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Charged Boson Gas at High Density*
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The ground-state energy of a charged boson gas at high density is evaluated exactly to second order in
the density expansion, making use of complete sums of one- and two-ring diagrams. The result agrees
numerically with Feenberg s variational calculation of the energy, although the methods appear to be sub-
stantially different. The presence of logarithmic terms in the energy, which are absent in the exact result,
is shown to be a result of truncation of the Hamiltonian in the pair approximation or of inadequacies of vari-
ational wave functions which omit interpair correlations.

HE ground-state energy of a charged boson gas
has been considered by several authors using

various techniques for determining the ground-state
energy. The leading term in the energy at high density
was erst evaluated exactly by Foldy, ' who realized that
this term arose from the ring diagrams (involving only
a single momentum transfer) which could be exactly
summed by the 3ogoliubov transformation. The
structure of the expansion for the energy in powers of
the density was also briefly discussed by Foldy and
considered in more detail by Girardeau and Arnowitt, '
Girardeau, ' Iee and Feenberg, 4 and Wright. ' They
showed that the series is the form of

The vanishing of the q=0 matrix element of e is due to
an assumed fixed positive charge background giving
charge neutrality. The Hamiltonian may now be
separated into
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with r„ the spacing per particle, measured in units of
&time'. The various authors have, however, given
different values for the constant ct in Eq. (1) and, more
important, have disagreed on the existence of the
logarithmic term which dominates the correction to the
lowest-order energy at high density. It is the purpose
of this paper to give an exact evaluation of the constant
term in the energy and to show that the logarithmic
term is absent.

The Hamiltonian is
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To determine the leading term in the energy, it is
sufficient to evaluate the sum of the ring diagrams
involving a single momentum q. The ring diagrams may
be represented as indicated in Fig. 1 or in the more
compact notation of Fig. 1. These diagrams contribute
to the energy in order p"4 and unity, the structure of a
term of order tt being [with momenta measured in
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Fro. 1. Diagrammatic representation of the ring diagrams. In
the upper diagrams, the condensate lines are shown as dashed
lines and the interactions as wavy lines. In the lower diagrams, the
condensate lines are suppressed and the interaction lines (which
may include exchange) replaced by dots.
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units of (4n.//se4pp)'/41
Fn. 2. Yvro-ring diagrams. In the

general perturbation expansion, each
closed ring is replaced by the sum of
all single-ring diagrams.

with C„a numerical factor resulting from the number
of diagrams of a given order but with diferent sequences
of vertices. This sum may be evaluated by the Bogoliu-
bov transformation applied to the pair HamiltoniaLi B„.

We now consider from the same vievrpoint the dia-
grams contributing to the next term in the density
expansion for the energy. These are given in Fig. 2. The
density dependence of these terms is 6xed in order e by
the r4 factors of 1/0 coming from the interaction, the

two factors of 0 arising from the integrals over the two
momenta appearing in the two rings, and- the factor
Ã0" ' arising from the ground-state operators at each
vertex. The remaining dependence on density enters
from introducing the momenta scaled in units of
(41rpome')'/4, which give factors (po)'/' from the integrals
over the two momenta and po'i" " from the matrix
elements of the interaction and the energy denomi-
nators. Collecting these factors gives

E(2 ring) O' No" ' 1
X (dimensionless integrals over two momenta)

g 0" g pp" '

po=—X (dimensionless integrals over two momenta) .
p

This argument does not, of course, determine the
possible dependence of the energy in this order on ln p.

A chalactcrlstlc of thc double-11ng d1agrams 1s thc
restricted appearance of the three vertex types at which
a momentum transfer occurs, as indicated in Fig. 3.
The X vertex occurs only once with no accompanying
Y or ) vertex, and the F and X vertices must appear
together, but only once. The other vertices associated
with the operators v~~, ~0~, and e20 may„however, appear
an arbitrary number of times. The terms in the Hamil-
tonian giving v~~, F02, and e20 must therefore be evaluated
exactly, but perturbation theory in first order may be
applied to the X vertex and in second order to the F
and X vertices. This may be readily carried out by
making the Bogoliubov transformation and then
evaluating the nondiagonal terms in the transformed
Hamiltonian by 6rst- and second-order perturbation
theory in the Bogoliubov representation. The result of
this calculation may be obtained from the results given
hg Glrardeau fol' tlM X veltex 111 Eqs. (7) and (8) of
Ref. 3 and for the FX vertices from Eq. (C1) of Ref. 3.
He did not, however, correctly note certain features of
the results.

The various terms for the energy per particle, in
Ry, are

values for the integrals given by Foldy, ' m'e 6nd
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The terms from tv' rings are
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Combining these results and introducing the numerical Fio. 3. Elementary vertices contributing to the two-ring diagrams.
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FIG. 4. Contribution to the
reduced vertex operators.

Combining this with Eq. (10), we find

0—80.31/r, 2/4+0 02.80+0(r,'/4) . (17)

Girardeau' gives numerical results at intermediate
density from which the constant term in the expansion
may be deduced; his result is

2„= h —0—80.31/r, 2/' 22—lnr, +0.18.

Feenberg's result is

(18)

with
u"= (1 —1'),

(g —(1+P4/4)1/2

-p2/2+ 1/p2 1-1/2
+-

2GO 2
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I'(P P',P") 1/(2'"PP'P") (13)

)& [(A"—1)'/'A "+(A'"—1)'/2A']. (12)

The integrals in Eq. (11) are both singular for small
momenta, where

A ~ 1/(2'"P)

h= 0 8—031./r, '/ +0 0280. +O(r,2"), (19)

which agrees (within the accuracy of the numerical
evaluation of the integrals) with the exact result of
Eq. (17). This agreement suggests that Feenberg's
expression [Eq. (57)] of Ref. 4 might be transformed
into our Eq. (11).We have not, however, been able to
demonstrate the equivalence of the two forms. The
close agreement of Feenberg's result must therefore
demonstrate the power and accuracy of his procedure.

The inclusion of nonpair terms, which the above
analysis shows markedly aAects the ground-state
energy, is also important in the excitation spectrum.
According to Hugenholtz and Pines, ' the excitation
energy is determined by

[~—l~»(C)+2~»( —C)7—[~o(C)+2~»(C)
+-,2&22(—q) —/ $2+&222(q) =0, (20)

with
The contribution in the small-momentum limit is /2 =&22 (0)—&22(0) (21)

P'(P')'(P")'
(14)

This integral is logarithmically singular for small
momenta; if a cutoff proportional to r„'" is assumed,

hx —— ',f 1nr, —-
= —~s lnr, +0 (r,'/') 1nr, . (13)

This term was erst obtained by Girardeau' who evalu-
ated the energy variationally in the pair approximation.
We see, however, that the contribution S~ arising from
the nonpair contribution cancels this singularity. The
sum of Bx and 8~ is then readily seen to be nonsingular
for both small and large momenta.

The integrals in Eq. (11) have been evaluated
numerically, giving the result

In Eq. (20), Z»(g) is the sum of all irreducible diagrams
with one ingoing and one outgoing line and Z22(/t) with
two outgoing lines. These include in the leading orders
the diagrams shown in Fig. 4, in which the X vertex and
the FP vertices appear together in the second-order
term. Obviously a treatment of the excitation energy
omitting the nonpair term in the Hamiltonian, and
hence the FX vertices, is correct only in 6rst order, the
proper symmetry of the irreducible parts already being
lost in second order. The calculation may, however, be
carried out with the inclusion of the X and YP to leading
order and the ~~~, ~p~, and 8gp to all orders, maintaining
the proper symmetry of Z~~ and Zp2 and hence satisfying
the excitation-energy and self-energy theorems implied
by Eqs. (20) and (21).

The author is indebted to Professor Eugene Feenberg
for bringing this problem to his attention and to Mrs.
Marielle Bryant for programming the integrals in Kq.
(11) for CDC 3600 evaluation.
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