/dydEI‘I‘(f)
0

X (g (y,6,8) —n_(9,£1).

When we substitute the solution of Egs. (3.6) and
(3.7) in Eq. (3.8), the nonlinear dependence appears
through the dependence of (ala) on R.

Before finding the equation of motion for (ate) in
the next section it is appropriate at this point to observe
that although Egs. (3.6), (3.7), and (3.8) appear rather
formidable they represent simple microscopic processes.
The underlying microscopic events are the first-order
Born-approximation absorption and emission of a quan-
tum of radiation by a two-level system with the ef-
fective lifetime »s1.

IV. THE EQUATION OF MOTION FOR (aa)

We need to know the time-dependent electromagnetic
energy #Q(a'e) to complete our solution of the kinetic
equation for R. We obtain the following equation of
motion for (ate) by multiplying Eq. (3.8) by ate and
taking the trace

Ls(Zoof 2

("""") _/ —%+(y,£t) v.(ata), (4.1)

[’}’L+ (yysyi) —n- (y,f,t-)]

where we use Trela®,R=r.(ala).
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Equations (3.6), (3.7), and (4.1) constitute a closed
set of equations for 7, #_ and {(afa). When we eliminate
ny and #n_ from Eq. (4.1) by means of Egs. (3.6) and
(3.7), we have the desired equation for (ata) alone. For
convenience we neglect the spontaneous emission terms
in the ratio of {afe)~. The spontaneous emission terms
do not measurably affect the steady-state values? and
their main function is to provide a trigger for the start
of laser action. Also, we consider the spatially homogene-
ous case which, in practice, means we can allow spatial
variations long compared with the wavelength of laser
light by treating the spatial dependence as a parameter.
We specify the effect of the combined pump-dissipation
operator in Egs. (3.6) and (3.7) by requiring that the
pump create a Maxwellian distribution of laser atoms
at a rate v, where »; is the relaxation time of the two-
level population inversion in the absence of laser
radiation.

When we subtract Eq. (3.7) from Eq. (3.6), assume
spatial homogeneity, neglect spontaneous emission
terms, and specify the pump, we obtain

9 (ata) fywo
[3’5‘ ot @(wb) +u1][n+<s,t) n(&)]
— 5L, —n0(8) 1= [/ 2 exp(— £/2).. (42)

The solution of Eq. (4.2) is

ny (58)—n_(£8) = (2m)' f sz exp { ‘[(171— Lo)(t—7)

0

+2<:1.)_) - / (am)ydzJ}neXp( £/2)

+a solution of the homogeneous part of Eq. (4.2).
4.3)

The ¢’ subscript on {(a'a)y represents the average value
of the energy evaluated at time #’. The solution of the
homogeneous equation decays in »;! sec which is of
the order of 107-10~2 sec in a typical gas laser. The
order of factors in Egs. (4.2) and (4.3) is important
since, in general, the collision kernel £, does not com-
mute with 7'(%).
The steady-state solution of Eq. (4.2) is

T )] o

XeXp(——;f) , (44)

(ny—n_)e= [: P1— Let+2

where a subscript s indicates steady state.
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When we substitute Eq. (4.3) in Eq. (4.1), we obtain

gt:(am)———N(g)Z(am)(z:)lm / gt ‘/:dt’ ;‘%5
XeXp= [(V1—£c)(t—t’)+—(wp) / (aTa),ndt”]}

Xexp(:2—5—2>— v.{(ata). (4.5)

The solution of Eq. (4.5) goes monotonically over to
the following steady-state solution:

“Gen) "/ 76

1
XI: P1— £c-|-Z(a\‘a)s('ywoyT(E)“le—z]
Xexp(—#/2).

In order to evaluate the velocity integrals in Eqs.
(4.5) and (4.6) we need to know the velocity-dependent
relaxation time 7°(£) defined by Eq. (3.4). For definite-
ness we assume rectangular geometry, so Eq. (3.4)
becomes

1 00

T Jo

where x(7) is the solution of the equation of motion for
the center of mass in the presence of collisions. We use
the Lebowitz-Shimony® definition of the equation of
motion for any function of the center-of-mass coordi-
nates and momenta in the presence of collisions with
reservoir atoms (in the He-Ne laser the reservoir
atoms are the He). Their definition for an arbitrary
function D is

dD/di={D,Ho.m }+ LD

(4.6)

d7 exp(— 7,7) cosA7 sinkx sinkx(7) ,

={D,Hen}+ / L(zp|a'p)D(«'p")dx'dp’
—D(wp) / LGy |ep)iddy, (&7)

where L(xp|#'p’) is the probability per unit time of a
collision which takes the center of mass from (xp’) to
(xp). We assume the collisions are instantaneous so
that L(xp|«'p’) may be written as 8(x—a')l(p|p").
Equation (4.7) for the position coordinate is

d _— ! !
b——-—(i), 2@ =2+ / v,

9 J. Lebowitz and A. Shimony, Phys. Rev. 128, 1945 (1962).
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where V is the velocity of the center of mass. To deter-
mine the time dependence of V (£), we need to solve the
collision problem. Thus collisions enter our theory in
two ways: First, they enter through £, in the equation
for p, and second, they enter through 7°(£).

When we do the integrations in the definition of
T(%), Eq. (3.4), for the case of no collisions we obtain

1 Vo 1 1
=— [ - I - :l sinly,
T 2 L(ED)H9 (—A)H92

where we use x(f) =x-+Vi.

We now have the kinetic equation for the density
matrix R. The first step is to solve Eq. (4.5) for (a'a)
and then to substitute the solution for {afe) into Eq.
(4.3). The final step is to substitute the resultant expres-
sion for (#y—n-) into Eq. (2.8) for R. The resultant
equation for R is linear with the known function (a'a)
as a coefficient in the equation. That is, when we solve
the ordinary differential (3.4) for the c-number function
(a'a), we reduce the nonlinear operator equation of
motion for R to a linear-operator equation.

The time-dependent Eq. (4.5) and the stationary-
state Eq. (4.6) for (a'a) contain all positive powers of
v2. We observe that we start with kinetic equations for
R and p valid to order 4% but that the elimination of
the matter variables leads to an equation for (a'a)
which contains all positive powers of 2. If we solve
Eq. (4.6) exactly, does this mean we have a solution of
the original problem to all orders in v?? Unfortunately,
the answer is no. The next step in an exact solution is to
derive kinetic equations for R and p to order v* This
means that we must derive kinetic equations where the
microscopic event is not just a first-order Born approxi-
mation but also a second-order Born approximation
between a single atom and the radiation field and the
virtual exchange of a photon between two different
atoms. We then get a new equation for (aa) which
contains terms such as {(afaa’a). We will carry out the
derivation of the kinetic equations to order y*in a future
publication. The term proportional to y?* in the solution
of Eq. (4.6) is the result of the iteration of the first-order

Nr
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Born approximation # times. A completely rigorous
solution of the full problem would mean that the y*"
term in the solution of (a'a) would contain all processes
up to the mth-order Born approximation and would
contain the average value of # a™s and » @’s such as
(a*a---ata).

In the next section we find some stationary-state
solutions to our equations.

V. THE STATIONARY STATE

The threshold number of atoms required to start
laser action is

wp\?2
Np= (-—) 17T(27r)1/2

Y&o

Lof melame) =] e

where we put {ata), equal to zero in Eq. (4.6). In a gas
laser the magnitude of £, is proportional to the collision
frequency 7, which is usually much smaller than 7 so
we neglect £, in the remainder of this paper. As a result
we can explicitly carry out some of the integrals without
a detailed analysis of collisions. When we substitute
Eq. (4.8) in Eq. (5.1), we obtain

wp\? 7
()
YWo. I(ﬂ27 A)

1(172,1_\)=/ dzx exp[— (#x+42/2)] cosAx.
0

(5.2)

The stationary-state equation for (a'a), is rather
complicated for arbitrary detuning A. However, for
A=0and 7K1 we can solve for (a'a) for all pump power
N. When we substitute Eq. (5.1) in Eq. (4.6), we obtain

(5.3

7

/“’ da exp[— (vax4-2/2) JL142{ata)s (ywo)* (vave) ™ ]2

where

2<afa>s<wo>z]~{

Vive

Py = 52[1+

We rewrite Eq. (5.3) in the following more suggestive

form:

(ata)s=

o {(NY 1} (5.4)
—) -1}, G
2(ywo) (\Nr,
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which shows that for 7,1 the steady-state electro-
magnetic density depends quadratically on N. If 7 is
not small, then Eq. (5.4) is a transcendental equation
for {a'a); because 75’ depends on (a'a),.

When we divide the integral appearing in Eq. (2.8)
for R into its real and imaginary parts, we find that the
imaginary part is a commutator of the energy operator
a'a with R. We rewrite Eq. (3.8) to explicitly display
the cavity frequency shift

A @t R N(”‘“” / i
i~ L aale, R]=2 wD) ()

X L (60— () ([a,Ra]—[a',Ra])
+ 0 (£ (ED) ! [0, RIT+5.R,  (5.5)

where

_ N YWo 2 * -
5Q=-Z_<—-——) /df/ d7 exp(— 9,7) sinA7 cos§7
® i .
? ’ X[ (68 —n_(£0)].

The steady-state frequency shift we obtain when we
substitute Eq. (4.4) in the expression for 80 is very
complicated for arbitrary N and A. In the Appendix we
show that to first order in A and for 7,<<1 the frequency
shift for arbitrary pump power is given by Eq. (AS).

Near threshold we obtain the Lamb dip of Ref. 1. A
study of Eq. (4.6) shows that the dip eventually disap-
pears for N>>N 7. The precise value of N where the dip
disappears is the solution of a very complicated trans-
cendental equation.

VI. COMPARISON WITH THE LAMB THEORY

Reference 1 actually contains two different theories.
The explicit results of the first theory depend on the
condition that the system be near threshold. The second
theory is a plausible generalization of a previous theory®
which did not contain center-of-mass motion. The
generalization is discussed in Secs. 16-20 of Ref. 1.

We first show that our results reduce to Lamb’s
near-threshold theory when Lamb’s “saturation param-
eter” is small compared to 1. The definition of the
“saturation parameter” is (y2(ata)we®/vivs). We re-
express the “saturation parameter” in terms of the
parameters of the radiation matter system plus reservoir
with the help of Eq. (5.4)

v¥ata)swo? 1(/ N\?2 N
1>>—-—=-{(—) —1}z__-1.
v1ve 2I\Nr, Ny

(6.1)

Thus, the smallness of Lamb’s “saturation parameter”
requires the system to be near threshold. The only
requirement on N in our theory is that (ywo/wp):N<1.
For the He-Ne laser this condition is equivalent to

©OW. E. Lamb, Quantum Mechanical Amplifiers in Lectures in

Theoretical Physics, edited by W. E. Britten and B. W. Downs
(Interscience Publishers, Inc., New York, 1960).
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N<2.5X103N 7. Consequently, the Lamb near threshold
theory is a special case of our results and in fact is the
first term in the infinite series expansion of the denomi-
nators of Secs. IV and V.

When we substitute Eq. (5.2) in Eq. (4.6), set A=0,
and rearrange terms, we obtain

Ny 1
—_— (27r)—1 /2
N I(Vz,O)

y / dt exp(—£2/2)
o B 5214 2(a1a) y?wi? (v199)~1]

When the integral is expanded to first order in
(Ywe*(ata)/vivs), the result is equivalent to Lamb’s
Eq. (87). For arbitrary A, Eq. (4.6) to first order in the
“saturation parameter” reduces to Eq. (96) of Reference
1. A more detailed analysis of the time-dependent equa-
tion for (a'a) shows that to first order in the “saturation
parameter,” Eq. (4.5) is the same as Eq. (81) of Ref. 1.
Since near threshold our results reduce to those of
Lamb, we obtain the same Lamb dip.!* When we expand
Eq. (5.6) about threshold, our result reduces to the
line shift calculated by Lamb in his Eq. (89).

Thus, in the limit N — Nz our theory reproduces
Lamb’s near-threshold dynamics and his stationary
state exactly. In some cases it is possible to calculate
properties for all V in closed form. However, the correc-
tions to the Lamb theory for all values of A and #; can
easily be obtained by expanding Eq. (4.6) to second or
higher powers of (Y*we(afa)s/v1v2). Calculation of
higher-order integrals in Eq. (4.6) is much easier than
attempting to generalize Lamb’s method to order 5.

The agreement with Lamb’s theory is at first surpris-
ing because Lamb’s theory is based on the electromag-
netic fields (@) and (a'), not on the electromagnetic
energy density (a'e). The important point is that the
electromagnetic density matrix R (whether diagonal
or not) depends on the matter through only the diagonal
matter matrix elements 7, () and (), which in
turn depend on the radiation only through (afa). As a
result, except for the small spontaneous emission term,
the steady-state equations for (a'e) and (a) are the
same as for (a¢'a). We prove that the stationary state
(neglecting the spontaneous emission term) for (at)
and (a) is the same as for (a¢'e) by multiplying Eq. (5.5)
by a' and taking the trace of the resultant equation

di,-<a*>=§<:—?)2<“*> / %

><{n+(£,i)—n_(£,i)}—g(af>- 6.3)

(6.2)

1 'Thus the statement in Ref. 2 that the Lamb dip requires
kinetic equations rigorous to order 4* applies only to the case of
laser models that do not have center-of-mass internal-variable
correlations. The theory of Ref. 1 and the present theory obtain
the Lamb dip with kinetic equations correct to order 2.
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The equation of motion for (g) is the same as for {(at).
We see that Eq. (6.3) differs from Eq. (4.1) for (a'a) in
two ways. There is no spontaneous emission term and
there is a factor of 4 in each term on the right-hand side
of Eq. (6.3). This factor of § is just what we expect for
the difference between the amplitude and intensity.
To obtain the steady state we set the time derivative
equal to zero in Eq. (6.3) and the resultant equation is
the same as the steady state Eq. (4.1) minus the spon-
taneous-emission term. In Appendix B we show that the
average field goes to zero due to spontaneous emission.
When we assume {(afa)y» in Eq. (4.3) is “slowly
varying,” we can do the integrals, and for {> 5~ we
obtain (aa) \
2(ata)fywo\2) T 1

med-n )=+ () | —

t(§) \wp VT
Xexp(—§/2),

where we have neglected collisions. The substitution of
Eqg. (6.4) in (6.3) yields
V) T(&)

S-Sy &
exp(—£%/2)

X
[1+2(ata);(vwo)* T (§)wp 29171 ]

It is interesting to observe that if we replace {a'e) by
{a*){a) in Eq. (6.5), we obtain Eq. (184) of Ref. 1.

(6.4)

(at) /‘*’ dg

p.{(at). (6.5)

VII. GAS LASERS AND RATE EQUATIONS

In I we showed that, if initially there is no correlation
between the center-of-mass variables and the internal
atomic variables, the second moments of R and p
satisfy the following rate equations:

f wo\ 2
d<a a>= ZN(Z—) CR{WH_((aTa)‘I" 1)'— (1_”+) (aTa>}

ar wp )
—V—2'<afa>, (7.1a)
%lti'—‘ 7-(@) Cr{n((ata)+1)— (1—ny)(ala)}
P —5y(ny—1), (7.1b)

where #4 is not a function of velocity, but only of time.
The symbol Cg is a function of A and 7, and is obtained
from an integration over velocity space.

We wish to determine whether or not the second
moments of R and p(£,f) of the present paper satisfy
rate equations. By inspection it is clear that Eq. (4.1)
and the velocity integral of Eq. (4.2) do not satisfy the
simple rate Eqs, (7.1a) and (7.1b). However, perhaps
the second moments of R and p(£) satisfy a more
complicated type of rate equation. We investigate this
possibility by rewriting Eq. (4.1) for the spatial homo-
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geneous case in the following suggestive form:

9 (a’fa)

22 w(ZY oo

(e G

where
n+($ t)> / 4 (& t)
T(E) — T(E)

Consequently, (a'a) satisfies a rate equation with
(n4.(£1)/T (8)) replacing . (f). If (n4.(£1)/T (£)) satisfies
a similar equation, then the modified second moments
of R and p(&,i) with zeroth-order correlations also satisfy
rate equations.

We find the equation of motion for (n.(£,)/ T(E)) by
multiplying Eq. (4.2) by T'(¢§)™* and averaging over

)(afa) ] — . (ala),
(7.2)

‘ veloc1ty The result is

Ko
[((a’faH—l) < +2((€;)> (ata) <nT_2((E£,;)>}
(D) 09

The right-hand side of Eq. (7.3) contains (n..(£8)/T2(£))
instead of (n,(&{)/T(£)). Consequently, the modified
second moments of R and p(£) do not satisfy rate
equations if there are zeroth-order correlations between
the center-of-mass and internal-atomic variables. The
equations (7.2) and (7. 3) do not even form a closed set
of equations because, in order to evaluate {(ny(£])/
T2(%)), we need (n+(£,t)/T3(£)) and so on. Thus, the
He-Ne laser which does have zeroth-order correlations
cannot be described by rate equations.

There are several differences between the solution of
the equations of the present paper and rate equations.
One of the more important differences is the steady-state
N dependence. In I we showed the steady-state electro-
magnetic energy density of the rate equations is pro-
port10na1 to (N —N7), where our steady-state Eq. (5.4)
is proportional to [(N/Nr)>—1].

VIII. CONCLUSIONS

We showed that the lowest-order kinetic equation
with zeroth-order correlations between internal atomic
and center-of-mass variables is more general than
existing gas laser theories in five ways. First, we derived
the self-contained nonlinear equation of motion for the
full radiation density matrix. Second, our derivation is
fully quantum mechanical. Third, our derivation holds
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for all N such that N (ywo/wp)><1, which in a He-Ne
laser allows IV to be as great as a hundred times thresh-
old. Fourth, we reduced the treatment of collisions to
quadrature. Fifth, our derivation can be generalized to
higher order in ¥ in a straightforward manner.

In this paper we showed that the results of the pre-
ceding paragraph follow from treating the fundamental
microscopic absorption and emission processes in the
first-order Born approximation. If we wish to derive
kinetic equations to order v* then we must include
fourth-order microscopic processes. There are two new
microscopic processes to order v% The first, which is
proportional to NV, is a second-order Born approximation
of the interaction of a single atom with radiation. The
second process, which is proportional to N?, comes from
the exchange of a virtual photon between two different
atoms. The second-order Born approximation is ap-
proximately proportional to the square of the electro-
magnetic energy density, while the two-atom process is
proportional to the first power of the electromagnetic
energy density. Since the electromagnetic energy
density goes as [(N/Nr)2—1], near threshold the
dominant process is the two-atom process, while far
above threshold the second-order Born approximation
is the dominant process. In a future publication we will
derive the results stated in this paragraph.

Our method of treating collisions reduces the collision
problem to one of evaluating integrals. The model of a
velocity dependent relaxation time can be evaluated in
closed form at least for A=0. The more general case
of the linear Boltzmann equation or the generalized
Fokker-Planck equation can be evaluated by expanding
the denominator of Eq. (4.6) in powers of the collision
frequency divided by the Doppler frequency; this ratio
is a small number for gas lasers.

In a recent publication'? Smith has experimentally
verified an expression equivalent to our Eq. (5.3) for
pump power 2-3 times threshold.
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APPENDIX A

We derive the expression for 62 given in Sec. V. The
definition of 8Q is

_ Nfywo\? r® ”
5Q=_—<——) / dg/ d7 exp(— 927) sinAr cosér
2 wp — 0
X[y (&) —n_(&]..

For convenience we split off the lowest-order term in

(A1)

2P, W. Smith, IEEE J. Quant. Electron. 2, 62 (1966).
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the phase shift and obtain

] f exp(— 997 sink# exp(— 7%/2)dr
Ve Jo

2 00
f exp(— 7,7) cosA7T exp(— 72/2)d 7
0

N Yo 2 po 00 _
+—(~—) / df/ d7 exp(— 727) sinA7
2\wp/ J 0

exp(—£§%/2)
(27,.)1/2 :I. (A2)

Xeost] ny (§—n-(9—
In the limit as A approaches zero, Eq. (A2) becomes

B 3 _N Yo 2 p0
59=691—A—(—) / exp(—7.7) f(7)7d7, (A3)
2\ w 0
where
_ / d7 7 exp(— 727) exp(— 7%/2)
0
1= )

/ d7 exp(— 727) exp(— 72/2)

1=

)

()= (9] = costr exp(=E/2)
(2n)' / [+ 6]
o' = 9o 14-2(ata) v we? (v1v2) 1 J1/2.

The integral in the definition of f(7) is

®  cosEF exp(—£2/2)
2 —1/2 dé‘
@ [+ G4)7]

1
=13 2— exp[3(5)7]
Ve

X{exp(—527) Erfc[ (/)7 — (V3) 7]
+exp(727) Erfc[ (V) 7'+ (V3 7]}
~i(Gm)' 2 exp(—9/7), (A4)

where the approximate value in Eq. (A4) follows in
the limit as 7, approaches zero. When we substitute
Eq. (A4) into Eq. (A3) and do the remaining integra-
tion, we obtain

(A5)

The expression (AS) to lowest order in (N/Nr) is
equivalent to Lamb’s Eq. (94).
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APPENDIX B

We show that spontaneous emission causes the aver-
age electric field to vanish as {—w. The equations
satisfied by {(a') and (a) are

(ywo)? * 5
—{at)=
= =) [
><{n+<s,t>—n_<s,t>}—%’i<af>, (Bla)
da) (e o de
e, @ f_w ()
><{n+<s,z>—m(s,t>}——”21<a>. (B1b)

When the definitions
(a")y=fe'* and (a)=fe~i*
are substituted into Egs. (B1a) and (B1b) we obtain

f=%a@f and ¢=0, (B2)

where

(w0)2 d
a=N-" / —~(—){ (&) —n_(50))

wWp

The equation of motion for the electromagnetic energy is

d (aTa)

(aTa)-{-N(y =) /”‘—M(E f), (B3)

where the last term in Eq. (B3) is due to spontaneous
emission. Combining Egs. (B2) and (B3), we obtain

df N (ywo)? [ dE
dt 2f{ <de> dt Ta>— (a,’fa> wp / T(E)’Ur (5,3)} .
(B4)
The solution of Eq. (B4) is
(ata) 91/
f)= f(O)[(ma>0]
N (o din (&,1))
XCXP[ / /—w T @ty } (BS)

where (ata), and f(0) are the initial energy density and
field amplitude. In order to have a nonvanishing electric
field amplitude f(¢) at time ¢, it is necessary to have a
nonvanishing field initially. It is not necessary for
{a'a)o to be nonzero. In a time #, the quantities (a'a),
74, and #n_ reach their steady-state values.

For t>1t, the solution of Eq. (BS) is

J@=Ce,
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where
_ N(ywo)?* = dg nt (0
 2pata), [_w @
(ata), 7'
C=
f(O)[ (MJ
N Gy mE)
xew|-= f. / T (&) d
XeXP(—Ollr) )

and s indicates steady state. Thus at {—o the spon-
taneous emission term causes the average electric field
to vanish.
In the absence of collisions and for A=0, the solution
for n,s(§) is
ny(8)=271(2m) 7 exp(— £/2)
X{1+[14-2{a"a). T (&) (vwo)wp 71 ]} . (B6)
When Eq. (B6) is substituted in the definition of a we
obtain
N (ywo)?

a= I (s,
4wp(aTa>|: 720)

F[142(ata), (ywo) 2 (v1ve) L 11212 (94,0) ],
where

L(y,0)= / i v exp(—2/2),
0

(B7)

72/ = pa[ 14 2(ata)s (ywo)* (vive) 112,
When we substitute Eq. (5.3) in Eq. (B7) we obtain

N (’ywo)21 Ny vy N
— Tt 4 -] ], 9
ZwD {ata), 2 4{ata) LNy

where the second equality follows from the definition

of Ny given in Eq. (5.2). When we use the definition
N—N,+Ny, Nr— N,—N,, (ata);— (n),

and

Vp—> V/Q:

the expression for a becomes

1 v |: N.+Ny ]

] 1],

40 (kv

which has the same form as Eq. (9) of Ref. 13. Thus the
decay constant for the average electric field has the same
form whether or not we include the center-of-mass
motion. Note, however, {ata), is a different function of

the parameters of the system when the center-of-mass
motion is included.

13 M. Scully and W. E. Lamb, Phys. Rev. Letters 16, 853 (1966).



