PHYSICAL REVIEW

VOLUME 156,

NUMBER 1 5 APRIL 1967

Effective Interaction of He® Atoms in Dilute Solutions of He? in He*
at Low Temperatures
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The approximate form of the effective interaction between He?® atoms in superfluid Het is derived from
the experimental data on spin diffusion and phase separation in dilute mixtures of He?in He®. The interaction
is weak, and attractive at long wavelengths. Calculations of the Fermi-liquid parameters for the normal
state of He? in solution yield results for the effective mass and spin susceptibility in agreement with experi-
ment. The temperature for a superfluid transition associated with the He? is estimated to be ~2X107¢ °K;
the maximum solubility of He? in Hetis found to be ~6% at T'=0. Thermodynamic and microscopic argu-
ments are used to calculate the long-wavelength part of the effective interaction between the He? atoms.
The contribution arising from the exchange of a virtual He* phonon is shown to be large and attractive, while
the remaining part of the interaction is almost as large but repulsive; the calculated interaction at long
wavelengths is thus weak and attractive and is in excellent agreement with that determined empirically;
the physical origin of the weakness of the interaction is that He? is an isotopic impurity. Finally, it is esti-
mated that the application of pressure serves to weaken the effective interaction.

I. INTRODUCTION

HE experimental study of dilute solutions of He?
in He* received considerable impetus from the
heat-capacity measurements of Edwards et al.,! who
concluded from experiments at 100 m°K and above
that there should be no phase separation down to
T=0°K for concentrations of less than about 69, He?.
Their prediction was confirmed in part by Anderson
et al.,? who measured the heat capacity for a solution
with a concentration of about 59, He?, down to a
temperature of roughly 10 m°K. They found that
for this mixture He® was soluble in He* down to this
temperature, and that the specific heat of the He?
varied linearly with temperature over a range from
8 m°K to 35 m°K. Subsequently, Anderson et al.?
extended the heat-capacity measurements to tempera-
tures of 3 m°K, and measured as well the spin diffusion
coefficient and spin susceptibility of dilute solutions of
nominal concentration 1.39, and 59, of He®. Their
measurements show that in these respects the He?
atoms in dilute solutions behave like a normal Fermi
liquid, in agreement with the predictions of Landau and
Pomeranchuk.* Moreover, since the Fermi momentum
is varied by changing the concentration, it is possible
to deduce from their experiments an approximation to
the magnitude, sign, and momentum dependence of the
quasiparticle interactions.®
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Dilute solutions of He? in He! are of special interest
for at least three reasons:

(1) They represent a new set of Fermi liquids, whose
density, and hence degeneracy temperature, may be
varied at will. One can thus study, in the He? system,
the transition from classical gaseous behavior to that
characteristic of a low-temperature Fermi liquid for a
wide range of densities and temperatures.

(2) As we shall see, these Fermi liquids are unique
in that the effective interaction between the He?
quasiparticles is sufficiently weak that perturbation
theory, in the effective potential, may be used to
calculate the thermodynamic parameters and transport
coefficients.

(3) The effective interaction is also attractive, so
that at sufficiently low temperatures there should be a
superfluid transition associated with the He?.

In this paper we describe our derivation of the effective
He* quasiparticle interaction from the experimental
data. We then use the resulting effective interaction to
calculate various Fermi-liquid quantities; these are
found to be in good agreement with experiment. We
also estimate the superfluid transition temperature, and
find it to be in the microdegree range.

It had been suggested earlier® that there should be an
attractive interaction between two He? atoms in solution
which arises from the exchange of a He* phonon, and
that this interaction might lead to a superfluid transi-
tion. We find that in the long-wavelength limit this
part of the effective interaction may be determined
exactly with the aid of thermodynamic or deformation-
potential arguments, and that it is given by

VoPt= (Oust/0n4) ny (9n4/On3s) p= — (1+a)*mas®/ns,

¢ D. Pines, Liquid Helium (Academic Press Inc., New York,
1963); J. M. J. van Leeuwen and E. G. D. Cohen, in Proceedings of
the Eighth Iniernational Conference on Low-Temperature Physics,
London, 1962, edited by R. O. Davies (Butterworths Scientific
Publications Ltd., London, 1963).
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where u31 is the chemical potential of a spin-up He?, 4 is
the He? particle density, #sy is the density of He® with
spin down, and P is the pressure; a=0.28 is the relative
increase in effective volume of the mixture resulting
from the replacement of a He* atom by a He® atom.
Also s is the sound velocity in pure He* while 4 is the
atomic mass of He?; the quantity m.s?/na, the effective
interaction between a pair of He? particles, sets the scale
of interaction energies.

However, there is an additional “direct” part of the
interaction which may be determined in the limit of
very dilute mixtures by thermodynamic arguments;
it is

Vodir= (6#31/67’&3&)7,4: (14 20)mas?/na.

The over-all effective interaction in the long-wavelength

limit is then
Vo= '—012111432/%4 ’

a result which is in excellent agreement with the
corresponding limit of the empirically determined
potential.

The physical reason for the very considerable cancel-
lation between the direct and the phonon-induced
contributions to the effective interaction [o?/(1+a)?
=1/20] lies in the fact that He? is an isotopic impurity.
The force fields of the He® and the He* atoms are
identical, but the He® atoms have a smaller mass and
therefore occupy a slightly larger volume in the liquid
than the He? atoms. It is primarily through this increase
in volume that a He® atom becomes aware of the fact
that another He? in the liquid is not a He*. For a dilute
system, the change in the total free energy resulting
from the replacement of two He* atoms by two He?
atoms is essentially that due to the interaction of two
holes in the liquid of relative size a; thus the system
energy is changed by a factor a’=20.08 times the effective
interaction between two He! atoms. L. S. Campbell
(private communication) has made some estimates on
this basis. One of us has calculated this effective interac-
tion at large separation by a variational method’; the
details are discussed later in this paper.

A complete calculation of the net interaction from
microscopic theory so as to derive its dependence on
momentum or distance is difficult. Emery® has made
some progress in this direction and has discussed the
problems involved.

Throughout this paper we shall confine our attention
to the very-low-temperature, or Fermi-liquid regime of
the He? system, for which a knowledge of the effective
interaction between He? atoms at momentum transfers
less than twice the Fermi momentum suffices to deter-
mine the system’s behavior. At higher temperatures,
larger momentum transfers begin to play an important
role; Ebner® has constructed a suitable extension

7 G. Baym, Phys. Rev. Letters 17, 952 (1966).
8V, J. Emery, Phys. Rev. 148, 138 (1966).
9 C. Ebner, following paper, Phys. Rev. 156, 222 (1967).
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of our effective potential to cover this domain, and finds
good agreement with the experiments of Edwards et al.!
at the higher temperatures.

We assume that the effective interaction between
quasiparticles depends only on the momentum dif-
ference between initial and final states and is independ-
ent of concentration. The justification for this assump-
tion is as follows. The effective interaction may be
defined as a reaction or ¢ matrix in the sense of Brueck-
ner, Bethe, and Goldstone. As such, it includes effects
of virtual transitions to states outside of the excluded
Fermi sphere and would depend to some extent on the
concentration and on the initial state. Our effective
interaction may be regarded as the reaction matrix
corresponding to a very low concentration of He? (of
the order 19, let us say), where concentration depend-
ent effects are negligible. Using this interaction we
calculate energies in the Hartree-Fock approximation
and scattering in the Born approximation. For larger
concentrations (~59,) we treat incorrectly density-
dependent terms in the perturbation-theoretic expan-
sion, terms which correspond to virtual transitions
forbidden by the Pauli principle. However, since the
effective interaction is weak, and the concentration is
still quite low, the errors introduced by neglect of the
concentration dependence are small.

We describe in Sec. II our deduction of an effective
interaction potential from experiment, and in Sec. III
apply it to a determination of various liquid properties.
In Sec. IV we derive the exact matrix element for a
slowly moving He?® quasiparticle to emit or absorb a
long-wavelength He* phonon, and use this result to
determine the phonon-induced attractive interaction
between He® atoms in solution. We give a thermo-
dynamic derivation of the direct contribution to the
effective interaction in Sec. V, concluding with micro-
scopic considerations on the magnitude of the effective
interaction and a discussion of its pressure dependence
in Sec. VI.

II. DERIVATION OF THE EFFECTIVE
QUASIPARTICLE INTERACTION

Let us consider first the motion of a single He® atom
producing a quasiparticle of momentum p in liquid He?
at very low temperatures (75100 m°K). The quasi-
particle’s energy E(p) may be written as

E(p)=Eot+p%2m, 1)

where Ej is the energy by which the impurity is bound
in the liquid and m is the effective mass of the impurity.
The latter is appreciably greater than the mass m; of a
bare He® atom, as a result of the interaction of the He?
atom with the He* background. One may picture the
He? atom as moving slowly, surrounded by a cloud of
virtual He? excitations—phonons and rotons; it is this
polarization cloud which is responsible for the added
mass. (At these temperatures, the impurity lacks
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sufficient energy to excite a phonon or roton in the He!;
therefore only virtual processes need to be taken into
account.) We shall treat Eq and m as unknown param-
eters, to be determined from experiment. We may expect
that E, will be on the order of the binding energy of a
single He? atom in the liquid, while  is known from
experiment?® to be on the order of 2.4m;.

If we now increase the concentration of He® atoms in
the solution, we may expect their motion to be modified
by their mutual interaction. As we have mentioned
earlier, because of the presence of the medium, this
interaction will differ from that of two bare He?® atoms;
the van der Waal’s attraction and short-range repulsion
will be altered and there is, as well, a significant contri-
bution arising from the exchange of virtual He* phonons
between the impurities. Here we shall make no attempt
to calculate from first principles the net effective inter-
action between two He? atoms; rather, we derive it from
experiment under the assumptions that it is spin- and
velocity-independent, independent of concentration,
and weak. We thus assume that the effective interaction
between two atoms separated by a distance » may be
written as

dk
(2m)?

V(r)= / Ve 2)

and use the phase separation curve for 72200 m°K,
and the spin diffusion experiments in the millidegree
region? to determine V. Once Vi is determined for the
range of momentum transfers of interest in the low-
temperature regions, we may use perturbation theory
to calculate the thermodynamic and transport proper-
ties of the He® atoms in the He®-He* mixtures.

Phase separation measurements permit one to esti-
mate Vo, the spatial average of V(r). Along the
phase separation line, the chemical potential us(x) of a
He? atom dissolved in the solution must equal ugPUre,
that of a He® atom in the separated (and assumed
pure) He? phase. We may therefore write

p3(®) = ps (T o,2) s’ (%) = pgPrre

Ts
L / AT Sgwe . (3)

T=0

where us(T,x) is the chemical potential for a noninter-
acting Fermi gas of mass m and density

N3=NAN 4. 4)

n3, ns are the number densities of He? and He* in the
solution, n=n3+n4 is the total particle density, and «,
the He? concentration, has been assumed to be small;
Ls and SzPv are the latent heat of vaporization (at
T=0) and entropy per atom of pure He?, while T',(x)
is the phase-separation temperature.
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In the fully degenerate region, and with the assump-
tion of weak interaction, we have

dk
Vi )
(2m)?

M3'(x)=E0+"3Vo_/ (5)

|k +sr | <ks

where k; is the Fermi momentum of the He?, and ks is
an arbitrary vector on the Fermi surface; the second
term on the right corresponds to a Hartree correction
to ug while the third represents the exchange correc-
tion, as calculated in the Hartree-Fock approximation.
The phase-separation measurements of Edwards et al.!
have been carried out at concentrations ranging from
8 to 159, for which the corresponding values of T,
range from 200 m°K to 400 m°K. In this temperature
range, the exchange correction in (5) is comparatively
small, and may be neglected in a first approximation.

Along the phase separation curve, one then has, from
(3) and (5),

Te(2)
— [Eo—l-La—I-mVox]:uf(T,,x)—l—/ dT Sgpure, (6)
T=0

Ii, following Edwards et al.,! one assumes an approx-
imate value for m, the right side of (6) is determined,
and the slope of the resulting curve yields Vo directly.
Edwards et al.! have plotted the right-hand side of (6)
as a function of wx, using m=22.5ms; their results lie
very nearly on a straight line, and yield a slope such that

14V ¢=—0.1m4s?, (7

where m,4 is the mass of a He* atom, s is the velocity of
first sound in He! at very low temperatures (~238
m/sec), and 74 is the density of pure He?.

On the basis of (7), we may conclude that the average
effective potential is attractive, and weak. That it is a
weak potential follows from a comparison of the
Hartree contribution to the chemical potential with uy;
we have, using (7) (and taking m=~2.5ms3),

na| Vo|x/ug=at3, ®)

Since the average interaction is less than | V|, this is
an overestimate of the error resulting from neglect of
the concentration dependence of the effective interac-
tion. For the 59, solution, %' is about 0.37.

The spin-diffusion experiments of Anderson ef al?
provide information on the momentum dependence of
Vi and enable us to make a somewhat more accurate
determination of Vy. For a weakly coupled degenerate
Fermi liquid, the spin-diffusion coefficient D is given by

20T 2 (Xigeal/X)

T2= , 9
wm* LN (0)JXV?)a ©)

where m* is the He® effective mass at concentration
%, as measured in a heat-capacity experiment [m

0 D. Hone, Phys. Rev. 125, 1494 (1962).
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F1c. 1. Effective po-
tential ¥ as a function
of %&. Twice the Fermi
kK momentum of the 1.3

and 59, solutions are
indicated. The curve
crosses the axis at 2k
for a 2.369, solution.

2k,(|.373) 2ky(5%)

—

=m*(x=0)],
N (0)=m*ky/ 20 (10)

is the density of states at the Fermi surface for one spin
orientation, k; is the Fermi momentum, and

KTy=kp/2m*. (11)

X is the measured He® spin susceptibility, Xjgca: is that
calculated for an ideal gas with effective mass m*, while

3 2kf
(V) gm / 12| V| 2dk (12)
=g [

is the moment of Vi measured by spin diffusion.*
Anderson ef al® have measured X, m*, and DT? for
solutions with He? concentrations of 1.39, and 5%;
from their measurements, we find, using (9)

N(O)[(V2)q]*2=0.085, x=0.013

(13)
=0.0845, x=0.05.

From (13) we may at once conclude that the effective
interaction is momentum-dependent; were it not, one
could expect to see a corresponding increase in NV (0)
X [{V2)q]?, since N(0) increases by a factor of 1.61
on going from the 1.3%, to the 5%, solution. We further
note that according to (7)

N(0)|Vo|20.30 at x=0.05,

a result some four times larger than that found experi-
mentally; this, too, points to a momentum-dependent
interaction.

We conclude that the interaction clearly must fall
off with increasing k; since one expects Vi to be rather
flat in the vicinity of k=0, a simple two-parameter
form for Vy is

Vi=—|Vo|cos(Bk/%). (14)

This gives an interaction that goes to zero when
Bk/h=m/2, and Vi becomes positive for larger k. The
maximum % we are concerned with is only a little larger
than the crossing point, as illustrated in Fig. 1. Any
function with these general features would be satisfac-
tory; the form (14) is taken for mathematical con-
venience. The important parameters are Vo, which sets
the scale of the interaction, and the value of % for which

1T the best of our knowledge, the simple result (12), appli-
cable to weakly interacting systems, has not previously appeared
in the literature.
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V' goes through zero. With this form for V', we have
NOL{V?a]"=N(0)| Vol [G()]", (15)
where { =28k, and
GE)=3+ (3/8¢)[(262—1) sin2{+2¢ cos2{]. (16)

We choose Vi and 8 (or {) so as to fit the spin-diffusion
results at the two concentrations, as given by (13);
14| Vo| =0.0754mss?, B=3.16 A 7
so that
§=5.4Tx13,

These parameters were used in the plot of Fig. 1.

The value of V, determined in this manner depends
to some extent on the choice (14) for V. Other choices
of reasonable shape might give Vy’s differing by 10
to 159,. We note that the value of Vy is of the same
order as that determined from the phase separation
curves; it is, however, roughly 259, smaller. The
difference between these results is the influence of
exchange effects, as discussed by Ebner.?

III. FERMI-LIQUID PROPERTIES

We now consider various properties of the solution
that are influenced by the effective interaction between
the He® atoms, as specified by (14) and (17). Calcula-
tions of quasiparticle properties, such as the spin
susceptibility and specific heat, are most conveniently
carried out in the framework of the Fermi-liquid theory
of Landau.? In the weak-coupling (or Hartree-Fock)
approximation, the interaction between two quasi-
particles of momentum p and p’, spin ¢ and ¢ is
given by

(18)

It is convenient to introduce the spin-symmetric and
spin-antisymmetric parts of fyp°” according to

for'= (fpp’M'{"fpp'N)/zz Vo— Vp—p’/z:
fpp’a= (fpp’” _fpp’“)/2= - Vp—p'/z-

Since the f’s depend only on the angle, £ between p
and p’ when both momenta lie on the Fermi surface,
we expand them in a series of Legendre polynomials,

Jop*@ =201 [ @ Py(cosk).

’
Jov ' =Vo=Vp—pdo,or.

19)

(20)

Finally, we introduce the dimensionless measure of the
strength of the quasiparticle interaction

Fp@=2N(0)fs@. (21)

2 L. D. Landau, Zh. Eksperim. i Teor. Phys. 30, 1058 (1956);
32, 59 (1957) [English transls.: Soviet Phys.—JETP 3, 920
(1956); 5, 101 (1957)7.

18 D. Pines and P. Nozieres, Theory of Quantum Liquids (W. A.
Benjamin, Inc., New York, 1966), Vol. I, p. 277.
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Fic. 2. Calculated values, as a
function of concentration x, of m*/m,
the ratio of the He? effective mass to
its value at x=0; Xigea1/X, the inverse
ratio of the spin susceptlblhty to that
of an ideal gas with effective mass m*
at the same density; and «/kigea), the
ratio of the He® “compressibility” to
that of the ideal gas.

1.05

m/m or Xideal/ X

T T T T

o0
K/ Kigeal A

Xideal/ X

1 1

s}

The “specific-heat” effective mass m* and spin
susceptibility X then take the form!?

m* N(O) 2ky k2
—=143Fp=1——=" ka(l——-—>dk, (22)
m 2 f 0 2kf2
Xideal N(0) %
=14Fpe=1——o0- / Vikdk, (23)
X 2k

on making use of Egs. (19), (20), and (21). If we now
substitute our expression for the effective potential,
(14), we find

m*/m=1+N(0)| Vo| M (§), (24)
Xidenl/x:‘ 1+N(O) I VO“R({) ) (25)
where
M (§)=(2/1)[cosi+¢ sing—1]— (4/¢%)
X[ (3¢2—6) cost+(¢*—6¢) sinf—6], (26)
R(§)=(2/¢9)[cos¢+¢ sinf—1], (27)

and { is specified by Eq. (17).

Equation (24) for the effective mass m* when used
in conjunction with the experimental results enables
us to calculate m, the mass of an isolated He® atom
immersed in He?. From (13), (15), and (17), we have

N(0)V,=0.146;
N (0)V=0.235;

2=0.013

28
x=0.05. (28)
If we now choose to fit the specific-heat experiment at
1.39%, [(m*/m3)=2.384-0.04], we find upon combining
(24) and (28)
m/my=2.34. (29)
Having determined m, it is straightforward to calculate
X and m* at arbitrary concentrations; in Fig. 2 we give
a plot of (m*/m) and (Xigea/X) as a function of con-
centration. Our calculations are compared with exper-
iment in Table I. We see that agreement with exper-
iment is good.

x (%)

A check on the consistency of our calculations of m
and Fy* is provided by calculating the ratio of the
“bare” state densities at 1.39 and 59, concentrations.
Let us define:

N°(0) =mk;/2mh3;
we then have

N°(0)59 0.050y /3
= ( ) =1.560.
N0(0)1,3% 0013

On the other hand, from (22) and (24)

N(0) VoM (§)=3F1*/ (1435Fy)

=3F'—GF) . (30)

The values of 3F,° for the two concentrations may be
determined (without prior knowledge of m) directly
from the relation 3F*=N(0)|V,|M (). Using these
values (3F:*=0.01740 at 1.39, 3F:*=0.0551 at 59),
and our calculated values of N (¢), we find

N°(0)s9,  0.2220
NO(0)159 0.1430

in good agreement with the theoretical value of 1.560
quoted above.
We also give in Table I the calculated values of

Fot=—2N(0)|Vo|+Fe, 31)

TasLE L. Calculated parameters for 1.3% and 5%, concentra-
tion solutions of He? in He?, compared with experiment. The
potential has been chosen to fit the theoretical values of DT?
with experiment.

1.3% 5%

Theory Experiment Theory Experiment
DT?(cm2K°2/sec) (17.2X1076) 17.2X1076 (90 X10-6) 90 X10-8
F18/3 (=F1/3) 0.0174 0.055
m*/ms 2.38 2.384-0.04 2.47 2.464-0.04
m/ms=2.34
Fee (=2Z0/4) 0.090 0.048
Xideal/X 1.090 1.09 4:0.03 1.048 1.08+0.03
Fot —0.202 —0.423
Kideal/k 0.798 0.577
Fot+F18 —0.150 —0.258
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K3(X)-Ey  (°K)

1 1 1 1 1

| 2 3 4 5 6 7 8
x(%)

F16. 3. Plot of us(x) —Eq in °K versus x. The value of #, =~0.06,
for which us(x) —Eo=—L;— Eo~0.29°K, is the maximum solu-
bility of He? in He* at zero temperature.

a parameter which determines the “He® compressibil-
ity,” and plays an important role in the theory of zero
sound. The compressibility « of the He® system, defined
from the change in energy with concentration in the
solution, is given by
Kideal/K= 14+F¢; (32)
we plot this ratio in Fig. 2 as a function of concentration.
In the weak-coupling limit, the criterion for the
existence of zero sound (under the assumption that only
Fy and F, are important) is'4
Fo*+Fy*/(143F)=F*+F1* >0. (33)
We see from Table I that Fermi-liquid effects are
actually most pronounced on the He? compressibility,
which can be determined from first- and second-sound
experiments. Unfortunately, the large negative values
of F¢® preclude the observation of zero sound in He®-He*
mixtures.

We note in passing that with our choice of effective
interaction, (14) and (17), the higher harmonics of
Jop Play little role in determining the various properties
of the He?® solutions. The reason is that the relevant
integrals depend to an increasing extent on values of V
at larger momentum transfers, where V is seen to be
small.

We can also use our effective potential to estimate the
concentration at which phase separation will occur at
T=0. To do this we need to calculate the exchange

14 A. A. Abrikosov and I. M. Khalatnikov, Reports on Progress in
Physics (The Physical Society, London, 1959), Vol. 22, p. 329.
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contribution to the chemical potential,

dk
Mexch = — / Vi
Ikl <t (2m)°

1 2k A
=—— k2<1———> Vidk. (34)
4r? ), 2k

With our choice of potential, (17), we find

I»‘exch=”4x| VO[P(g‘) ) (35)
where
24 36 6 36
P({)=—sin{+ (—— —) cosf——. (36)
I &g &

At3T=0, the concentration at which phase separation
will take place is, according to (3) and (5), determined

by
— Ly— Eo=p3(x) — Eo=ps(®) —n4| Vo|2[1—P(§)]. (37)

A plot of p3(x)—E, as a function of x is given in Fig. 3.
Determination of the maximum concentration at which
He? is soluble in He* then depends on a knowledge of
Ls+Eo. According to the calculations of Ebner,?

Li+E~—0.29°K , (38)

from which we conclude the maximum solubility of
He’ in He* is at a concentration of about!® 69,. This
agrees with the recently measured value 6.040.39,.16

Finally, we estimate the temperature 7', at which
the He? subsystem may be expected to exhibit a transi-
tion to a superfluid state. (Below 7', both the He® and
the He* are superfluid; above T, the He® subsystem
behaves as normal fluid.) We note first that because vy,
the velocity of a quasiparticle on the Fermi surface, is
small compared to s, the velocity of first sound in He?
(v7/s~0.32"3), retardation effects are negligible; 7',
may therefore be calculated from the weak-coupling
Bardeen-Cooper-Schrieffer (BCS) theory.l” In order to
allow for possibilities other than s-state pairing, it is
convenient to expand the effective interaction between
quasiparticles on the Fermi surface as

Vpy =221 V() Pi(cos) (2141), (39)

where { is the angle between p and p’. The transition
temperature is then given by!®

T =Ty exp[1/N(0)V (D], (40)

15 Using a hard-sphere model and the pseudopotential method
to first order, and assuming equal molar volumes for the two
isotopic components, E. G. D. Cohen and J. M. J. van Leeuwen
[Physica 26, 1171 (1960) ; 27, 1157 (1961)] calculated a maximum
T=0 solubility of He? in He? of 157%,.

16 F, M. Ifit, M. M. Skertic, and D. O. Edwards, Bull. Am.
Phys. Soc. 12, 96 (1967).

17 T, Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106,
162 (1957); 108, 1175 (1957). v

18 R, Balian, Lectures on the Many-Body Problem, edited by
E. Caianiello (Academic Press Inc., New York, 1964), Vol. 2.
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where V() is the most attractive spherical harmonic of
the potential V' ; the pairing first takes place in states of
angular momentum /. The Fermi temperature Ty plays
the role of a cutoff frequency. One finds from (19),
(20), and (21), that

N@O)V(@®)=—Fe/(2+1)
=—Fp/(2+1), 1>0. (41)

We need consider only s- and p-state pairing, the higher
harmonics of V being negligible for our choice of a
potential. We have

N()V(0)=—Fg, s-state pairing

42
N()V(1)=—%F,*, p-state pairing. (42)

At x=1.39, s-state pairing is most favorable; for the
interaction specified by (17), we find

T, 22X10¢ °K, x=0.013. (43)

At x=59, p-state pairing is slightly more favorable,
but T, plunges to 5X10~° °K. It turns out that x=1.6%,
is the optimal concentration for a superfluid transition,
with T/222.2X10~% °K ; as one goes to larger concentra-
tions, NV (0) increases as x'/3, but the average V(0) of the
potential decreases in magnitude more rapidly than
that.

The crucial point in estimating T is that the spin-
diffusion experiments place so small an upper bound on
the magnitude of the scattering in opposite spin states
that even a more refined potential would not predict
a transition temperature significantly larger than a few
microdegrees.”? Furthermore, as we shall see in Sec. V,
putting pressure on the system will most likely only
further decrease T, for s-state pairing.

In conclusion, we note that one need not rely on the
theory for an estimate of T, for s-state pairing, should
sufficiently accurate experimental measurements of X
become available, For on comparing (42), (22), and
(23), we see that -

N(0)V (0)= (1—Xigea1/X).

However, it is likely that our theoretical estimates based
on a fit to the spin-diffusion experiments are more
reliable than those obtained from the present measure-
ments of X. [At 1.39%, the experimental value of
Xidea1/X=1.0940.03 leads to transition temperatures
between 8X107? °K and 3.5X107% °K; for the 5%
solution, (43) leads to an estimated 7T, which lies
between 7X107 °K and 3.5)X 1075 °K..]

IV. PHONON-INDUCED INTERACTION
BETWEEN He® QUASIPARTICLES

We turn now to the question of the origin of the
effective interaction between He® atoms in solution in

19 A more detailed solution of the appropriate integral equation
for T, leads to values of this same order of magnitude [K. H.
Michel (private communication)].
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He*. We first give an elementary derivation of the form
of that part of the interaction due to the exchange of
virtual phonons®; we then use thermodynamic-argu-
ments to fix the strength of the coupling of a He?
quasiparticle to a long-wavelength phonon, and thence
the size of the phonon-exchange contribution. Let us
emphasize that the phonon-induced interaction is only
part of the effective interaction between He® atoms;
we consider the remaining contributions in the following
section.

We assume at first an effective interaction, U
between the He® atoms at positions r; and the He?
background at positions r; of the form

dq
(2m)?

Hintz}; U(r;— r:‘)=/ Uqpq'va, (44)
i

where ]
pot=2;et-ri (45)

is the Fourier transform of the He* density operator, and
Ye=2i€mi (46)

similarly describes a He?® density fluctuation. U, is
the Fourier transform of U(r;—r;) and it may be
regarded microscopically as the complete matrix
element (or vertex) for a He® density fluctuation of
wave number q to create a He* density fluctuation of
the same wave number. In general the density fluctua-
tions of the He? possess matrix elements between states
that differ by a single phonon or roton of wave number
q, or by various combinations of these elementary
excitations with total wave number q. However, by
sum-rule arguments one can show that for g1 At
(and these are the momenta of interest in the preceding
section), single phonon states predominate?!; the
coupling (44) in this momentum region is therefore
primarily between He?® atoms and single He* phonons.
[It is quite possible though that multi-excitation terms
are important in determining the momentum depend-
ence of the effective interaction (14).]

At the very low temperatures with which we are
concerned a given He? atom in the solution lacks
sufficient energy to excite a real phonon in the He%
As the atom travels through the solution it does,
however, induce fluctuations in the He* density, or
equivalently, it excites virtual phonons. To the extent
that the He* system responds linearly to the motion of
the atom, the component of the induced He* density
fluctuation of wave number q is given by

P =X(g,0)Uqys®, (47

where v¢‘® is the gth component of the He? density
fluctuation associated with the motion of the particular

2 Qur derivation is closely patterned on that given in Ref. 13,
Pp- 2143—251, for the effective interaction between electrons in a
metal.

( 2 A). Miller, P. Nozitres, and D. Pines, Phys, Rev. 127, 1452
1962).
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p p+q

F16. 4. Schematic representation
of the phonon-induced interaction
between He? atoms.

P P-q

He? atom; X(quw) is the retarded density-density
correlation function of the He? system,? and w is the
frequency at which the atom in question perturbs the
system. A second atom in the system will be scattered
by the density fluctuation (47), via the interaction (44),
and this leads to an effective interaction between the
two atoms, as shown in Fig. 4. If we let v4® be the He?
density fluctuation associated with the motion of this
second atom, then the resulting interaction between the
two He? atoms is

I U, ‘ 2X(q,w) (’an') fyqb.

The matrix element for this phonon-induced interaction
is thus

(48)

V= Uq|X(g,0)- (49)

In the limit of zero concentration, X in Eq. (49) is
the density response function of pure He. At wave-
lengths such that groS 1, where 7o is the average spacing
of He*atoms, X in pure He* is given by*

1’L4q2/ my

(50)

X(gw)= (gros1).

w?—s%g

Furthermore, we expect that at these wavelengths, the
coupling between the He® and He* density fluctuations
differs little from its long-wavelength limit; thus we

write
Uq= U3_4 (qfog 1) . (51)
We have then y
n4q°/ My
Vo= | Uss|2. (52)
wi— s2q2

Moreover, as we emphasized, the frequencies associated
with the motion of He? atoms, on the order of quy, are
small compared with those characteristic of the He?;
thus we may neglect the ? in the denominator of (52),
and obtain the static interaction resulting from the
exchange of a long-wavelength virtual phonon between
the two He® atoms:

quh= - I U3_4l 2'}’14/'}%482 (qf’os 1) . (53)

2 For a discussion of the properties of the density-density
response function, see Ref. 13, Chap. 2.

% J, Gavoret and P. Nozitres, Ann. Phys. (N. Y.) 28, 349 (1964) ;
P. Hohenberg and P. C. Martin, sbid. 34, 291 (1965) ; D. Pines, in
Proceedings of the Ninth International Conference on Low-Tempera-
ture Physics, Columbus, Ohio, 1964, edited by J. G. Daunt, D. O.
Edwards, F. D. Milford, and M. Yaqub (Plenum Press, Inc.,
New York, 1965), Vol. A, p. 61.
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It remains for us to determine Uj;_4, the matrix
element for the effective coupling of a He? atom to a
long wavelength He* density fluctuation. This matrix
element may be expected to be quite different from that
determined by the “bare” van der Waal’s interaction
between isolated He® and He? atoms; that interaction
is very strong and must consequently be altered by both
multiple scattering effects and the influence of the
surrounding medium, Still, we can determine Us_4 in
terms of measured parameters exactly, because on the
one hand the He? subsystem is dilute and also, on the
other, we are dealing with essentially a long-wavelength
static phenomenon, for which thermodynamic argu-
ments suffice.

Equation (47) describes the response of the He? to
He® density fluctuations at constant He* chemical
potential, us. If we set w=0 and then let ¢ approach
zero, Eq. (47) then describes the change 74 in the He?
density caused by a uniform infinitesimal change 673
in the He?® density, at constant w4 In this limit we
have then

31’!4
<__> =1imx(¢,0) Us_s; (54)
8n3 14 0
thus from (50),
Us_s= — (014/0n3) umss?/na. (53)
Since
17’Z482/1’l4: (6#4/an4)n3 (56)

in the limit x — 0, Eq. (55) is simply the statement that
Us_y=— (014/013) 4y (O1a/0n4) ny= (Opia/On3) ny.  (57)

Equivalently, since us= (3F/0n4)n; and ps= (0F/0n3)n,,
where F is the free energy per unit volume, we have

U3_4 = (aﬂ3/6ﬂ4) ng . (58)\

The derivative (374/973),, occurring in (55) is easily
related to measured parameters by noting that as
x— 0, keeping u4 constant is the same as keeping the
pressure constant. This follows from the Gibbs-Duhem

relation
dP= SdT—i—mdm—i—nsdus 3 (59)

for constant 7" and u4, dP=mnsdus, so that as x— 0, P
is also constant. Now the molar volume v of the solution
may, for small concentrations, be written as

v=294(P)+,(P)x.

The total number density of the system is n=4/v,
where 4 is Avogadro’s number, while

(60)

ng=xn, n=1—x)n. (61)
In the limit x — O, then,
IR (3n4/0x)p
(—-) e (4ufre).  (62)
ons/p  (On3/0%)p
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Thus letting
a= v1/ Vo4, (63)
we have
Us—i= (14+a)mas®/ns, (64)

and from (53) we find our desired result for the long-
wavelength limit of the phonon-induced interaction,

Vh=— (14a)ms/ng  (groS1). (65)

The results above, (64), (58), and (56), enable us to
derive a useful expression for « in terms of thermo-
dynamic derivatives:

Uz

o= —(us—ua) (66)

’I’l’L482 am

the derivative is evaluated at constant #3 in the limit
x— 0. We shall use this expression in Sec. VI to obtain
a theoretical estimate of c.

The molar volume parameters may be estimated
directly from the measurements of Kerr® in the region
below the N point where the He?® is nondegenerate. He
finds, at T=1.2°K,

v04=27.52 cc/mole,
so that

(67)

91="7.6 cc/mole,

a= 7)1/1)0430.28 . (68)

Actually this ratio appears to be reasonably independ-
ent of temperature below the A point. That v, is positive
and of this size is a direct consequence of the additional
zero-point motion of a He® atom beyond that of the
He! atom it displaces.

We see from (64) that the long-wavelength interac-
tion between a He® and a He* atom is repulsive in the
sense that raising the He* density increases the He?
quasiparticle energy (and vice versa). On the other
hand, the effective interaction between two He? atoms
resulting from this coupling is attractive; as is the case
with phonon exchange between electrons at the Fermi
surface in metals, this is because the interaction arises
from the exchange of virtual quanta at frequencies low
compared with the frequency characteristic of the
quanta themselves.

In Eq. (44) we have taken into account only the
coupling of a He? to a He! phonon caused by the density
changes accompanying the phonon. There is a further
coupling arising from the fact that in the presence of a
phonon, the He* has a nonzero local velocity; for long
wavelengths this coupling can be calculated from
Galilean invariance arguments. We consider the x — 0
limit only.

Suppose that the He? has a uniform velocity v. Then
in the coordinate frame moving with the He%, the
energy of a He® quasiparticle of momentum p is given

* E. C. Kerr, Low-Temperature Physics and Chemisiry, edited by
J. R. Dillinger (University of Wisconsin Press, Madison, Wiscon-
sin, 1958), p. 160.
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Fi1c. 5. Schematic representa- 9,Vq
tion of the p- v(ém2/m) coupling
between a phonon and a mov-
ing quasiparticle.

£

P

by E,=$*/2m-E,. In the laboratory frame the momen-
tum of this quasiparticle is p-+m3v and its energy is

By ymye (V) =Eytp-vtmst®/2; (69)

E,(v) denotes the energy of a quasiparticle of momen-
tum p in the presence of a He! background flowing with
velocity v. Thus from (69)

Ey(V)=Eypmytp-v—ms®/2, (70)

and to first order in v the change in the quasiparticle
energy due to the He* flow is

SEp=—V E,-mgvt+p-v=(dm/m)p-v, (71)

where ém=m—ms. Now the point is that a long-wave-
length sound wave looks to a quasiparticle like a uniform
motion of the He* with a (local) velocity v. Therefore
(71), with v being the local velocity associated with a
phonon, is an additional coupling of a He® quasiparticle
to the phonons.?

Microscopically this coupling is due to the interaction
of a phonon with the He* screening cloud that is
attached to the He® atom,? as shown in Fig. 5. As a
consequence the strength of (71) is proportional to ém,
the mass density associated with this cloud. We plan
in a later paper to discuss in some detail the dynamical
consequences of this interaction, e.g., its contribution to
the effective mass m of a single He® atom in He!. For
the present we shall only calculate its contribution to
the phonon induced part of the interaction between
two quasiparticles, in the limit + — 0.

The argument is simply a generalization of that given
in the beginning of this section. The total coupling of a
long-wavelength He? density fluctuation of momentum
q to the He? background is, from (44) and (71),

1 6m
Hu(qQ)=U s_4pq*'yq+§ — 3 pir vttt He,,
m
(groS1)  (72)

where v, is the Fourier transform of the He* velocity
field.

26 We note that the magnitude (and sign) of our p-v coupling
differs from that considered by I. M. Khalatnikov, Introduction
to the Theory of Superfluidity (W. A. Benjamin, Inc., New York,
1965), p. 167.

26 The coupling between the He? and He! is also modified slightly
by the dependence of the effective mass of a He? quasiparticle on
the He* density. Extrapolating the data of D. J. Sandiford and
H. A. Fairbank [[Proceedings of the Seventh International Conference
on Low-Temperature Physics, 1960 (University of Toronto Press,
Toronto, 1961)] to T'=0 we find: |8m/éns|~ms/ns. Thus this
contribution is of order (z;/s)?~0.01, smaller than (54), but the
sign is uncertain,
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We consider now the density fluctuation induced in
the He? background when a quasiparticle of momentum
p is scattered to a state p—q; it is

™= [X(q,0) Us_s+®(q,w) - (p—q/2)0m/mTy,,?,
(73)

where v, is the He?® density fluctuation associated
with the quasiparticle in its scattering. The first term
in (72) is the density fluctuation due to the coupling of
the He? to the He* density. [This coupling is the same
for bare He? atoms and He® quasiparticles, since the
number density of quasiparticles equals the density
of atoms.] The second term in (73) represents the
coupling of the He® quasiparticle to the He?* through
the interaction (71); @(q,w) is the density-velocity
correlation function of pure He?, while p—q/2 is the
average of the initial and final momentum of the
quasiparticle. The particle in scattering also produces a
superfluid velocity in the He* given by

v ird= [®(q,0)Uss+F(qu)- (p— Q/z)‘sm/m]')’p.q(a) ’
(74)

where W'(q,w) is the velocity-velocity correlation func-
tion of the He!. For small q and w, and as x— 0, we
have?

wq/m4
(I)(q,w) = ’
w?—s2g?
(75)
s2qq/many
W (guw)=——".
w?—s2%?

We note in passing that in the static limit, only the
density-density interaction contributes to (73); thus
our thermodynamic argument to determine Us4 is not
affected by the coupling®(71).

We also note that if we define a superfluid mass
density by the conservation law

(76)

then from (73), (74), and (75) we find that the “normal”
mass density of the Het is given by

wps,q=maq- Vg™,

Pr,q=Mapqg™" —Ps,q

=dmq- (P—q/2)v,¢“/mo. (77)
On the energy shell,
(r—9)? 2* q (p—39
w= e (78)
2m 2m m
so that
Pn,q=5m7p,q(a)- (79)

We thus see that the quasiparticle carries with it a mass
om of normal He* in its screening cloud of virtual
phonons. This is just the result required to make its
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total contribution to the normal mass density be
(0mtma)yy,q @ =my;,4@, (80)

in agreement with the theory of Landau and Pome-
ranchuk.*

The matrix element for the scattering of two quasi-
particles of initial momenta p and p’ to final momenta
p—q and p4q due to their exchanging a virtual
phonon of momentum g is found, as before, by substitut-
ing (73) and (74) into the effective interaction, (72),
which couples the second quasiparticle to the He*
background. We find for scattering on the energy shell,
where

w=q-(p—39)/m=q- (p'+5¢Qm, (81)
that the effective scattering matrix element is simply
Vb= — (1+a)mas?/nat+ V¢, (groS1)  (82)

where
Masw?
d_
Vyl=

(57"

[1+4a+tdm/mi]2. (83)

In writing (82) and (83) we have used the forms (50)
and (75) for the correlation functions of pure He?.

The first term in (82) is the interaction (65) we have
previously derived. The second term is effectively a
dipolar interaction between the quasiparticles which
depends on their momenta. As before we neglect the
«? in the denominator of (83). Then for ¢<&p/m and
#/m, i

qu= —p——L(1+a+Bm/M4)2nl4/n4.
m m

(84)

This interaction is the exact quantum analog of the
classical dipolar interaction of two hard spheres at
large separation in an incompressible fluid.*” It is of
order v/2/s?~0.01 smaller than the first part of the
interaction (65).

Let us now compare the phonon-induced interaction
(65) with the long-wavelength part of the empirical
effective interaction ¥V, as specified by (17). On making
use of (68) we see that the phonon-induced interaction
is some 20 times stronger than the empirically deter-
mined Vy; there must necessarily be a very considerable
cancellation between the phonon-induced interaction
and the remaining contributions to the effective
interaction between the He® atoms. In the following
section we develop thermodynamic arguments which
indicate the source of this cancellation and enable us
to derive a net effective interaction, V,, which is in
good agreement with that determined empirically; we
defer more microscopic considerations until Sec. VI.

27 For a classical hard sphere of radius b, 1+v1/vos=4mb3/3 and
Sm/ma=2wb*n4/3. Then Vdiv=— 2xb®)mms(p-q/m)(p’-a/m).
This is the Fourier transform of the classical dipolar interaction,
using the canonicallmomenta as variables. Expressed in terms of
the velocities of the particles, the interaction has the opposite sign.
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V. THERMODYNAMIC CONSIDERATIONS ON
THE EFFECTIVE INTERACTION

We begin our discussion by relating the long-wave-
length limit of the effective interaction Vo to appro-
priate thermodynamic derivatives. From this we shall
see that there are two contributions to V, one coming
from the phonon-induced interaction, the other re-
presenting a direct interaction which occurs at constant
He* density. In the limit of very dilute solutions it
proves possible to evaluate this second term accurately;
we shall see that the essential step in its evaluation is
the explicit recognition of the fact that He® and Het
are isotopes and therefore the bare interatomic
potential between the He® and He* atoms is the same as
that between He* atoms or between He?® atoms. When
this is taken into account, we find that

(85)

Vo= - 21%452/%4 ,

in agreement with (17).

As the He® atoms move through the liquid they
displace the He* in their way. The He?, driven essentially
by local changes in their chemical potential u4, move in
such a way as to keep ps, or equivalently, the local
pressure constant. Thus the effective interaction
between two He¥’s at long wavelengths is simply related
to the net change in energy of the system when two He¥’s
are substituted for two He*s at constant pressure.

The free energy required to add one He? to the system
at constant pressure is us, the He® chemical potential.
Let us write, as before in Eq. (3),

ps=ps+u,

where u; is the chemical potential of a noninteracting
Fermi gas of effective mass m and density ns. The
effective interaction (2) describes directly the amplitude
for the scattering of two quasiparticles of opposite spin.
[The scattering amplitude of two He¥’s of the same spin
includes a further exchange term.] Thus V, is the
derivative of u’ for a He? of one spin orientation (up,
say) with respect to a uniform change, at constant us,
of the density of He® with opposite spin (down):

Vo= (Out'/0n31) 5

this derivative, as well as subsequent ones in this
section, is evaluated at constant T" and 3+, in the limit
x — 0. We note that our identification of ¥ is analogous
to the Landau definition of the effective interaction
between quasiparticles in a pure Fermi liquid. Since
st is independent of #3y, we can equally well write

Vo= (6#31/3%“),‘4. (87)

(Note that this step would not be permissible if we had
taken derivatives with respect to #31, since us+ depends
on #31.)

We can establish the connection with our considera-
tions of the previous section by regarding uz+ as a

(86)
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function of #3; and 74 Thus we can write (87) as

dust ust Ing
(o) ) o).
I3y n4 ony ng Insy na
The first term on the right side of (88) is the contribu-
tion to the effective interaction that is present when no
variation in the He* background density takes place.
The second term on the right is the phonon-induced
interaction between the He® atoms; it involves a density
change in the He* background corresponding to the
emission and reabsorption of a virtual phonon. Thus
(0n4/0n3),,, which equals (374/dn3)p in the limit of
zero concentration, is the density fluctuation induced in
the He* background by a unit change in #3 at constant
pressure, and is, according to (62), given by —(14-a);
then (Gust/074)a; measures the response of a second He?
atom to that density variation, and is, from (58)
and (64), given by — (14-a)mas?/ns. Their product,
— (1+a)?mus?/ns, is the phonon-induced interaction
(65).

We note that with the use of a “chain rule” for
partial derivatives, the above expression for the
phonon-induced interaction may be cast in still more
familiar form, viz.:

G o). o). o) o)
N n3 gy m 074 ng 6#4 ng onsy n4
st 0Ny sy
=— — ;3 (89)
Ong ng aﬂ4 ng ong ng
in writing the last form we have used the identity

Ous Ousy
e )G
031/ vy 0n4/ ny
The final form on the right side of (89) possesses the
usual structure of a phonon-induced interaction, that is,
a vertex for the emission of a virtual density fluctuation
(or phonon), (dust/dns)n;, a term describing the
propagation of that density fluctuation (374/0ua)
=ns/mss?, and a vertex part, (9usi/0%4)n, for the
absorption of the density fluctuation by the opposite
spin He® atom (see Fig. 4).

We turn now to the calculation of the direct (or
nonphonon-induced) contribution to the interaction
energy, (Oust/0n34)n,; this term measures the shift in
the chemical potential of a spin-up He? atom due to a
unit change, at constant background He? density, of the
density of down-spin He? atoms. To evaluate this term
we recognize the fact that the He® and He* atoms are
isotopes, and thus we are led to inquire what changes
in the physical properties of the solution result from the
replacement of He! atoms by He® atoms. The direct
interaction energy may be examined from such a point

(88)

(90)
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of view by rewriting it as follows:
Auat T 0 (uss—pa)
gy n4 Ong ng 04 ng

9 (ust—pua)
+(———> .
3”3& ng

[To obtain (91), we have simply added and subtracted
(Oua/0n4)ns, and (Auss/Om4)n,, and made use of the
identity (90).] In the form (91), the direct interaction
has a simple physical interpretation. The two interact-
ing He®s, one with spin up and one with spin down,
have displaced two He? atoms in the solution. The first
term on the right is the interaction energy, in the sense
of Landau, of these two He! atoms prior to being
displaced. This energy, given by Eq. (56),

(6#4) M4S 2
— ) = ,
s/ ny M4

sets the scale of interaction energies in the system. The
second term is then the extra energy (beyond uss—ps
evaluated at equilibrium) required to replace one of the

He! by the down-spin He?, in the presence of the other
He*. From Egs. (56), (58), and (64) we see that this

energy is
(0(,0.“—#4)) M52
= .
ng

oy 4

(1)

(92)

The third term on the right is the extra energy (beyond
ust—ua) required to replace, in the presence of the
spin-down He?, the other He* by the spin-up He®.

We shall now give a physical argument that this
last term in (91) has the same value as the second, i.e.,

<3(M31"‘l£4)) (3(1131—#4))
6”3& n4 an4 n3y

= amas?/n. (93)
This says that the extra energy required to replace one
He* by an up-spin He?, in the presence of a down-spin
He?, is also amas?/ns. Assuming this to be so, for the
moment, we find on combining Eqs. (56), (91), (92),
and (93) that the direct part of the effective interaction
at long wavelengths is given by
Vodir: (1+2a)m432/n4; (94)
adding the phonon-induced interaction, — (14 a)*m4s?/
4, to this yields the result (85) for the net long-wave-
length effective interaction between the He® atoms.
Equation (93) is equivalent to the assertion that
M3t —u4, the energy required to replace a He* by an up-
spin He?, depends, for fixed 731, only on the total density

BAYM, AND PINES

156
n, that is,

9 (ust—pa)
— =0, 95)
6%3& n,n3¢

The crucial point is that because He® and He* are
isotopes, the force fields produced by He® and He!
atoms are identical; the average force fields felt by
He? and He? in the solution are the same. Furthermore
varying #sy at fixed #» and #n31+ produces no change in
the average force field (since it corresponds to replacing
a He* atom by a spin-down He? atom). On the other
hand, because He® has a lighter mass than Het, a He?
atom has a larger zero point motion than a He!, and it
thus tends to occupy a larger volume than a He®. This
volume difference is measured by the quantity v; in
Eq. (60); from (68) we see that a He? occupies a
289, larger volume than a Het. The difference between
ust and p, arises essentially because of this extra zero-
point energy which must be supplied to the He?.
However, this extra kinetic energy depends only on the
average volume per particle at the site where the
replacement of a He* by a He? takes place. Thus for
fixed n3t we expect uzt—pus to depend only on #, the
average particle density, whence follows (95). In the
last section we present a more microscopic version of
this argument.

We may look upon the effective interaction from a
different point of view by asking the question: how do
He? atoms in the solution become dynamically aware of
each other? Since the force fields produced by He?
atoms and He* atoms are identical a He® atom cannot
tell whether the potential it feels is produced by a He?
or He* atom. It is only through the ways that the He?
differ from their He* environment that an effective
interaction is produced; only the differences in He®-He!
mass and statistics enable the He® atoms to identify
each other.

Even though He® are fermions and He! are bosons,
statistics play a minor role in determining the effective
interaction. This is because the effective interaction is
determined by the behavior of two opposite spin He?® in
the solution. The scattering of two He? particles of the
same spin includes a further exchange term. But He?
atoms of opposite spin do not obey the exclusion
principle, and thus statistics alone offer a He® atom of
one spin orientation no way of distinguishing a He?
atom of opposite spin from a He* atom in the solution.

The important source of the interaction is thus the
He?-He! mass difference, which has the consequence,
as we have already noted, that a He® atom occupies a
volume in the solution (14«) times that occupied by a
He! atom. Thus, in a sense, the effective interaction
between two He® is equivalent to that between two
“holes” of relative volume « in the liquid. Their inter-
action is expected to be of relative order o?. That the
interaction is attractive does not, however, follow from
so general a consideration.
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We would conclude from this argument and from
(85) that if a=0, i.e., if the He? had the same mass as
the He?, and so played the role of “marked” He# atoms,
then aside from possible minor statistical corrections,
such marked He* atoms would have a vanishingly small
effective interaction. To see how this comes about, we
note that the phonon-induced contribution to the
marked atom interaction energy is, according to (65),
—m4s%/n4, while the direct contribution to the interac-
tion energy is the same as that for pure He! atoms,
mas®/naq; the two contributions cancel completely.

In the limit of vanishingly small He® concentration,
i.e., x— 0, our result [Eq. (85)]

Vo= —a2m4s2/n4

is an exact description of the physical effects we have
considered (one-phonon exchange plus associated
direct terms of this same order). We expect that other
physical effects, such as two-phonon exchange, will
lead to corrections in ¥y of higher order in a? Taking
the experimental value, a=0.28, we find

Vo=—0.078m45%/n4. (96)
This result is in striking agreement with the empirically
determined value of Eq. (17)

Vo"—‘ - 0.07541%482/%4 .

We note for future reference the exact x — 0 result
for Vo, which does not assume the validity of (95):

Vo= —o?mss?/na+[0(ust—pa)/0n31 Jn,ngy . (97)

VI. MICROSCOPIC CONSIDERATIONS ON
THE EFFECTIVE INTERACTION

We give, in this section, a microscopic calculation,
based on the variational method, of the ground-state
energy e of the He-He! mixture. We use the resulting
expression to determine us and 4, and find that their
difference depends only on the over-all system density,
in agreement with the thermodynamic considerations of
the previous section. We obtain an explicit expression
for a, one which depends only on the properties of pure
He! in its ground state, and use it to estimate «; the
resulting estimate is in good accord with experiment. In
conclusion we estimate, in two different ways, the
pressure dependence of V,, and conclude that V,
decreases in magnitude with applied pressure.

The exact Hamiltonian of the mixture is

p® b
H= Y —+3 > u(ti—1)+ > —. (98)
Het 294 i,d Hed 2m3
u is the bare interatomic potential and the sum in the
middle term is over all pairs of particles. Since 3
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=3m4/4 we can equivalently write H as
Pi2 P@z
H=Y —+5 > u(ti—r)+ 2 —,  (99)
2my i He? 614

where the sum in the first term is now over botk the He®
and the He! particles. The first two terms in (99) are
formally the Hamiltonian for N=N;3+N,He* atoms;
the last term represents the additional kinetic energy of
the He? atoms due to their lighter mass. This last term,
the additional zero-point energy of the He?, which is
relatively small, is essentially the perturbation that
leads to an effective interaction. It is in the form of a
“one-body operator,” a sum of contributions from each
He? atom individually.

We estimate e by taking as a trial wave function the
true ground-state wave function of pure He! at the
same particle density » as in the mixture. This trial
function does not take into account the exclusion
principle for He® atoms of the same spin. This is not of
importance though for calculating either « or the
interaction between opposite spin particles, since to
calculate these quantities we need consider a system
with at most one or two He® present. We note that in
this low concentration limit our trial function would
be the exact ground state were the masses of He® and
He! equal. With this trial function

e(n) = €0(1¢)+n3€1 (n) s (100)

where €(n), the expectation value of the first two terms
in (99) divided by the volume, is the ground-state
energy per unit volume of pure He! at density #; also

e1(n) = (p*/6ma) (101)

is one third the average kinetic energy per particle in
pure He! at density » and T=0.

Equation (100) for the energy says that the energy of
the mixture is that of pure He? at the same density, plus
a correction term, linear in #; at fixed », representing the
additional zero point energy of the He?. The absence of
terms in (100) of higher order in n3 is primarily a
consequence of the identity of the interatomic forces
between isotopes. [We remark that one expects correc-
tion terms to (100) due to exchange effects, but these
should not be significant in determining the effective
interaction between opposite spin particles.] The linear
form of Eq. (100) is reminiscent of the interpolation
formula proposed by Prigogine and co-workers? for the
total energy of a mixture at concentration x; at 7’=0
their formula is

e(n)= (1—x)eo(n)+xes(n)
= eo(n)+nsLes(n) —eo(n)]/n, (102)
where e3() is the energy density of pure He? at density

28 1. Prigogine, The Molecular Theory of Solutions (North-
Holland Publishing Company, Amsterdam, 1958); I. Prigogine,
R. Bingen, and A. Bellemans, Physica 20, 633 (1954).
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n. However, as the molar volume data indicate, the
coefficient of #3 in (102) is not sufficiently accurate at
low He? concentrations.

We calculate us and ps directly from (102), according
to

de deo dey
He= (-) =—tny— (103)
s/ ny On omn
and
ps= (9¢/dng)ny=pste (1) . (104)

We see that our trial function has the property that the
difference in chemical potentials, uz—us, is just the
additional zero-point energy e (n), of a He? atom, and
that furthermore this quantity depends only on the
system density. The thermodynamic derivative (95)
therefore vanishes, and from (97) we recover the result
(85) for the net effective interaction: Vo= —o2m45%/n4.

The present calculation tells us nothing about the
momentum dependence of the effective interaction,
because when exchange effects are neglected, the total
energy is only sensitive to V. A satisfactory calculation
of this momentum dependence remains an open
problem.

Let us emphasize that from a microscopic point of
view, the difference in chemical potentials depending
only on the density is a direct consequence of the fact
that the perturbation term, the extra zero-point motion,
is a sum of one-body operators. Perturbations of this
form are characteristic of isotopic impurity problems;
we see, in yet another way, that the interaction is of
order o? only because He?® is an isotope of He?.

In the preceding section we studied the replacement
of a He! atom by a He® atom with spin down, and its
effect on a second He* atom or a He? atom with spin up.
We argued that this replacement, if carried out at
constant density, produces the same change in u3 and
pa. From Eq. (103) we see explicitly that this change is

dey 0 P2 >

on  on \6my

This is essentially a Landau “Fermi-liquid” effect; it is
the modification of the extra zero-point energy of the
spin-down He?® already present caused by the addition
of an extra He? or spin-up He?.

We may obtain an explicit expression for a with the
aid of (66) and (104):

g 0 Pz

(105)

a=
as? Ong \Omy

Thus in the present calculation « is determined directly
in terms of the properties of the ground state of pure
He*, in particular, by the density dependence of its
average kinetic energy per particle. While it would be
desirable to have a microscopic calculation of e, using
detailed He* wave functions, so as to compare the
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expression (105) with experiment, we content ourselves
here with a rough estimate. To find the density depend-
ence of the average kinetic energy per particle in pure
He!, we simply regard each He* atom as a hard sphere of
effective diameter d moving in a fixed impenetrable
spherical shell formed by the atom’s nearest neighbors.
If a is an average nearest neighbor distance, the hard
sphere moves as a point particle in a shell of radius
a—d, and from elementary quantum mechanics the
ground-state energy of the particle is

(P*/2me) =112/ 2mq(a—d)?. (106)

If we assume a~#ns/® and d independent of #4 then

140{p?)/Ons=2w"h%a/3(a—d)3, (107)
so that from (105),
a= (rh/3mysa)*(1—d/a)3. (108)

de Boer®® has used the simple formula (106) to calculate
the zero-point energy of solid He! and finds good
numerical agreement if he chooses the empirical value
d=2.0 A and takes a=2Y5z713, appropriate to an fcc
lattice. We estimate (108) by using the same numerical
value for d and letting ¢=3.8 A, an average nearest-
neighbor distance as determined by neutron scattering
experiments®; then (108) gives =0.31, which is quite
close to the experimental value® 0.28.

The agreement between our variational calculation
for @ and the experimental value provides further
evidence that the predominant source of the effective
interaction is the difference in zero-point motion of
the He® and He®.

We may also use the above model, together with
Eq. (85), to estimate the pressure dependence of ¥V,
and thus to estimate the pressure dependence of the
transition temperature 7', for s-state pairing. We shall
find that V, decreases in magnitude with pressure,
indicating that applying pressure probably would only
serve to lower 7' for s-state pairing.

Using (108) we write Eq. (85) for V as

(xh/3)*  a?
| Vol =

. (109)
m4g3s?ny (a—d)®

Assuming again that d is independent of #4 and a~ns"13

we find
2 al Voi 1 2d

|V0| 31’L4 3 a—d s 0ng

2n4 OS

(110)

2 J. de Boer, Progress in Low-Temperature Physics, edited by
C. J. Gorter (North-Holland Publishing Company, Amsterdam,
1957), Vol. 11, p. 23.

% D, G. Hurst and D. G. Henshaw, Phys. Rev. 91, 1222 (1953);
100, 994 (1955). .

st W, L. McMillan [Phys. Rev. 138, A442 (1965)7], using his
He* ground-state wave function, has calculated that #d{p?/2m4)/on
=3.46X 10715 ergs/atom. Taking this value and the experimental
sound velocity in Eq. (105) one finds «=0.30. We are grateful to
Dr. McMillan for communicating to us the results of his calcula-
tion.
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From the measurements of Atkins and Stasior®? we have
2 as

——=27.
s Ong

Then taking the same values of ¢ and d as above we
find
[ Vol
8

Ny U2

a| Vol

, (111)

implying that pressure weakens the effective interaction.
The value (111) is equivalent to about a 3.5%, decrease
in |Vo| per atm. Similarly, from Eq. (108) we find the
estimate

114(60!/(9%4) =~ — 1.13 . (112)

The pressure dependence of Vo may also be estimated
by relating it, through a thermodynamic argument, to
the concentration dependence of the molar volume.
We first note that from (59), the volume per particle

#~! can be written as
d
() . a1
oP z
Thus
on! J
() ~(Gwrw),
ox P GP z
since, at fixed P,
%(Qus/0x) p+ (1—x) (Ius/dx)p=0. (113)

Equation (66) for « is simply Eq. (114) evaluated in
the limit « — 0. Now differentiating (114) with respect
to x at constant pressure, and using (115) again, we
find in the limit x — 0 that

CORE A
oa* /o LoP\ox/pl,
We now relate the right side of (113) to the effective

interaction by writing us=pu’+u, as before. Then in the
nondegenerate region

dp
N3= 2/ e(ﬂf—1’2/2m*)/KT’
(2xh)3

2 K, R. Atkins and R. A. Stasior, Can. J. Phys. 31, 1156 (1953).

(116)
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so that at constant P and T,
Oy 1 /0ns 3 /om*
GG ) ]
ox/p ns\dx/p 2m*\ 9z /p
3 som*
= —KT[a—I————(—) ] , (118)
2m*\ Ox P

to lowest order in x. Also (9u’/dx)p=nV, neglecting an
exchange contribution in the nondegenerate region.
Combining this with (118) and (115) we have

My 6|V0|

452 |‘1 0%
2
| Vo| 0ms n4|Vo|l-vo4 0x%/ p

da 392 Inm*
+KT(—-+— ):I , (119)
dP 2 9xdP

where v is the molar volume. The term in square
brackets may be estimated by letting 77— 0 and
extrapolating to 7=0 the value of 9%/dx? inferred from
Kerr’s data® in the nondegenerate region. Unfor-
tunately the loss of accuracy in this extrapolation allows
us to deduce only that (8%/9x%)p/ves is at least greater
than 0.05 as 7'— 0. Thus the right side of (118) is
negative and greater in magnitude than 1.6. This is
consistent with the result (111), and is a further check
that Vo should decrease in magnitude with applied
pressure. [Turning the argument around, Eq. (119)
with (111) and (112) may be regarded as a very
preliminary microscopic calculation of (8%/9x2)p. ]
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