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molecular parameters, according to the model of Cohen
and Turnbull, 33 who suggest that the fluidity of a liquid
is given by the possibility of correlations in free volumes
similarly to the Rice normal-mode analysis of diffusion
in crystals. '4 In fact the pseudo-activation energy of the
process should vary with the molecular parameters of
the tracers only insofar as its diameter increases much
over the diameter of the solvent molecule. Where the
Cohen-Turnbull theory is very rough indeed is in the
mechanism by which the diffusing molecule moves once
the step has been made possible by the free-vo', ume

"M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164
(1959).

'4 S. A. Rice, Phys. Rev. 112, 804 (1958).

Ructuations. In this respect also the refinement by
Naghizadeh35 does not give any better improvement
and leaves D~ 1/Qm2.

Probably the free movement in the enlarged cage
should be replaced by a quasi-Brownian motion, but
this is not a simple change in the Cohen-Turnbull
theory, since it will involve the condition under which

a free-volume fluctuation is useful for the diffusive

steps to start. Incidentally, we must point out that the
discrepancies founcPO between self-diffusion data and
the Cohen-Turnbull theory are mainly connected with
the pre-exponential factor which is given by just those
features of the model we do not rely on.

3' J. Naghizadeh, J. Appl. Phys. 35, 1162 (1964).
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Collective dynamical variables in classical liquids, having the character of longitudinal and transverse
phonons, are proposed, A variational argument is used to determine their frequency spectrum; the sound
velocities of long-wavelength modes are determined by elastic moduli of the liquid. Their lifetimes are
estimated, and turn out to be of the order of 10 "sec for normal liquids, but much longer for highly viscous
liquids (glasses).

I. INTRODUCTION

HE question to be discussed here is: Do there
exist collective variables, in classical liquids,

analogous to longitudinal and transverse phonons in
solids? The answer to this question is a qualified "yes".
A physically reasonable basis can be found for the con-
struction of longitudinal and transverse phonons in
classical liquids, and it is possible even to calculate
their frequency spectrum. The physical existence of
these phonons is more doubtful. Except for liquids at
very low temperatures, e.g., in the glassy state, their
lifetimes are expected to be very short.

In this paper, I discuss the mathematical and physical
basis for the construction of phonons in liquids, and I
give some estimates of their dispersion and lifetimes.

II. DEFINITIONS

The concept of an elementary excitation is very
familiar in connection with the theory of solids and also
the theory of superQuids. In solids, for example, the

* This research was supported in part, by the National Science
Foundation under Grant No. NSF GP 4921. The material in this
paper was presented at the I.U.P.A.P. International Conference
on Thermodynamics and Statistical Mechanics, Copenhagen,
1966.

dynamical behavior of a lattice is usually discussed by
means of normal modes of vibration; these are the
longitudinal and transverse phonons. Internal electronic
states are described by excitons. Excitations in super-
conductors are described by Cooper pairs. Excitations
in liquid helium are described by longitudinal phonons
and by rotons. And so on.

All these elementary excitations are used in what is
essentially a quantum-mechanical way. That is, creation
and annihilation operators, in the language of second
quantization, are used to characterize states of excita-
tion of a system from its quantum-mechanical ground
state.

The same language could be used, in principle, to
describe classical systems also (e.g. , liquid xenon); but
a quantum-mechanical description is extremely cumber-
some because of the high degree of excitation involved.
For classical liquids it seems far simpler to use a char-
acteristically classical description in the first place.

But then what classical quantities correspond to
elementary excitations in quantum mechanics? The
following definition appears reasonable.

First, we recall that a characteristic property of any
elementary excitation (in quantum mechanics and in the
classical limit) is that it varies approximately periodi-
cally with time. Let A be some property of the system,
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either a Heisenberg operator representing some ob-
servable, or else a classical function of coordinates and
momenta. Then we shall refer to A as an elementary
excitation if A varies periodically, or

dA/dh=i(oA .

This definition can be used in classical meehan. ics just
as in quantum mechanics; the only difference is in the
prescription for calculating the time derivative.

dA/dh=iL, A . (2)

The operator iL is the poisson bracket of the variable
on which it operates, and the Hamiltonian function H.
The imaginary unit i is introduced so that J is itself
Hermitian with respect to a certain class of functions.
(The mathematical theory underlying operator methods
in classical mechanics has been developed by Koopman'
and von Neumann. ')

Suppose that A is an elementary excitation. Then it is
approximately periodic. In operator notation, A obeys
the equation

IIL ANALOG OF SECOND QUANTIZATION

The idea of an elementary excitation in a classical
system is particularly useful if one can 6nd a classical
analog to the language and techniques of second
quantization. An analog may be constructed as follows.

(It should be noted that the following scheme has
not yet been put to the test of utility in actual calcula-
tions. Also, certain hypotheses of a mathematical kind
have to be made, and these have not yet been verified

by rigorous arguments. For these reasons, the following
remarks must be regarded as plausible conjectures. )

Equations of motion in classical mechanics can always
be written in operator form by using the I iouville
operator J,

For this construction a metric is needed. The inner
product of two functions p& and P& will be defined by

where ( ) denotes an equilibrium average (e.g., over a
canonical ensemble at temperature T). As usual the
asterisk denotes complex conjugate. Sy taking suitable
linear combinations we can arrange that the set g )
is itself orthonormal.

From these we construct a new set of functions, in
effect by taking "powers" of the Q,

(6)

and so on. The functions P&'&(a,P), which may be re-

garded as "double excitations, " can be orthogonalized
to the "single excitations" p&'&(n) by the Schmidt proc-
ess. Then the functions p&" (n,P,y) describing "triple
excitations" can be orthogonalized to the preceding ones,
etc. This leads to a complete set of orthonormal func-
tions which we denote by {4„).

(The completeness of the resulting set must depend on

a good initial choice of approximate eigenfunctions @;
and all we can do at present is conjecture that it is
indeed possible to carry out the procedure as outlined. )

Now we can use the orthonorrnal set {4„)to expand
any arbitrary dynamical variable A, as follows:

A=+ a,%.,

where the coefficients are

In exactly the same way we can write the general
equation of motion (2) in matrix form,

or
dA/dh=iLA io)A— (3) de

=-i+ J„„a„,
r

Elementary excitations, according to our definition, are
approximate eigenfunctions of the Liouville operator,
and their frequencies are approximate eigenvalues.

For a further discussion of eigenfunctions and eigen-
values of L, see a recent article by the author. '

Let us now suppose that some reasonably simple set
of approximate eigenfunctions has been found. These
will be denoted by {@) where n= I, 2, 3 . If they
are linearly independent, if there are enough of them,
and if they have the right form, then they can be used
as a basis for expansion. That is, a set of orthonormal
functions may be constructed from them by the Schmidt
process.

' B. O. Koopman, Proc. Natl. Acad. Sci. U. S. 17, 315 (1931).
' J. von Neumann, Ann. Math. 33, 587 {1932);33, 789 {1932).
' R. Zwan~&g, Phys. Rev. 144, j.70 (S96u).

where all dynamical properties of the system are con-
tained in the matrix L,„„,

(IO)

This is perhaps as close as one can come to the
language and technique of second quantization in a
classical theory. Classical observables are expanded into
contributions from various "multiple excitations, " and
dynamical interactions are represented by matrix
elements of the classical Liouville operator between
different multiple excitations.

In the case of a harmonic oscillator, the classical
language just described and the familiar quantum-
mechanical language of second quantization are in close
correspondence. The basic classical functions P can be
chosen as normal mode variables for a single oscillator.
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These correspond in quantum mechanics to creation
and annihilation operators for single excitations. The
derived classical functions p&", p&@, etc., correspond to
products of creation and annihilation operators and
therefore describe multiple excitations. The metric
( ) used here corresponds to a quantum-mechanical
average over the ground state (vacuum). The classical
I.iouville operator corresponds to the quantum-
Inechanical commutator of an observable with the
Hamiltonian.

One difference, which may turn out to be useful. in
quantum-mechanical applications as well as classical
ones, is that we propose to consider excitations from the
state of thermal equilibrium, rather than just from the
ground state.

It is our hope that by suitable choice of the basic
approximate eigenfunctions p the off-diagonal elements
of the matrix I.„„will be "small. "If this works out, then
dynamical processes can be described mostly by
diagonal elements of L, and the effects of off-diagonal
elements can be accounted for by low-order perturba-
tion theory. (For a slightly anharmonic oscillator this
appears to be feasible, so it is natural to hope that the
same procedure will work in less familiar circumstances. )

The problem of constructing phonon-like elementary
excitations for liquids in analogy with those in soHds is
greatly complicated by lack of a reference lattice.
Normal modes of solids are linear combinations of dis-
placements of molecules from equilibrium lattice posi-
tions. But in a liquid no such equilibrium lattice exists.
Because of this, a different approach has to be taken.

However, many characteristic properties of solids
are shared by liquids, especially in the extreme case of a
supercooled liquid or glass. For this reason it would be
of great value to be able to describe solids and liquids
in a uniform way by Ineans of elementary excitations.
This suggests that the first step should be the elimina-
tion of the reference lattice froxn the standard theory of
solids. If this can be done, then perhaps the same
Inethod will work for liquids.

The procedure to be followed in this article is best
explained by an extremely simplified example. It must
be understood that this example is for illustration
only, and is cot intended to apply in a precise way to
liquids.

Consider a single harmonic osciHator, with mo-
mentum p and position q, and let qo be the equilibrium
position of the oscillator, or the reference lattice. The
Hamiltonian is

EI= (1/2m) p'+-', ~'(q —qo) ',
aIld the equations of Inotlon are

q= p/m,

p= mM (q —
qo) .

Note that the equilibrium position appears in the
Hamiltonian and in the equations of motion.

Now we change variables as follows. Instead of q we

use the I)ew variable Ii, the force on the oscillator,

F= —m-(o'(q —
qo) .

Qn eliminating q, the equations of motion become

p=F,
F= —N p.

These equations of motion, expressed in the variables

p and F (or dp/df), contain exactly the same information
as when they are expressed in the variables q and p
(or dq/dh); they consist of two simultaneous linear
equations in two variables, and a complete solution
requires specification of two initial vahles. But observe
that the equilibrium position go no longer appears in
the equations. When the new variables are used, we do
not need to know the location of the origin; we need
instead the force, which is invariant to displacements of
OI Igln.

(This transformation can be made in a canonical way
by scaling the variables appropriately, e.g. ,

P = F/cv, —
Q= p/ma).

It is easy to verify that the new P, () are canonically
conjugate. )

Oscillator normal modes, in the usual variables, are

and they obey the equation

dA/dt=- %'i%A. (17)

V. WARNINGS

The dynamical description of a system of interacting
particles by means of momenta and forces, while

evidently feasible and correct for harmonic oscillators,

In the new varia, bles p and F the osciHator normal
modes are

y= pa (1/ice)F (18)

and they obey the equation

dQ/dt = &icop

Clearly there is no reason to prefer one set of variables
to the other.

The preceding remarks can be extended easily to all
normal modes of coupled oscillators, and so to phonons
in solids.

The procedure that will be used in this article to
construct phonoIls in liquids is based on the same change
of variables, from positions and momenta to mom etta
aIld foI'ces. This change in variable is a way of eliminat-

ing the reference lattice from the theory of solids.
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presents certain pitfalls in other cases. The two main
problems are to express the Hamiltonian in terms of the
new variables (i.e., to eliminate positions in favor of
forces), and to find appropriate frequencies for the
normal modes.

Probably the positions can be eliminated in the
way described only when the system is su6iciently
dense. Consider a system with the potential energy
U(R1)R2) . ',R~), wlllcll ls a fllllc'tloli of posltlolis Rl,
R~, ,R~. The corresponding forces are

I';= —v'R,.U

= F,(R1,R), Ry) . (20)

The hope is to solve these coupled equations for posi-
tions as functions of forces. This is easy when the system
is a suKciently dense lattice. But in a gas at low density,
for example, the force on a molecule vanishes for most
con6gurations, so that the desired inversion is not pos-
sible. A similar disci.culty arises when the force on a
molecule is the same for configurations that are not
trivially different. Then the multiple-valued nature of
the inverse causes serious trouble.

If, however, the inversion can be accomplished suc-
cessfully, so that

R;= R, (F1,F2, ,F~), (21)

then we can eliminate positions to give the potential
energy as a function of the forces,

U= U(Fl F2 F~). (22)

In the absence of any contradictory information, it will
be assumed that the inversion is possible, so that the
state of a liquid can be de6ned by momenta pj and
forces I";.

The other problem alluded to is that of finding ap-
propriate frequencies. If one is able to start from an
equilibrium lattice, de6ned by the configuration for
which the forces vanish,

de6nition of an elementary excitation as an approxi-
mate eigenfunction of the I,iouville operator. Thus the
frequencies are approximate eigenvalues.

There are basically only three ways of 6nding eigen-
functions and eigenvalues of a given operator. The 6rst
way, to solve the eigenvalue problem exactly with
analytic techniques, is hardly feasible for liquids (al-
though it works for harmonic lattices). The second way
is to use perturbation theory. For a perturbational
approach, some practical zeroth-order approximation is
needed, and the only one which seems accessible at
present is to treat molecules as free particles. But then
the interactions, which are strong in liquids, would have
to be accounted for by high-order perturbation theory.
At present the third approach, which is to use a varia-
tional technique, seems preferable.

Some background material on variational calculations
of approximate eigenfunctions of the Liouville operator,
and a relevant application, have been described already
in a recent article. '

Any variational calculation starts with the assump-
tion that a trial function has some particular mathe-
matical form. What kind of approximate trial function
is most appropriate for liquids' Let us argue from
analogy with solids.

We know already that for a harmonic lattice, the
exact eigenfunctions have the form

p Qp~i Rgk0 (26)

The equilibrium position of the jth molecule is R;, and
its momentum density is

&=Pk+(1/~k)A.

The subscript k denotes a Fourier component in the
reciprocal lattice, and pk is the kth component of the
li@eari red momentum density,

F;=0, (j=12, ,Ã), (23) J —Q P ~ik Rg (2&)

then there is no intrinsic dHFiculty in expanding the
potential energy in powers of Il,

U=Uo+-,'Q g A;, :F;F,+ . (24)i'
The result of the expansion can be found easily, for
example, from the conventional treatment of lattice
dynamics in terms of displacements.

But if one wants to avoid the use of a reference
lattice, as in connection with liquids, some other pro-
cedure is required. The next part of this article discusses
a possible method.

VI. VARIATIONAL CALCULATION OF
EIGENFREQUENCIES

The frequencies associated with phonons in liquids, or
other elementary excitations, can be found by using the

Instead of the equilibrium position R, , which is not
defined for a liquid, we use the actual position R,.
Because of this, it will turn out that our trial function
cannot reduce to the exact eigenfunctions for a harmonic
lattice, unless we first lineari7e in deviations from
equilibrium. This point is discussed in greater detail
elsewhere. '

Analogy suggests that we use as a trial function for a
liquid the quantity

+k+ (1/&&k)Jk ~

The unknown coefllcient 1/icuk will be treated as a
variational parameter, and we shall see that +i, is in fact
the approximate eigenvalue.

4 R. Nossaj and R.. Zwanzig (to be published).
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So for the moment let us consider a particular class
of trial functions having the general structure

where u is a, variational parameter. %C require the func-
tion 3 to bc clthcr cvcIl or odd ln moHlcntum; and we
require that its equilibrium average vanish,

(A&=0.

The preceding results can be used to calculate the
frequency spectrum of elementary excitations in a
hquid.

Because of isotropy, it is convenient to use the
faIQlllar decoIIlposltloIl of Fourlcl' compoilcnts into
longitudinal and transverse parts, by means of three
orthogonal unit vectors e», P = 1,2,3).The longitudinal
ODC lS

LIt is evident that if &A) NO then one cannot. satisfy the
clgcnvahlc equation LA =Nc4 even on thc avelagc un-
less 0) Itself vanishes. f

The variational principle has been discussed before';
here we only repeat the main equations. The quantity
Leaf is defined by

(31)

~~1=-11/lkl.

Components of the momentum density a,re

A).=J~ ~I), -

The clgcnfunctlons aI'c

4'»=%I+{I~») J»

(39)

(41)

vrhere present notation is exactly the same a,s used
before. The condition that Lcoj be stationary with
I'cspcct to RlbltlRry vallRtlolls 111 thc tl'1Rl fllllctloll $

leads directly to clgenfunctlons and clgcnvalues.
When the trial function (29) is put into (31) we obtain

aDd the corI'cspoDdlng clgcnvalues aI'c detcrQllned by

~~),'= & IJ» I ')/(I A), I
'). (42)

The k dependence of the eigenfrequcncies, i,e.,
phonon dispersion, can be found by marking out the
averages in the preceding expression. This is particularly
easy when the total intermolecular potential energy U
call bc cxpl'essed Rs R slllll of pair potclltlals Q(R;q'),

(~"-~)(l ~ I'&

&I~ I'&+«'(l~l'&

In deriving (33) lt is necessary to note that

(33)
U=-', Q Q II{A")

In this case the frequency spectrum is determined by
the radial distribution function g(r) of the fluid as
follows:

&2~1.A&=0 (34)
~» {P) (1+—2cal c13}&'

because of symmetry in momentum. (If we had allowed
the function A to have both even and odd parts, this
would llot. bc tl'llc. ) Tlm cxtl'a 'tllll'e dcllvatlvcs 111 (33)
coIQc f

lorn

I~"a(r) {c»k r —1)("~ V)'u{r). (44)

(35)i&A*I.A&= &A+j &. —

which is a consequence of the Hermitian character
of L.

OD variation of thc paramet«@*, th«equi«lncnt
that LOI] be stationary leads directly to

(Here p ls thc nulllber density E/ pand III is the mass'
of all Indlvldual Irloleculc. )

The averages contained in (44) have already been
evaluated in the limit of long vravclength. ' In this limit
ere introduce longitudinal and transverse sound veloci-
ties Cy, so that

a=1/ia). (36} liIQ (dp)t /k =- C)t .
IC ~0

When this is ut back into 33, the eigenvalues are~hen this s p These sound velocities are related to the high-frequency
shear modulus G„and the high-frequency bulk modulus

CI'= Cp'= G„/mp,
C3' ——{-,'G +E )/mp.To ea,ch eigenvalue there is associated an eigenfunction

e=~+(1/I~)~ ~

Numerical tables of the two elastic moduli, for cor-
(3g) responding states fluids, are provided in Ref. 5.

This has exactly thc form of the tllal function ploposcd
(2g) and the frequencies Rrc liow determined.

~R.. danzig and R. Mountain, J. Chem. Phys. 48, 4464
(1965).
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When (42) is used to calculate the frequency spectrum
of phonons in a harmonic lattice, the correct long-
wavelength longitudinal and transverse sound velocities
are obtained. For shorter wavelengths, the present pro-
cedure leads to results slightly different from the correct
phonon dispersion; this is a consequence of our use of the
total momentum density in the trial function, rather
than the linearized momentum density.

d2

~kX &kX JkX Jkk ~

dt2 rk)t 4 (4&)

The quantity rk), is a lifetime. The frequency ~» is
the same as before.

Now we use this equation of motion to calculate
viscosity coefficients from time correlation function
formulas. ' The shear viscosity q is given by

g== V 'P lim
k~p

dt (5,*~(0)5,'~(t) ), (48)

where Sz*& is the (x,y) component of the stress tensor
Sk, defined by the momentum conservation law

dJg/dt=ik S„.

Note that (48) refers to the limit of long wavelength
only. Let us take the vector k in the y direction, and
look at the component of Jk in the x direction, or Jk~.
Then (49) becomes

dJ»/dt=ikS;~.

The equation of motion (47) is solved for J» as a
function of time; by (50) this gives the time dependence
of S*&. The solution contains two initial values, J»(0)
and J»(0).The solution is put into (48), and the average
over an initial equilibrium ensemble is performed.

VIII. LIFETIMES

The lifetimes of elementary excitations in liquids
may be estimated from experimental information about
elastic moduli and viscosities. They are, as we shall see,
essentially just the relaxation times associated with
shear and bulk. relaxation processes.

In the physical picture taken earlier in this article,
the momentum density plays the role of an oscillator
coordinate; the force density plays the role of an oscilla-
tor momentum. This suggests, as a rough guess, that
the momentum density might obey the equation of
motion of a damped oscillator,

The two coeScients in (48) are

(S ~*"(0)Ai(0))= 0

which vanishes by symmetry, and

(5&)

gl 3rt+'gI p (54)

where g y is the coefficient of bulk viscosity. The result is

g) ——mpC3're

=(-',G +E„)ra,
(55)

where r3 is the long-wavelength limit of the longitudinal
lifetime.

Then if we have at hand numerical values for the
viscosity coeS.cients and the elastic moduli, we can
estimate the lifetimes of long-wavlength elementary ex-
citations, from (53) and (55). Estimates have already
been made, ' though in a different connection, by
Mountain and the author. It was found that for liquid
argon, and similar materials, typical lifetimes are of the
order of 10 "sec.This seems su%.ciently small, in com-
parison with periods of oscillation of the elementary
excitations, that the concept of an elementary excitation
may not be useful for liquid argon.

For a glassy material, however, viscosity coefficients
are abnormally large compared with ordinary liquids
and the corresponding lifetimes are large. For such
materials, the concept of an elementary excitation of
the sort discussed here has a definite physical meaning.

But even if the lifetimes are very short, perhaps as a
result of strong anharmonic interactions between ele-
mentary excitations, the elementary excitations will
themselves still be useful as a beginning step in more
detailed theories.
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(S-~*"(0)S.*"(0))= VP 'G- (52)

which introduces the high-frequency shear modulus
G„. On performing the time integral, we obtain 6nally

q = mpCJ2rg ——6 rj,
where r~ is the long-wavelength limit of the transverse
lifetime.

In exactly the same way we can calculate the longi-
tudinal viscosity,


