
1738 ARTHUR R. 5$&IFT

X(./2)'~'(Xy. ) XX»2
~(X)= +i

X2+ ~2 X2+ ~2

We have set 5@2' equal to zero. In the zero-scattering
limit X&q, is

X~&,——Ig, C~„C~...
with I defrned in (32). The X~q, are combined according F r 'mpl'c'ty we take X"
to Eq. (31) to give Eq. (34). simple analytic continuation of (8.3) we obtain

(8 3)

APPENDIX jal 6(—p) =- X/2p'('. (8.4)

( (X+~)
(8.1) ~Q(X)/0( —p) ~'=exp (-,')'"8 — —— . (8.&)

X'+p.
' v2

5=X[X'"/(X'+ e')]

Here we estimate the effect of a small, slowly varying Equations (8.3) and (8.4) are combined to give
phase shift on the o.'s. I et the phase shift 5 be given by

where X=8'—m —p. Such a phase shift has correct
threshold dependence and vanishes at infinite energy.
The parameters X and e can be written in terms of 6,
the maximum value of 5, and I„,the position of that
maximum.

e= X„/&3,
X=2&3 (8 2)

Then, if Q(X) is written as exp'(X), we find that'r

Tables of Integral Transforms, edited by A. Erdelyi (Mcoraw-
Hill Book Company, Inc. , New York, 1954), Vol. II, p. 216.

The maximum magnitude of the exponent occurs for
X=p (C2 —1). If in Eqs. (32) and (33)

~
Q(X)/Q(p)

~

' is
replaced by its value at this point, an upper or lower
bound n can be obtained for n depending on the sign
of8 .

n = —1+exp[-', (-;)3(48 j. (8.6)

The signs of 0. and 5 are the same. In Table I we list
some values of n and 5 obtained from Eq. (II.6). The
actual values of o. may differ substantially from these
bounds, though they will have the same sign.
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Implications of invariance of strong interactions under SU(3) and charge conjugation are investigated for
E-meson resonances (i.e., systems which are not eigenstates of C). It is pointed out that the charge-con-
jugation eigenvalue of the neutral nonstrange members of multiplets is determined by the decays (mesonic
or electromagnetic) of the strange members. The E'(1320), I~'(1420), and E'(1800) are considered as
examples. Possibilities for study of symmetry breaking and particle mixing in kaon resonance decays are
mentioned; they may provide practical methods for studying symmetry breaking.

w E would like to point out some simple, but
apparently not well-known, properties of mesons

wkth nonzero strangeness. These properties follow
whenever charge-conjugation invariance and SU(3)
invariance are supposed to hoM. They may prove
useful in the study of symmetry-breaking e6ects in
SU(3).

Assume that all the kaons we will consider are to be
assigned to SU(3) octets, and, throughout, let C be
the charge-conjugation eigenvalue of the neutral, non-
strange (NNS) members of the octet. It is then possible
to show quite simply that:

Research supported in part by the U. S. Atomic Energy
CoInmigsion and by the National Science 1'ogndation,

(a) Two kaons belonging to multiplets whose NNS
members have opposite C cannot mix in the limit of
SU(3) symmetry, but they can mix whenever sym-
metry breaking is present.

(b) From the decay branching ratios of kaon reso-
nances, it is possible to determine the C eigenvalue of
the NXS members which can be placed in the same
multiplet as the kaons. It should almost always be
possible to do this in practice, with considerable
restriction on one's freedom in making up meson

multiplets.

(c) From the electromagnetic decays of kaon reso-

nances it is also possible to determine the C eigenvalue

gf the NXS members w'hich can be placed in the same
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multiplet as the kaons. In addition, the ratio of the
neutral kaon to charged kaon electromagnetic decays is
quite different for kaons from the same ratio for opposite
C multiplets, and may provide a sensitive measure of
SU(3)-breaking effects. If C'=+1, one expects K"—+

E'+7 to be forbidden while E'+ +IF-++y is fully
allowed; while if C'= —1, one expects a branching ratio
(K"—+ E'+y)/(K'+ ~ If++y) =4.

In the following we will denote K(495) by IC,
K*(890) by K*, and other strange mesons by K'(1lII).
We will consider E'(1320), E'(1400), and K'(1800) in
some detail. An arbitrary strange meson will be de-
noted by k.

First we pose the question: Can two k's which belong
to SU(3) multiplets whose NNS members have opposite
C eigenvalues show mixing effects? The answer is that
they cannot in the limit of SU(3) invariance, but that
they can, in general, whenever SU(3) is broken.

Questions such as these may be relevant in practice
if a 16-piet of mesons of the same spin but consisting
of two octets of opposite C is observed. The mixing will
modify both the mass spectrum and the decays of the
mesons involved. Even if no practical applications
should arise, the study of possible particle-mixing
effects is of some interest and provides a good example of
the techniques we shall use.

We use a U-spin, V-spin formalism. ' In terms of the
I-spin singlet (Ip) and I-spin neutral vector member
(Ii) we can write the U-spin and V-spin singlets and
neutral vector members as

Ui"= (v3Ip' Ii')/2, Up—'= (V3IiP+Ip')/2 (1)

V,P (I, +P3Iv)/pP2 V,P ( ~3I,P+I,P)/2 (2)

and the V-spin and L?-spin states are related by

Vi' ——(&3Up'+ Ui')/2, Vp'= (&3Ui' —Up')/2. (3)

Finally, we take the photon to transform as

Next, define the quantities analogous to G parity
for U spin and V spin, Gz and Gz, respectively. The
U-spin multiplets are (k', Ui, k') and Up,' the V-spin
multiplets are (k, Vi,k+) and Vp. Just as for G parity,
we have Gri-—-C(—1)o and Gir ——C(—1)v, where C is
the charge conj ugation eigema-lue of the Ã1VS member of
the muttiptet.

To study mixing we consider M= (k' ~0 ~k), where k'

and k belong to two different octets and 0 is any
operator. The mixing is of course zero unless k' and k
have the same spin. Inserting 1=-GU 'GU for neutral

' S. Meshkov, C. A. Levinson, and H, J. Lipkin, Phys. Rev.
I,etters 10, 361 (1963).

k's and lloting that Grr ~k)= —C~k), Grr )k')= —C')k'),
we have

M=CC'(k'iGUOGrr 'ik).
Now, if 0 is an SU(3)-invariant operator, then
GUOGU '=0 and we 6nd M=CC'M so that Sf=0 if
CWC'. If 0 is not SU(3) invariant, we can use the
operator form Grr=Ce ' o& (analogous to G=Ce ' i~

for G parity) to evaluate G&OG& '. For octet synunetry
breaking, for example, 0 Xg Ip Up+v3Ui. Since
e ' "Uoe' ~~= Uowhilee ' ~"Uie+'" &= —Ux, GvOGv '
is not simply related to 0 and we cannot prevent mixing
between k' and k to lowest order in the symmetry
breaking. (An Ademello-Gatto —type theorem' which
would make the mixing higher order in the symmetry
breaking is apparently not possible, because the k's
are in different multiplets and we cannot construct any
conserved quantities from them. ) The possibility that
two meson octets with the same spin but opposite C
will be observed, with kaon members whose masses
and decay rates are modified by mixing effects, should
be kept in mind when SU(3) assignments are attempted
for meson resonances. We will not consider such a
situation any further in the following.

Next consider the problem: From the properties of
a given k can we tell whether the NNS members which
can be associated with it in an SU(3) multiplet have
even or odd eigenvalues under C. The answer is yes,
and it appears that a study of this question leads to
some useful comments on kaon resonances.

Consider the decays E'+ +E++rr' -and K'+ ~
K++rt. The actual decay which occurs must Lassuming
SU(3) invariance$ be the decay E'+ ~E++V„, where
n=0 if C'=+1 and n=1 if C'= —1. This is because
E'+ has Gy= —C', K+ has Gy= —1, so V„must have
Gv ——C'. Since Gv ———1 for Vi, Gv=+1 for Vp, we
have finally C'= (—1)".Thus from Kq. (2) we find that

C'=+1m (E'+~ K++ )pr(/K+~E++rt)=3,
C'= —1 m (E'+ -+ E++pr)/(E'+ -+ K'++ rt) = -', .

If we consider decays K' —+ E"+7r we have G&*=+1,
so the results are just reversed.

For the pseudoscalars we have ignored q—g' mixing
(see below). For the d.ecays E'~ E+p, a&, we should'

include such effects. For the decay which requires V&

this is straightforward if we ignore the fact that the
mixing breaks SU(3), as we simply put Vi (p+&3rdp)/2
= (p+rp+&2q)/2, where we have used ppp (Qp)&p

+ (g-,') pp. Thus we get

C'=+1 m (E+' ~K++p)/(K+' —+ Ii.++pi) =1.
But for C'= —1, the decay can either go to Vo or to the
unitary singlet combination; if we neglect the latter, '

2 M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264 (1964).
'See for example S. L. Glashow and R. H. Socolow, Phys.

Rev. Letters 15, 329 (1965); H. Sugawara and F. von Hippel,
Phys. Rev. 141, 1331 (1966); and V. Barger, M. Olsson, and

. V, L. sg, rma, ibid. 147, 1 t15 (1966).
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TABLE I. Squared matrix-element ratios.

CK'

x+ )

(IC' —+ E+q)

pc' x*y )

(x' z*+&)

(x' z+&)

(x' z'+ )

We might emphasize that the factor of 9 between C-
even and C-odd results for a given decay will persist
independent of mixing, so long as there is no coupling
to the unitary singlet. This large factor should make it
easy to decide in practice which decay is being observed.
If the branching ratios could be accurately determined,
they would allow good determinations of the mixing
angles. It should, however, require considerably less
data to decide on the value of C' than to determine the
mixing angles, so we have not emphasized the latter.
Note that for an even- C particle the Kp/K~ ratio cannot
be disturbed by coupling to a singlet, while for an odd-C
particle the Em/Erl ratio cannot be disturbed by the
singlet coupling (opposite for E*'s). For the case where

there is no coupling to the unitary singlet, any devia-
tion from the given ratios must be due to SU(3) break-

ing, unless, of course, the octet assignment is wrong.
It is usually assumed that taking account of mass

splittings in a phase-space factor and of particle mixing
is sufhcient to correct for symmetry breaking. Such
notions should soon be testable in these decays. We
can try to apply these results to E' (1420), K'(1320),
and. K'(1800). Some data are presented in Table II.'

E'(j4ZO). The customary assignment is to a 7=2+
nonet with C=+1. The decays involving s's and q's

must be corrected for the mass differences; proceed, ing
in the usual way with a phase-space factor p"+' we

And the m decay enhanced. over the p decay by an

additional factor of about 4, giving altogether a ratio
of 12. This is quite consistent with most experimental
determinations which give the Eri/Kx ratio to be less

than about 0.1. However, the Kp/Kco ratio, which

should involve a phase-space correction factor to the
ratio of unity of only about 1.4 (though m,~m„, there
is very little energy available for the decay), tends to

4 H. C. Shen, I. Butterworth, Chumin Fu, G. Goldhaber. ,
S. Goldhaber, and G. H. Trilling, Phys. Rev. Letters 11, 726
(1966).

we find a decay into Vo= (—V3p+co/43+2+/v3)/2 so
that

C'= —1 m (K+' ~E++p)/(E+' —+ If++&a) = 9.
We summarize these results in Table I. The quantities
given are the ratios of the squares of the matrix ele-
ments. The numbers in each column are to be compared
to determine Cz', there is not necessarily any relation
among decays in different columns. We note that the
(K' —+ K vr)/(E' ~ pE) ratio is one for either C assign-
ment; this is more easily seen from the usual matrix
approach than from the U-spin, V-spin analysis.

TABLE II. Some data on Kaon resonance decays.

(a) K'(1800) b

Z p Kur Kg Km. K+rI Z"vr Kvr7r

7.5 ~5% 10 +3% 0 ~3 7o 0 ~3% 2 ~2% 35 +12% 40 ~15%

Z~~/K~
0.87 &0,22

(b) K'(1420)

Kp/K7r Iles/K~
0.34 +0.25 0.09 &0.09

zrf/IC7r
0.06 &0.06

z/(z+~ y&z)
(6 6+4)/(80 +20)

(c) K'(1320)
I6~% zg% zp%

no decay 0 ~ ~ ~ ~ ~

68+12 0+3 6+6

Zco% Z~~%

Ref�.

2 A2 24+9

a G. Goldhaber, in Proceedings of the Thirteenth International Confer-
ence on High Energy Physics, Berkeley, California, 1966 (to be published).

b D. R. O. Morrison (private communication).
e In (a) results were given for these decays from six separate experiments,

including Ref. e. The various results were consistent with one another, so
we have averaged them, giving the numbers shown,

d Reference 4.
e J. Bishop et al. , Phys. Rev. Letters 16, 1069 (1966).

be appreciably larger than that in most experiments,
though 1.4 is within the quoted error. If the data con-
tinue to give too large a ratio, it implies appreciably
greater symmetry breaking (this is the case where the
unitary singlet cannot couple) present in these decays
than we have grown accustomed to expecting.

E'(13ZO). The data are not consistent in this case,
in that Shen et al. see no Ex decay mode while Bishop
et al. 6nd that this mode dominates. It is of course
possible that this particle is not real, and the two experi-
ments are seeing different sorts of kinematic effects.
Both experiments do suggest a IS p/E~ ratio rather
larger than 1, but not enough larger to be conclusive
as the small available phase space favors the p, and for
the odd-C case possible singlet mixing can affect the
result. Consequently, we only remark that if C= —1, as
is slightly suggested by both sets of data by the p/a&

ratios, ' the E'(1320) could only be assigned to a multi-

plet whose NNS members were odd under C. This would
rule out the speculative assignment of Shen et at'.4 to a
multiplet containing the D(1286) (if the latter has
positive C as is usually assumed) and the A&. The only
known NNS meson in this mass region with odd C
are the B(1220) and the H(980); the E' associated with
these in an octet wouM then d.ecay mainly into Ep,
Kp, and K m. .

K'($8OO). IIere the K"m/E*rj decay strongly suggests
C= —1. If the Ep/ICa& ratio continued to be of order

unity, it would imply strong cancellation by coupling
to the unitary singlet.

Now consider electromagnetic decays. The photon
is a U-spin singlet with odd C so it has Gp= —1. Thus
the decay E"~ K'+y is forbidden if K' has Gp odd,
or C even. But, the decay E'+ —+ K++y can occur, as

'The data are suggestive though obviously not conclusive.
This is most easily seen by assuming C'=+1. Then we expect a
p/co ratio of unity, which would not be affected by coupling to a
singlet. The phase-space correction for a 1+ (for example} particle
decaying by s wave into I p and Eco would favor the p decay by a
factor of about 1.25. A large p/o0 ratio could only be due to a
C'=- —1 assignment (with coupling to the singlet interfering
perhaps}.
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(%3Vr Vp)/2, so it corresponds to a transition
(V=1,Vq ——1)~ (V=1, V~=1)+y and the transition
will go to whichever part of the photon has the correct
Gy, V~ in this case. Thus we find

C'=+1: E'+ +E+—+y;
allowed

E"~E'+y.
forbidden

For a final IC* with C opposite to the E, the results
would just invert. These results will eventually be
useful for two purposes. First, as with the other
decays above, they will allow us to determine the C
eigenvalue of the NNS member of the SU(3) multiplet
for K'. Second, they will allow relatively sensitive study
of symmetry-breaking effects, and perhaps a good test of
the SU(3) character of the photon, because they involve
no corrections for mass differences.

It would be useful if symmetry breaking did not
aRect these numbers in lowest order. As above, how-
ever, this is not the case. We can show this by an explicit
counter example, If such a theorem is possible, it would
certainly apply in the case where E' =E', i.e., for the
kaon electromagnetic form factor. It is well known that
this is zero in the SU(3) limit (because the K' is in a
U-spin multiplet with the m', whose electromagnetic
form factor is zero by charge-conjugation invariance).
If we compute it with vector-meson dominance we get
an answer proportional to m, '—m„8'. This is indeed zero
in the SU(3) limit (equal masses), but it is nonzero in
lowest order in the mass differences (i.e., to lowest
order in the symmetry breaking).

The decay K'* -+ E'p should, from SU(3), be 4/9 the
decay co —+m'y, if y~+'y is negligible. (The same
mechanism which inhibits p~ px may apply to the

p —+ pm decay. ) The co ~ np width is known to be about
I MeV, so the E' decay will have a branching ratio of
about 1%.

It is, of course, possible to verify all of the above
statements by constructing C and SU(3)-invariant
couplings in the usual manner. We have presented the
derivations in the manner above to illustrate the simple
and useful application of the U-spin, V-spin techniques
to problems involving strange mesons, and to emphasize
the utility of defining the analog of G parity for the
U-spin, V-spin subgroups of SU(3), so that the kaons
are eigenstates of a conserved operator. Applications
to isospin —-', kaons in other SU(3) multiplets and to

On the other hand, for C' odd both decays are allowed,
and the E'+ decay is to the Vo state, which can itself be
written Vo= —(Uo+v3U~)/2. Since y= Uo, we then
find a branching ratio

E'+ ~ IC++y 1
C'= —1 m ——

E"—+ IC'+y 4

higher-isospin kaons can be carried out by similar

techniques.
In the Appendix we give the various branching ratios

includmg an arbitrary mixing angle (even though
probably only or-&p and p-p mixing will enter in appli-
cations, the situation is still not entirely clear in these
cases) and allowing coupling to a unitary singlet where
possible. When decay branching ratios become quite
well known it may be possible to determine mixing
angles and the size of coupling to singlets by using
these decays.
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APPENDIX

We include mixing by putting ~&
——&o sin8+p cos8,

&o~=&o cos8—
&p sin8, with similar formulas for (q',q).

Consider first the decay into NNS vector mesons.
Then for the case where C'=+1 the decay proceeds

by emitting V&=Lp+v3(~ sin0+ q cos0)]/2 so that

(K' —+ K+p)/(K' -+ K+(a) = (1/V3 sin8)'.

For sin0=1/V3 we get the result in the text. When
decays K' ~E+y are observed it is clear how to
modify the formulas to obtain their branching ratios.

For C'= —1 the decay is nVO+PS, where S is a
unitary singlet, S=~ cos0—p sin8, Vo ——(—%3p+co sin0

+y cos8)/2, and P measures the amount of coupling to
the singlet. Then we have

(K' -+ Ep)/(K'-+ E~)=3/(sin8+2P cos0/u)'.

For p=0 and 8= 1/u3 we recover the result in the text.
To obtain the equivalent formulas for the pseudo-

scalars or tensors we exchange the C'=+1 and C'= —1
cas s and replace (a&, p) by (p',q) or (f,f') Then, for.
example, for C' odd we obtain

(K' —& K+n)/(E' ~ IC+g) = (1/V3 cos8)'.

Note that we have taken y, rl, and f' to belong to the
octet in the limit 8=0. For the pseudoscalars, the
branching ratio for (K+vr)/(K+g') will be proportional
to (sin8) ', and will be quite sensitive to the difference
between a mixing angle' for a linear mass formula
(8 20') and that for a quadratic mass formula (0 10').

' A. J. MacFarlane and R. H. Socolow, Phys. Rev. 144, 1194
(&966).


