
PH YS ICAL REVI EVV VOLUME 156, NUMBER APRIL 1967

Diffusion in Simple Liquids
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(Received 5 October 1966)

The diffusion coefficient of various tracers (H2, T2, Ne, Ar, CH4) in liquid nitrogen has been determined,
using the capillary technique of Anderson and Saddington, in the temperature range 70&T&100'K at
constant pressure of 16 atm. The experimental results can be well described by the expression D=A exp
(—8jT).The 8 values for the various tracers turn out to be equal within the experimental errors. The A
values are also independent of the mass of the tracers (absence of isotopic effect) except for a small quantum
effect, and proportional to some inverse power of the molecular parameters of the tracer. The features of the
present experimental results are compar'ed with the predictions of some theories. Models which emphasize
the importance of hard-core collisions or the activated process in the liquid dynamics are found in disagree-
ment with the experimental data.

IJlTRODUCTION'

"N recent years considerable efforts have been made
- ~ to understand the dynamical behavior of simple
liquids either from a theoretical point of view' or from
an experimental point of view which takes advantage
of the use of inelastic neutron scattering. '

The main problem is, of course, the structure of the
distribution functions, and recently there has been some
tendency to stress the importance of hard-core collisions
in determining the static and dynamic behavior of
simple liquids. ' ' The diffusion coefFicient is determined
essentially by the long-time behavior of the distribution
function. ' However, considerable insight about cor-
relations in liquids can be obtained by looking at the
dependence of the diffusion coeKcient in binary dilute
solutions of simple liquids and using the principle of
corresponding states. [A similar approach' has been
used to study correlations in solids. ] For this purpose
very few experimental data are available in the litera-
ture, ' "and they are incomplete, as far as our problem
is concerned, either because they are referred to a too
small number of tracers, ' ' or because oI' the complica-
tion of large quantum effects, ' "or because they do not
analyze the temperature dependence completely, and
solvents for which the corresponding-state principle
does not apply properly"" have been used. In any
event, very interesting suggestions' have been made
as far as the D dependence on the molecular parameters
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'H. C. Longuet-Higgins and B. Widom, Mol. Phys. 8, 549
(1964).

4 S. A. Rice and A. R. Allnat, J. Chem, Phys. 34, 2144 (1961);
A. R. Allnat and S. A. Rice, ibid. 34, 2156 (1961).' A. G. Gibbs, J. H. Ferziger, Phys. Rev. 138, A701 (1965).

6 See A. H. Schoen, Phys. Rev. Letters 1, 138 (1958).
G. Cini-Castagnoli, G. Pizzella, and F. P. Ricci, Nuovo

Cimento 10, 300 (1958).
G. Cini-Castagnoli and F. P. Ricci, Nuovo Cimento 15, 795

(1960).
G. Cini-Castagnoli, A. Giardini-Guidoni, and F. P. Ricci,

Phys. Rev. 123, 404 (1961).
' M. Ross, J. H. Hildebrand, J. Chem. Phys. 40, 2397 (1964).
» K. Nakamshi, E. M. Voigt, and J. H. Hildebrand, J. Chem.

Phys. 42, 1860 (1965).

is concerned, and we thought it worthwhile to study
them more extensively.

For this reason we have measured the diffusion
coefficient of various tracers (H2, T2,Ne, Ar, CH4)" in
liquid N2 in the temperature range 70—100'K at con-
stant pressure of 16 atm. All these substances obey
quite satisfactorily the corresponding-state principle
both for equilibrium properties"" and for transport
properties, " with well-known sets of molecular
parameters. '4

APPARATUS

The capillary method of Anderson and Saddington
adapted for low-temperature work'" has been used.
Since in one case (Ar-N2) the solution was heavier than
the pure solvent, whereas in the other cases the pure
solvent was heavier than the solution, we used two
different diffusing cells (A and 8) in order to avoid
convection currents due to gravitational effects. The
apparatus A was of the same type used before. ~ The
diffusion cell 8 is shown in Fig. 1. In this case particular
efforts were made to reduce the volume of the capillary
sampling line to a minimum, in order to avoid any loss
of matter in the sampling process, as discussed later.

A block diagram of the whole apparatus is shown in
Fig. 2.

The procedure, to carry out an experiment, was as
follows:

(1) After having evacuated the system and closed
the bath-capillary valve, the solution (N2 + tracer) is
condensed in the bath through the bath line.

(2) After closing the capillary-capillary line valve
and opening the bath-capillary valve for a short time,
a sample of the condensed solution (standard) is taken
and then transferred with the Toepler pump into a
sample vial.

"Tritium in T2 form has been kindly supplied to us by the
Istituto di Chimica Farmaceutica dell' Universita di Roma."E, A. Gugghenheim, J. Chem. Phys. 13, 253 (1945)."J.de Boer, Physica 14, 139 (1948).

"G. Cini-Castagnoli, G. Pizzella, and F. P. Ricci, Nuovo
Cimento 11, 466 (1959)."J.M. Beenaker, G. Careri, and K. W. Taconis, Conference
on I ow-Temperature Physics, Paris, 1955 (unpublished}.

i84



DIFFUSION IN SIMPLE LIQUIDS

capillary line bath line

to pressure
control syste~

Shaft p

Bath line

rzzzxxzn &kX~ gi xw 4 Pl

FIG. i. Apparatus B.The movement
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the capillary-capillary line valve is
driven by the rotating shaft 2 through
the gears rotating on the fixed pins.

Capillary line ~z

r/

pry::

Fixed pins—

pillar y

Place to insert the
ITlometer.resistence ther

fR Kl'
~XRl=iRXV

Capillary- capillary
line needle valve

'" ~Bath
'—Bath capillary needle valve

(3) Pure N2 is liquefied in the capillary through the

capillary line, fixing the pressure at the same level as for
the solution in the bath. The pressures are read on the
two pressure gauges with an error of +0.5 atm. Then
the capillary-capillary line valve is closed.

(4) The capillary-bath valve is opened. (At this step
the diffusion period begins. )

(5) The capillary-bath valve is closed. (At this step
the diffusion period ends; the time between steps 4 and
5 is the "diffusion time". )

(6) The pure Ns in the capillary line is pumped:off
until a vacuum (10 ' mm Hg is reached.

(7) The sample enclosed in the capillary is trans-
ferred to a sample vial by means of the Toepler pump.

(8) Step 2 is repeated; thus it is possible to control

the constancy of the bath concentration during the

diffusion time.

In any transfer of samples from capillary to vials (see
steps 2, 7, 8) care is taken so that the Toepler pumping
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FIG. 2. Block diagram
of the diGusion apparatus.
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continues until the gas left in the capillary line is at a
pressure less than 10 ' mm Hg as read on the Pirani
gauge. (The quantity of gas left is therefore less than
1/1000 of the gas transferred in the sample vial. ) By
means of the Pirani gauge it was also possible to check
(after steps 1, 2, 6) that there were no leaks in the
needle valves. The tracer concentration in the samples

was determined by means of a G. M. internal gas
counter" for the radioactive tracer and by means of a
mass spectrometer for the stable elements (Ar, CH4,
Ne, H~). The temperature control was achieved by
regulating, with a Cartesian manostat, the pressure over

G. Cini-Castagnoli, A. Giardini, and F. P. Ricci, Nuovo
Cimento 13, 916 (1959).
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the evaporating oxygen in the Dewar. The temperature
was read on a Hg manometer and its constancy checked
with a differential oil manometer. The temperature was
constant in each run to better than 0.1'K. A copper
resistance thermometer cemented to the diffusion cell
was used to obtain a local temperature measurement.

Tracer

CH4
Ar
Ne
T2
H2

i10 ' cm'/sec)

94+8
112.5~3.0

204+8
172.5~12

232+47

B('K)

298~6
310~5
301~4
296~6
309+16

TABLE I. Best-fit values of A and B in Eq. (1).

EXPERIMENTAL RESULTS

The diffusion coefficient D can be evaluated by the
well-known equation~

8 1
Cs Cd Cs exp

(2m+1)'

(2m+1)'7r'Dt

4L'

The 3 and 8 values are given in Table I. They were
obtained together with their uncertainties, from the
best-fit analysis. " We notice that although the un-
certainties in the 8 values are quite small (a few
percent), those in the 3 values are enhanced, according
to the form of Eq. (1). Therefore also a small increase
in the 8 uncertainty becomes quite large in A. In the
case of H2 the experimental results are less precise,
because of the smaller sensitivity of the mass spectrom-
eter to the heavier molecules. The A values will not be
important in the following remarks, which are based

"G. Cini-Castagnoli and F. P. Ricci, J. Chem. Phys. 32, 19
(1960).

' A. G. Worthing and J. Geffner, Treatment of Experimental
Data (John Wiley R Sons, Inc. , New York, 1950), p. 238.

where L is the capillary length, 3 is the diffusion time,
c, is the concentration of standard samples (steps 2,8),
cd is the average concentration of the diffusion sample
(see step 7), and c„ is the tracer concentration still
present in the pure nitrogen. (For example, in the case
of Ar, c, is (5X10 ' as compared to c, 2%.) c; is
obtained by following steps 3 to 7 but omitting steps 4
and (of course) 5; i.e. with zero diffusion time.

For the T2 the c, concentration was 10 '%,
whereas for the stable elements it was between 1—2%,
so in any case we can speak in terms of dilute solutions.

The diameter d of the capillary was always 0.08 cm
and the length 3.35 cm so that d/1. (0.03."

At each temperature the diffusion-coeKcient meas-
urement was repeated at least twice with different
diffusing times (the diffusing time ranged from 4 000 to
14000 sec) and the results always agreed within the
experimental errors.

The errors in D were evaluated taking into account
the error in the concentration determinations and that
in the length of the capillary since the penetration of the
needle valves gives rise to some uncertainty in L.'

The experimental results are summarized in Fig. 3
for CH&-N2, Ar-N2, ¹N2,T&-N2 and H2-N2 systems.
The full lines are least-squares fits of the experimental
points" with the expression

D=we-»~

mainly on the constancy of the 8 values (equal within

a few percent).
We can compare the Ar—N2 data with the older ones

obtained by us' in a smaller temperature range. The
agreement is satisfactory if one takes into account the
different pressures at which the measurements are made.

We want to note that the expression of D in the form
of Eq. (1) is just a 6t to the experimental points. This
fit is not enough to prove that the diffusion process is
an activated one. Later in the discussion we will make
clear why, in our opinion, the diffusion coeScient
behaves like Eq. (1).

DISCUSSION

In analyzing the experimental data we must recall~

that D, in the case of dilute binary solutions of liquids
obeying the principle of corresponding states, must be a
function of the variables e», &r», mq, eq2, oq2, m2, T, P.
Here e,; and 0.,; are the intermolecular force parameters
between molecule i and molecule j. The subscript 1
refers to the solvent molecule; the subscript, 2 to the
tracer.

The experimental results shown in Fig. 3 have some
well-defined features.

(1) Within the experimental errors the 8 values of
Table I (i.e. the temperature dependence of D) seem to
be independent of the tracer molecular parameters.
Therefore we must conclude that, at constant pressure,
8 mustbe of the form 8=f (e~|,0»,mq) with f a function
independent of the nature of the liquid. But since 8
must have the dimension of temperature, just by
dimensional analysis one derives

B=ce»/K

where E is Boltzmann constant and C a constant which
does not depend upon the nature of the liquid but just
on the pressure. In our case C=3.05&0.06; this value
agrees very well also with that derived from. self-
diffusion in rare gases at the same pressure'0. The
validity of Eq. (2) was already pointed out in previous
work, ' "' but in the present case it has been verified in
a wider range of temperature and with more tracers.

(2) There seems to be no dependence of D on the
mass of the tracer molecule. This consideration, which

"J. Naghizadeh and S. A. I%ice, J. Chem. Phys. 36, 2710
(1962).

"H. Watts, B.J. Alder, and J. H. Hildebrand, J. Chem. Phys.
23, 659 (1955).
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FIG. 4. Behavior of the diffusion coe6icient as a function of the
mass of the tracer. The value for m=2 has been taken as unity.
The black points are experimental points deduced from the best
fit of Fig. 3 and the experimental errors are shown. The full curve
gives the behavior for D proportional to 1jgm2., the dashed curve,
for D proportional to 1/gp=1//2m&m&/(m&+m2l]'~' (a.n.
=atomic units).

in our opinion is of great importance, is suggested by a
simple, although pot rigorous, analysis of the series of
H2—N2, T~—N2, Ne —N2 results. In this case the various
tracers differ only in their mass, except for the very
small difference between the intermolecular potential
parameters of Ne and H~. '4 In Fig. 4 the D values for the
tracers Ne, T~, and H2 are reported as a function of m2

together with the curves showing the behavior under
the hypothesis that D~ 1/grmr and Drr 1/+fr where lr

is the reduced mass 2nrtmr/(mt+rIrr). The Points are
normalized to that of H2 at m~=2 so that the curve in
Fig. 4 is independent of temperature Lsee paragraph
(1)$ in the temperature range of our experimental data.
The fact that Ne has molecular parameters slightly
smaller than the hydrogens can explain why the experi-
mental point is slightly higher ( 15%) than the general
trend exhibited from H2 to T2 values. However, this is a
quite small correction as compared with the other
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FIG. S. Diffusion coeKcient at T=90'K as a function of the
quantum parameter in the case of H2, T2, and Ne tracers in liquid
N2. The experimental points are taken from the best fit of Fig. 3.
The intercept with the ordinate axis, 4*=0, gives the diffusion
coefficient of H~ in N~ if classical mechanics holds.

curves and it is of the same order as the experimental
errors.

But some other points need to be considered if we
want to be confident about the indications of Fig. 4.
(a) We are comparing monoatomic molecules and
diatomic ones. (b) The local density around different
tracers can be different because of different perturbation
of the impurity. (c) We must be careful about the
possibility of describing the diffusion process without
quantum effects.

As far as point a is concerned, the fact that we com-
pare monoatomic molecules with diatomic ones is not
a serious problem, as can be seen from the fact that the
hydrogen isotopes fit well, both for equilibrium proper-
ties and for the viscosity at the same reduced tempera-
ture, the curve drawn for monoatomic substances as a
function of the quantum parameter' "; The same
agreement holds for the transport properties in the gas
phase" in the same range of precision as our experi-
mental errors.

As far as point b is concerned, the only reason for a
different local density around H2, T2, and Ne is the
presence of quantum effects, since the parameters of the
intermolecular potential of these tracers are practically
equal. As far as we know, no measurements of partial
molar volumes are available in the literature for such
mixtures. However if we compare the equilibrium
curves for the H&-N2" and Ne-N2" systems, we can see
that quantum effects must be very small. Moreover this
effect, if present, would tend to enhance the diffusivity
of H~ tracer with respect to Ne tracers; therefore, it goes
in the wrong direction if we would like to restore the
classical 1/gnr2 law.

As far as point c is concerned, we refer to the Hilde-
brand analysis" to show that the quantum deviations
are of the same order as the experimental errors.

Using our ¹N2,T2-N2 and H2-N2 results, we draw
in Fig. 5 a plot of the same type of Fig. 1 of Ref. 11 and
we can see how for H2 in liquid N& the quantum effect is
less than 20%%u~, compared with a factor of 2 for CCl4
solvent. In fact the internal pressure in liquid N2 is
much smaller than in liquid CC14, and the importance
of this quantum effect has been supposed to be propor-
tional to the internal pressure of the solvent. "More-
over, we would like to mention that just these quantum
effects explain the small D dependence on the tracer
mass shown in Fig. 4. Therefore we can conclude that
in first approximation these simple arguments support
the indication that, as far as classical mechanics holds,
D does not depend on the tracer mass. We would like to
point out that such a feature also explains our previous
results of diffusions in liquid hydrogen. Certainly a

~' J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley 0 Sons, Inc, , New York,
1954).

2'M. Ruhemann, The Separation of Gases (Clarendon Press,
Oxford, England, 1949).

'4 W. B. Street, Cryogenics 5, 27 (1965).
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more rigorous analysis would be desirable but it seems

to us that it would produce little change in the above
conclusion.

(3) As far as the D dependence on e,; and a';, is

concerned, the situation is less clear, since we do not
have a group of tracers which differ among them only

by the e (or 0) values, in order to repeat the unambigu-

ous analysis of point 2.
As mentioned before, Hildebrand and co-workers,

just on the basis of the correlation of experimental data,
suggest

D= (1/a g2') f(eu, a u, mg, p, T) . (3)

The check they used is to verify the constancy of Dr2P
for a group of tracers in a given solvent. This is just a
tentative correlation, by no means the only possible
one, and it is not based on a definite model. Moreover
we do not understand how 0-22 can have a definite
meaning in a dilute solution where tracer-tracer inter-
actions are negligible. In Table II our data are com-
pared in Hildebrand's way and we can see how there
seems to be a little discrepancy when e» changes
significantly. Another check can be made if we write out
Eq. (3) explicitly, taking into account the D dependence
in Eq. (1) and the result of Eq. (2). We have, just by
the dimensional analysis, that at constant reduced
pressure p*= paid/e»=6X10 ', for dilute binary
solutions

011 3.05&11
D = 1.4 Qe~~/m~ exp—

&22 kT
(4)

where we have used the Ar—N2 data to deduce the
number 1.4.

If, using Eq. (4), we are going to calculate the self-
diffusion in Ar, in the temperature range 0 75 kT/eu.
&1.04 and at the reduced pressure of p* 6X10 ', we

find a discrepancy, independent of temperature of about
a factor of 2 between the prediction of Eq. (4) and the
experimental results. ' Therefore we can conclude that
Hildebrand's suggestion is a rather rough approxima-
tion. Our data show that in a phenomenological ex-
pression like Eq. (4) we must introduce a (1/e»)'
dependence, where g is a positive number. However we
will not attempt to find such a relationship, because it
is meaningless unless it is suggested by a model.

In any case, as far as Fig. 5 is concerned we do not
expect any change, since the comparison of Ne and H&

involves very little change in molecular parameters.
Therefore a first approximation such as Hildebrand's
rule is satisfactory.

We want now to compare the features of our experi-
mental results (as expressed in the preceding para-
graphs) with some theoretical predictions. We start with
the problem of the dependence of D on the mass of
the tracer (isotopic effect).

TAaxz II. Comparison between experimental results
and Hildebrand's rule.

Tracer

Ar
CH4
H2 (classical limit)

&22 (L)

3.42
3.80
2.96

1021D0222

{cm4/sec)

44.0
46.5
54.0

Models giving great importance to binary collisions,
such as hard-sphere assemblies" or the improved
versions using the square-well Quid model, ""predict
that D should go as 1/gp, which is clearly in contradic-
tion with our experimental results as shown in Fig. 4.
The uncertainty in the meaning of binary collisions in
a Quid at liquid density is certainly the most serious
defect of the approach. In this respect it would be
interesting to test the Rice-Alnatt theory4, which
supposes that it is possible to describe the basic dynam-
ical event as a hard-core collision followed by a quasi-
Brownian motion with time scales well separated.
However, we prefer to await constant-density experi-
ments, since the dependence on tracer mass in this
theory is less severe than in the hard-sphere models,
because of the relative importance of the hard-core and
the soft part of the friction coe%cient.

Also, models which consider the diffusion process as
an activated one in which a particle jumps from one
equilibrium site to another, Qying over a barrier of
height measured by the activation energy of the
process, "are in disagreement with our data, because in
that case it is to be expected that D will be proportional
to 1/gm2. This disagreement raises doubts about the
solid-like behavior of simple liquids, "except the small

cage effect, as revealed by inelastic neutron scattering
on liquid argon. "

On the other hand, a statistical-mechanical theory of
the diffusion coeKcients in binary liquid solutions
developed by Bearman" following the definition of a
mean frictional force satisfies the experimental result
that D is independent of m2."

Finally if we consider the temperature dependence of
the diffusion coeKcient (i.e. paragraph 1), we can
understand whether an Arrhenius law seems to be
satisfied without involving an activated process, or the
pseudoact vation energy is not dependent on the tracer

2'H. C. Longuet-Higgins, J. A. Pople, J. P. Valleau, in Pro-
ceedings of the International Symposium on Transport Properties
and Statistical Mechanics, Brussels, 1956, edited by I. Prigogine
{Interscience Publishers, Inc. , New York, 1958), p. 73.

2' J. Naghizadeh, J. Chem. Phys. 39, 3406 (1963)."J.P. Valleau, J. Chem. Phys. 44, 2626 (1966).
'g S. Glarstone, K. J. Laidler, and H. Eyring, The Theory of

Rate Processes (McGraw-Hill Book Company, Inc. , New York,
1941), p. 525.

'9 V. Ardente, G. F. Nardelli, and R. Reatto, Phys. Rev. 148,
124 (1966)."B.A. Dasannacharya and K. R. Rao, Phys. Rev. 137, A417
(1965)."R.J. Bearman, J. Chem. Phys. 32, 1308 (1960)."F. P. Ricci, J. Chem. Phys. 45, 3897 (1966).
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molecular parameters, according to the model of Cohen
and Turnbull, 33 who suggest that the fluidity of a liquid
is given by the possibility of correlations in free volumes
similarly to the Rice normal-mode analysis of diffusion
in crystals. '4 In fact the pseudo-activation energy of the
process should vary with the molecular parameters of
the tracers only insofar as its diameter increases much
over the diameter of the solvent molecule. Where the
Cohen-Turnbull theory is very rough indeed is in the
mechanism by which the diffusing molecule moves once
the step has been made possible by the free-vo', ume

"M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164
(1959).

'4 S. A. Rice, Phys. Rev. 112, 804 (1958).

Ructuations. In this respect also the refinement by
Naghizadeh35 does not give any better improvement
and leaves D~ 1/Qm2.

Probably the free movement in the enlarged cage
should be replaced by a quasi-Brownian motion, but
this is not a simple change in the Cohen-Turnbull
theory, since it will involve the condition under which

a free-volume fluctuation is useful for the diffusive

steps to start. Incidentally, we must point out that the
discrepancies founcPO between self-diffusion data and
the Cohen-Turnbull theory are mainly connected with
the pre-exponential factor which is given by just those
features of the model we do not rely on.

3' J. Naghizadeh, J. Appl. Phys. 35, 1162 (1964).
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Elementary Excitations in Classical Liquids*
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Collective dynamical variables in classical liquids, having the character of longitudinal and transverse
phonons, are proposed, A variational argument is used to determine their frequency spectrum; the sound
velocities of long-wavelength modes are determined by elastic moduli of the liquid. Their lifetimes are
estimated, and turn out to be of the order of 10 "sec for normal liquids, but much longer for highly viscous
liquids (glasses).

I. INTRODUCTION

HE question to be discussed here is: Do there
exist collective variables, in classical liquids,

analogous to longitudinal and transverse phonons in
solids? The answer to this question is a qualified "yes".
A physically reasonable basis can be found for the con-
struction of longitudinal and transverse phonons in
classical liquids, and it is possible even to calculate
their frequency spectrum. The physical existence of
these phonons is more doubtful. Except for liquids at
very low temperatures, e.g., in the glassy state, their
lifetimes are expected to be very short.

In this paper, I discuss the mathematical and physical
basis for the construction of phonons in liquids, and I
give some estimates of their dispersion and lifetimes.

II. DEFINITIONS

The concept of an elementary excitation is very
familiar in connection with the theory of solids and also
the theory of superQuids. In solids, for example, the

* This research was supported in part, by the National Science
Foundation under Grant No. NSF GP 4921. The material in this
paper was presented at the I.U.P.A.P. International Conference
on Thermodynamics and Statistical Mechanics, Copenhagen,
1966.

dynamical behavior of a lattice is usually discussed by
means of normal modes of vibration; these are the
longitudinal and transverse phonons. Internal electronic
states are described by excitons. Excitations in super-
conductors are described by Cooper pairs. Excitations
in liquid helium are described by longitudinal phonons
and by rotons. And so on.

All these elementary excitations are used in what is
essentially a quantum-mechanical way. That is, creation
and annihilation operators, in the language of second
quantization, are used to characterize states of excita-
tion of a system from its quantum-mechanical ground
state.

The same language could be used, in principle, to
describe classical systems also (e.g. , liquid xenon); but
a quantum-mechanical description is extremely cumber-
some because of the high degree of excitation involved.
For classical liquids it seems far simpler to use a char-
acteristically classical description in the first place.

But then what classical quantities correspond to
elementary excitations in quantum mechanics? The
following definition appears reasonable.

First, we recall that a characteristic property of any
elementary excitation (in quantum mechanics and in the
classical limit) is that it varies approximately periodi-
cally with time. Let A be some property of the system,


