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Effects of He'-He' Interactions in Dilute Solutions of He' in He'

C. EmER*
Deportment of Physics, IIniMrsity of Ittt'nois, IIrhano, Ittinoist

(Received 10 November 1966)

Vsing the classical gas expression for the diftusion coefficient and experimental measurements of the spin
diffusion coefficient of a 5% solution of He'in He' at temperatures up to 1'I, we have extended the effective
interaction between He quasiparticles, as derived by Bardeen, Baym, and Pines, to larger values of the
momentum. This potential is then used in first-order perturbation theory to calculate the high-temperature
magnetic susceptibility of dilute solutions and the variation in the He' chemical potential with concentration.
From the latter, and from measurement of the phase-separation curve at Gnite temperature, the maximum
solubility of He'in He4is determined down to T=0.Agreement with experiment is good.

L EFFECTIVE INTERACTION

~ 'HK spin diffusion coeflicient D of dilute solutions
of Hea in He' was first measured by Garwin and

Reich' at temperatures down to 0.5 K. Although this
work was performed under applied pressure, the results
are qualitatively the same as the recent work of Ander-
son et al. ' and of Edwards' in the temperature region
below 1 K and above those temperatures at which
Fermi statistics become important, or 7' 2Tp. For a
5/o solution, the latter condition is roughly T 0.6'K.

The main features are the following: Above about
1 K, the spin diffusion coefficients of solutions of differ-
ent concentration become equal, indicating that the
predominant limiting mechanism is the scattering of
He' from thermal excitations of the background He'.
This problem has been discussed by Khalatnikov. ' At
lower temperatures, but above 27'I;, D is very nearly
proportional to e3 ', where n3 is the He' number den-

sity in the solution. This proportionality indicates that
the rate of diffusion is determined by He'-Be' scatter-
ing, which is to say, by the effective He'-He' interac-
tion. Boltzmann statistics are obeyed in this tempera-
ture region. Finally, for these temperatures, D is ap-
proximately proportional to T ', implying that the
interaction is very different from the popular hard-
sphere model, which predicts' D 7' '

For T(1 K, and such that Boltzmann statistics are
valid, we may use the classical gas expression for
diffusion':

I3 KT

where

(4srtcT
Q (1,1) d7 t, &'y'

~m* o

do (y, 8)
d8 sing(1 —cosg) —. (2)

m* is the effective mass of a He' quasiparticle; y is the
reduced initial relative speed and is related to the mo-
mentum k of each particle in the center-of-mass frame
by

t'e =y(m*tcT) "'
0 is the center-of-mass —frame scattering angle; and
do/dQ is the differential scattering cross section in the
center-of-mass frame. In the present calculation, we
take m*= 2.46m3, m3 is the mass of a He' atom, and this
value of m* is determined by specific-heat measure-
ments' on a 5/o solution at very low temperature.

The present calculation is formally the same as that
of the spin diffusion coefhcient of He' gas at tempera-
tures such that Boltzmann statistics may be used. The
latter has been treated in the literature by Emery. ' As
the spin diBusion rate is determined by the mutual
scattering of opposite spin quasiparticles, which are
distinguishable, one need not symmetrize the scattering
amplitude. Furthermore, because the He'-He' effective
interaction is weak, the first Born approximation may
be used to calculate this amplitude. ~ Ke make the sim-
plifying assumption, as in Bardeen, Baym, and Pines
(BBP), that the effective interaction is a function of
the distance between He' atoms alone, and so we have,
in the center-of-mass frame,

*National Science Foundation Predoctoral Fellov .
f Work supported in part by National Science Foundation Grant

No. NSF GP 4937.
' R. L. Garwin and H. A. Reich, Phys. Rev. 115, 1478 (1959).' A. Anderson, D. O. Edwards, R. Roach, R. Sarwinski, and J.

C. Wheatley, Phys. Rev. Letters 17, 367 (1966).' D. O. Edwards (private communication).'I. M. Khalatnikov, An Introduction to the Theory of Super-
guidity (W. A. Benjamin, Inc. , New York, 1965).

~ J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecu4r
Theory of Gases and Izquids (John Wiley R Sons, Tnc. , New York,
1954), Chap. 8.

where q is the magnitude of the momentum transferred
in the scattering process. In terms of the variables ap-
pearing in Eqs. (2) and (3),

Il= 2k sin —0= 2+(m ttT) slng0.

V(q) is the Fourier transform of the effective interac-

V. J. Emery, Phys. Rev. 133, A661 (1964).' J. Bardeen, G. Baym, and D. Pines, Phys. Rev. Letters, 17,
3'I2 i196ti).
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tion,

V(q) = d'r e '2' V(r) . (6)

Combining (1) through (5) and setting sin28=2:,

e "'y'dy x'dxI VL2yx(m*~T)'j'jI' . (7)

One of the integrations may be done after a coordinate
transformation, leading to

e &'y'dy
I
VL2y(m*~T)' ']

I

' (8)

We now use this expression for analysis of the measure-
ments of Anderson et a/. 2 for a 5% solution, for 0.5'K
& T&1'K. In addition, we demand that V(q) approxi-
mate the potential of BBP for k/A &6X10' cm '. This
latter potential is

VBBp(q) Vp cos(Pq/~) 5 (9)

with p=3.16 A and Vp= —0.075m4s'/n4, where m4 is
the mass of a He4 atom, s is the velocity of 6rst sound
in He4 at T=O, and e4 is the number density of pure
He4 at T=O.

We have chosen to work with the function

V(q) =
I VOI (~1+~2 expL —C2(q/2kp)'j

+np expI —Cp(q/2kp)2]), (10)

where Vp is as in BBP and kp/k= 0.497 A ' is the wave
number for which V~~p is zero. The reasons for choosing
this functional form are that it is easily made to display
the desired shape and that the integrals which arise in
various stages of the theory presented below can be done
in closed form. Vsing (10) and (8) we obtain

3m. z f k ) 1(T
(11)

4 m* km'V, i ~, Err(r)i
where

~2 ( 2m aTC21 np 2m wTCp)
~(&)=—+—

I
1+

I
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m*pTC2) '
t m*~TC2 —'
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~

+ ~1+
kp' i k kp'

m*~T(C2+Cp) )+ 2I 1+
I

(12)

dqI v(q) I

' exp( —q2/4m*~T). (14)

The weight function multiplying I V(q) I

' is a function
of T and is peaked at q/k0~2 at the largest T we con-
sider, or 1'K. For q/kp) 3, there is essentially no contri-
bution to the integral. We also note that the potential
deviates somewhat from VBBp(q) at very small q, being

8% larger in magnitude at q=0. This unfortunate conse-

quence of the choice of parameters made above has no
effect on observables such as D or the magnetic suscepti-
bility X, as large values of q are much more heavily
weighted. On the other hand, for the determination of
the He' chemical potential and the solubility curve, it
becomes somewhat more important. Further comments
on this are found in Sec. III.

To conclude this section, we use our V(q) in (8) to
determine D at a concentration other than 5%. This
is not completely trivial, as D is not precisely propor-
tional to e3 ', the reason being that m* depends slightly
on concentration. Anderson et al. ' also measured D for
a 1.3% solution, for which m* is found from specific-
heat measurements' to be 2.38m3. Figure 3 compares
the experimental D with the present theory. Agreement
is well within experimental error and inaccuracies im-
posed by the approximate nature of the theory. From
this agreement we surmise that the change in V(q) with
concentration cannot be very great, at least for concen-
trations below 5%.

II. HIGH-TEMPERATURE MAGNETIC
SUSCEPTIBILITY

The relative magnetic susceptibility of mixtures of
various concentrations has been measured both at low

After some numerical work we chose as pa,ramett'. fs

~a= i0; O.p= —i.48; ~3= —9.60;
C2= 4.0752; C3= 0.0564.

(13)

These parameters are not by any means unique, nor,
for that matter, is there any physical significance in the
choice of the function (10) as V(q). The general shape
of the potential is the quantity of interest, and that is
what should be viewed as having been determined here,
aside from inaccuracies imposed by the approximate
nature of the theory and by experimental uncertainty.
The greatest source of error probably lies in the use of

an approximate solution to the transport equation. The
neglect of degeneracy effects in the statistics and experi-
mental inaccuracies contribute relatively less error.
Considering all of these sources, we feel that V(q)
should contain some 10—15% inaccuracy overall. Figure
1 compares the present V(q) with VBBp(q). Figure 2

shows the experimental D at 5% concentration and our

attempt to match it.
V(q) cannot be expected to be valid beyond q~3kp.

This is clear from the integral appearing in (8), which is
proportional to
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temperatures much less than' Tp and at relatively high
temperatures such that the He' is almost nondegener-
ate. ' The departure from ideal Fermi gas behavior comes
about mainly through the effective He'-He' interaction,
as He4 has no spin and interacts with "spin-up" and.
"spin-down" He' atoms in an equivalent manner. Be-
cause the effective interaction is weak, we may make a

215—

perturbative calculation of X, the magnetic suscepti-
bility, in powers of the interaction strength divided by
T, at high T, or in powers of the interaction strength
divided by T~, the Fermi temperature, at low T. This
may be done via the formal development of the partition
function, taking the appropriate derivatives to obtain
X. The same result may be obtained in a more trans-
parent manner by consideration of the quasiparticle
distribution in momentum space in the presence of a
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D. L. Husa, D. 0. Edwards, and J. R. Gaines, Phys. Letters
21, 28 (1966).

FIG. 3. Graph of the spin diffusion coefficient D(cm' /sec)
as a function of 2'('K) at 1.3% concentration.



EFF ECTS OF He' —He3 INTERACTIONS

magnetic Geld H. The second derivation is given here. rt3t is the number density of spin-up quasiparticles for
The energy of a He' quasiparticle in the presence of H=O. To this same order of validity, we may use the

a magnetic Geld is given by relations

p' Ã3
«.(p) =&«+ »zzza—P+ V(—0)

2'* 0

pa =@3—~o. (16)

d g
V(y —q) n.(q) (15)

(2zrh)'

to first order in V(q). Here, 0 is the voluine, Ez is the
number of atoms of He', and p~ is proportional to the
nuclear magneton. o-=&1 depending on whether the
spin is parallel or antiparallel to the applied Geld H,
and n (q) is the quasiparticle distribution function. The
various terms in «,(q) may be identified as the binding
energy of a single He' atom in the solution, kinetic en-

ergy, magnetic-field interaction energy, direct-(Hartree)
interaction energy, and exchange energy. The Hartree
term will not appear in the result of the present calcula-
tion as it does not distinguish between pairs of quasi-
particles of parallel spin and pairs of opposite spin and
so will not aBect the susceptibility to Grst order in
V(0). E«will also have no effect upon the susceptibility.
It is convenient to remove this term from the calcula-
tion by deGning a modified He' chemical potential p,3".

to write (18) as

nz ( d'q
«
—Pq&/2m

2 ( (2zrk)'
(2o)

n &
= (1+P»z H)[n t'+Pn (n z nz')—(V)/2], (21)

where

fd'pd'q V(y q) e—xp[ p(p—'+q')/2»z*]
(v) == (22)

fd'pd'q exp[ p(p—'+q')/2z»*]

Similarly, one may show that for spin-down quasi-
particles,

»zan= (1—P»zgH)[nzz'+Pnz(nzz —n, z«)(v)/2]. (23)

In the system under consideration, which is para-
magnetic, nzz'=nzz'=nz/2. Using this fact, and sub-
tracting (23) from (21), we 6nd the magnetization per
unit volume to be

nz(q) n—z (q)= (nzt —»zz )

dzp
—i

&« '"""
I

— e ""'""
I

(1«)
(2zrb)' )

%e first consider the very high-temperature case,
T&&Tp, for which Boltzmann statistics apply. Denot-
ing spin parallel to B by t',

from which

M P»zzz'H»z—=»z~(»zz —ng, )=
1—P-', »,(v)

(24)

«(p) = exp[-P(«(p)-» z)]

= exp —
P~

— +»«V(0)
&2zn*

,V(y —«)»z'(q) —
»

z"
I emQ» ~&]

(2zrh)'

d g
Xexp P V(y q) (»z(q)— (nqz)), (17)

(2zrh)'

where nz«(q) is n&(q) for B=O. We expand the last two
exponentials to Grst order in V and in H and then inte-
grate over all momenta to obtain the number density
of spin-up quasiparticles to Grst order in V and H:

d pd q
nzz= (1+P»zzzEI) nzz'+P

(2zrh)'

p«
Xexp —P --—»z«"

~

X V(y —«)( (q) — '(q)) (18)

1V«»zB /K

T—nz(v)/21z
(25)

«T z pz '/2»z*= (3zr'nz) z"—i—z'/2»z*. (26)

Vfe repeat that the criteria for the validity of this
expression are that Boltzmann statistics apply and that

( n, V(q)/2. T
(
«1.

This latter condition turns out to be approximately
x(&T K where x is the mole fraction of He' in the solu-
tion. The apparent ferromagnetic (or antiferromagnetic,
as (V)(0 for T(0.34'K) behavior which appears here
is completely spurious because the transition tempera-
ture is so small that neither of the above criteria is
satisfied.

Indeed, the correction that we have derived to
the ideal gas susceptibility is so small that even for
T//T& 2, the deviation from Boltzmann statistics is
equally important and must be included. We may make
this alteration by starting from Fermi statistics and
developing a series expansion of the magnetization in
powers of exp(P»zz"). In turn, exp(P»zz") may be written
as a series expansion in powers of (Tz /T)'»z where Tz is
dehned by
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ps
nt(p) = exp pi IsnEE.—

I 2~*

d 3gf

(2irh)s

—1

XV(p q)—ni(q)+nsV(0) p—"
i +1 . (27)

The expression for ng(p) is given by the alterations

The derivation is otherwise formally the same as that
given above. Indeed, Boltzmann statistics are equiva-
lent to the lowest-order term in the proposed expansion.

We start from

V are retained. After some algebra we obtain

3/2 ~2 P 3/2-"'= (;) ";(—;)

.( —,';)(';)' ".", ,"-...'.(")"')
1n,(V) t' Tr '"442 — 3 (V)'-~

-I 1+ — — 1—— — I, (32)
2 aT & T 3/7r 4 (V)

where (V) is defined by (22) and

H becomes —H and (t') becomes (l) .
Jdspdsq V(p —q) exp[—p(ps+ 2qs)/2ns* ]

(27') (V)'=— —. . . , , (33)
fd'Pd'q exp[ P(P—s+2qs)/2m*]

pgH
'P23t S3J,= 2

d'P g(P)

(2~h)' Ll+g(P)]'

d'Pd'q g(P)g(q)
~

V(p —a)
(2 h)' [1+g(p)]'[1+g(q)]' &

Expanding the difference nt(p) ni, (p—) to first order in
H and in V and integrating over all momenta gives Combining (32) and (30), and rearranging the expansion

in such a way as to write X 'as apower series, we arrive
at the final result:

Z, »2-=-"—(-')
Xs- 3g~

where

[1+g(q)7[1—g(P)]— LV(o) —l V(P —a)] ~, (28) where
1+g(p)

g(k)
—=exp[—P(k'/2nz* —its")]. (») and

g(k) is a small number for all k at suKciently large T,
as p3" —+ —~ for T~~. We expand in powers of g,

keeping through the third order. The result is We define T* by

iV3P~', /~

X()— (36)

flpn(nsi nsi) —Isis '0
—x— 2

d p

(2irh)s

2 d'pd'q
X(g(p)-2«(p»+3[g(p)] )+-

aT (2' h)'

X LV(0)(-2g(q) g(P)+ 10g(q) [g(P)]')

—l-V(1i—e)(—4g(q) g(P)+18g(q) [g(P)]')] (3o)

In order to remove the chemical potential from (30)~
we solve the following expression for exp(Pps") as a
power series in (Tr/T)sos:

T* is the magnetic temperature of an ideal Fermi gas at
high temperature; that is,

Nspn'/K
(38)

is a valid approximation to the magnetic susceptibility
of an ideal Fermi gas for T& T~. Indeed, comparison of
this expression with the numerical work of McDougall
and Stoner' shows that (38) is valid to better than 1'P~

down to T/T p =0.6, which is sufhcient for our purposes.
Using (37) in (34),

(2m*aT p) 'i'
N3=

3X-2

dsp
(nt(p)+ni (p)), (31)

(2irh)'
1 a ns(V)

X X3P~2 2I(.

(34')

where nt(P) is given by (27) and n&(P) by the modifica- sI McDouza&i and zdniund C. Stoner pi, ii. Trans. Roy. Soc.
tions (27'). As usual, only first-order terms in H and in London 237, 67 (1938).
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In terms of the effective potential (10),

( ~n*)(TCs
(V)=

I VoI &r+~sl 1+

r)s*)(TCs) '"
+ (&+ l

(3&)
ko'

3m*a TCg
(v)'=)vol + (1+

4kp'

3m*aTCs) "'
+~a 1+

I (4o)

O'J

In Figs. (4) and (5) we have plotted C~ ' versus T*/T)
for concentrations of 5, 10, and 15%, »d for tempera-
tures )0.6T~. Here C is the Curie constant Esp~'/)(.
For reference purposes, plots of CXo ' versus T*/Tr are
also given at these concentrations. We may compare our
results with the measurements of Husa eI ul. ' These
authors plot X ' in arbitrary units versus C//Tr X(), which
is T*/Tr . They find linear experimental curves at all
concentrations investigated. Because they do not give
the absolute magnitude of X—', we can compare our re-
sults only with the horizontal intercepts of the extrap-
olated experimental curves and, of course, with the
observed linear behavior. The experimental intercepts
are app'roximately zero for He' concentrations less than

LOO

aso

FIG. 4. Graph of CX '('K) as a function of
T~/Tg at 5% concentration.

QQ)
'( O)

Ik

Fro. 5. Graph of Cx '('K) as a function of T~/Tr at 10
and 15% concentration.

10%; for larger concentrations up to 15% they are
small and posltlve& bclng on the order of ~~.

This intercept is a rough measure of the effective in-
tcI'action strength and sign. A posltlvc lntcI'cept ls taken
to imply that a predominantly repulsive interaction is
being sampled. We comment, however, that because
V(q) is a widely varying function of q, the situation can
be quite different. In particular, a zero intercept need
not necessarily mean that the interaction is very weak.
A more sensitive measure of the interaction is the devia-
tion of X ' from Xp ', as a function of temperature, as
this quantity is proportional to ns(V)f When X .' is
smaller than Xp

—', the part of the interaction being sam-
pled is predominantly repulsive. At the concentrations
and temperatures considered here, this is the case, as
we see from the theoretical plots in. Figs. (4) and (5).
Furthermore, the theoretical curves for the interacting
system are very nearly straight lines, as are the experi-
mental curves of Husa et al. ,' and we also And that only
for the relatively large concentrations of 10 and 15%do
the extrapolated theoretical curves have horizontal in-
tercepts appreciably diferent from zero. Nevertheless,
the deviation of T* n()(V)/2)(f from—Ta is significant
even at concentrations as small as 5%.

Finally, we should point out that at lower texnpera-
tures and at low concentrations &6%, the attractive
part of V(q), which lies at small g, will become more
important, causing X. ' to become larger than Xp

—'. This
is consistent with the very low-temperature measure-
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ments of Anderson et al.' and with the theoretical con-
siderations of BBP.

TAnLK L Values of (—Eo—1.3')/~ in 'K as determined from
phase-separation measurements on solutions of different He' mole
fraction x.

GI. CHEMICAL POTENTIAL AND
SOLUBILITY CURVE

ps'(trs) =—ps(es, T)—pf(m*, trs, T), (41)

0.081
0 099
O.I2I
0.j.5I

(—Eo—Ls')/e in 'K

0.274
0.285
0.271
0.274

that is, by the di6crence between. the chemical poten-
tial of the He' in the solution and that of an ideal Fermi
gas having the same effective mass and number density
as in the solution. As pointed out in BBP, the variation
of p3' with concentration gives a direct evaluation of
V(0) plus an exchange correction. From (32) we may
obtain an expression for p~' to first order in t/":

ps'= vs"+Le—vy,

ps'(tss) =Ee+trs V(0)

Tp sl'V2 (V)')-
,'ns—(v—) 1+ 1— —

i
. (42)

v' (v)&-

If we can determine Eo, then we have complete knowl-
edge of the He' chemical potential. We may do this
through the use of a point on the phase-separation curve.
Qn this curve, the chemical potential in the solution
(He'-rich phase) must be equal to that of the He'-rich
phase, as the two are in equilibrium. Following Edwards
eI, al. ," the latter phase is assumed to bc pure He', in
which case the chemical potential at temperature T,
may bc written as

perimental measurements of He' speci6c heat" for
Ssp "(T).In order to carry out this program, however,
wc must treat the exchange term more carefully. As it
appears ln (44), it is va11d for T/T p+ 1. This condition
is not satis6ed; rather, T,/T~&0. 6. We may develop
a low-temperature expression for ps" by expanding (31)
as a power series in (sT/ps")' and solving the resulting
equation for ps". To order V(T/T p)', the result of this
algebra is of the form

ps" =pr(m*, es, T)+ns V(0)

(V)" s' T——',e„i Vei — +G— —,(45)
ivei 12 Tp

(V)"—= d'q V(pr —q),
4ZP p q(pp

Rnd where G Is R morc complicated functioQ of thc coQ-
centration, generally having value ~1. Using this ex-
pression for ps", (44) becomes

(V)"—Ee—Lee—es V(0)+—,'es
J Ve f

— -+G—
fv, f

pure(T )— I se S p""(T)dT (43)
=pr(ere, ns, T,)+ Ssp""(T)dT (47)

I.so is the latent heat of vaporization. per atom of pure
He' at T= 0 and S 'sp(T) is the entropy per atom of the
pure liquid. T, is the temperature at which phase sepa-
ration occurs. Combining (42) and (43),

—Z,—Lee—ns V(0)+-',ns(V)

Using (47) and. the values of Edwards et al. M for the
right-hand side of (47), we may determine Ee Ls . — —
We may find a value from each of their measurements of
T,(ns), or T,(x), where x is the mole fraction of He'.
These vRlues Rrc given IQ TRblc I. Wc Rdopt thc IncRQ

value

(—Ee—Ls')/s= 0.276'K. (48)

=pr(m. e,es,T,)+ ppFe(T)dT (44)

From this value and. (47), we are able to determine the
entire small-concentration phase-separation curve. In
particular thc 1 =0 maximum solubility Is givcI1 by
solving

Edwards ef ul."give measurements of T, at various con-
centrations and then calculate the right-hand side of
(44). The value of this quantity for one concentration is
sufFicient information for us to determine —Eo—I.~o,

and hence the entire phase-separation curve, using ex-

0 D. O. Edwards, D. F. Brewer, P. Seligman, M. Skertic, and
M. Vaqub, Phys. Rev. Letters lS, 773 I',1965).

—Ee—Lse—tss V(0)+-,'es(v)" =pr(m*, ms, T=0) . (49)

Using m~=2.34@so, we And a maximum solubility of
6.0%."The entire solubility curve, as calculated from

11 W. R. Abel, A. C. Anderson, W. C. Slack, and J.C. Wheatley,
Phys. Rev. 147, 111 (1966).

'~The maximum T=0 solubility of He' in He4 has been deter-
mined experimentally as 6.0&0.2/&. D. 0, Edwards (private
communication).
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(4/), is shown in Fig. 6. We emphasize that just one
point on the curve is sufhcient information for us to
determine the remainder of it. Nevertheless, we have
used four points in the hope that the mean value of
(—Eo—Lao)/g is more reliable than. any value obtained
from a single point. That the four values obtained all lie
within 3% of the mean value is a measure of the
accuracy of the theory.

Using V(0) = —Vo, which is the result of BBP, one
finds (—Eo—LP)/~~0. 295 K, a larger value than ob-
tained above. The solubility curve is affected to a lesser
extent, with the maximum solubility at T=O of about
~o

IV. SUMMARY AND DISCUSSION

Using experimental values of the spin diBusion coeK-
cient' for a 5% solution of He' in He4 at temperatures

up to 1'K, we have extended the effective He'-He' po-
tential of Bardeen, Baym, and Pines7 to larger values
of the momentum. From this V(q) we have calculated
in turn the spin diffusion coeKcient of a 1.3% solution,
finding good agreement with experiment, ' which implies

that V(q) cannot be a very strong function of concen-

tration, at least for concentrations below about 5%.We
have also calculated the high-temperature magnetic
susceptibility of solutions of concentration up to 15%,
as well as the He' chemical potential as a function of
concentration and temperature. From the latter, and
from the measurements of Edwards ef, al. ,"we have de-

termined the phase-separation curve of dilute solutions.
In all cases, agreement with experiment"0 is good.
Nevertheless, because of the approximate nature of the
theory and experimental uncertainty in the values of
the spin diffusion coefficient, we hestitate to claim that
the extended V(k) is accurate to better than 15%. In
particular, no effort has been made to determine the
change in V(q) with temperature; such an effect is al-

most certainly present. The nature of the change of V(q)
with concentration is also an open question. In addition,
there still remains the considerable task of a complete
determination of V(q) from a first principles calcula-
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F&G. 6. Graph of the phase-separation temperature T,('K) as
a function of the concentration of He' ('P&). Data points are those
of Edwards eE al. , Ref. 10.

tion, although some progress has been made in this
direction. ~ " "
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