
VECTOR I FIELDS AND CURREN r COMMUTATORS

current correlation function in terms of a quantized
vector held is identical with the previous definition that
employed a classical, external vector field.

The divergence relation

8 K s""(xx') =sC.b.f."(x)5(x x—')

+s(d. (x)i s"(x'))+ (6o)

follows directly from the current commutation relations
(41) and (44). Its intimate connection with the funda-
mental divergence condition (12) can be seen from

for this gives"

B„.E.so" (x,x') =lim iC.ej „e(x)Des&"(x,x')
g ~{}

from which (60) follows immediately.
Ke should perhaps note in conclusion that similar

results are easily obtained for the simpler case of radia-
tion-gauge quantum electrodynamics.

IC.;"(x,x') =lim-i(j e
gmo

g
, (x)Bs (x ) "Ke have omitted the appropriate time ordering of the current

operator that occurs here, since it commutes with the vector field
XL(—8 +pe )3&"+B,t3 "j, (61) in the limit of vanishing eoup1ing.
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Many dynamical derivations of the Gell-Mann-Okubo mass formula for the baryon octet assume that the
symmetry-violating interactions can be treated to &st order in perturbation theory. The validity of this
assumption is tested by a detailed evaluation of second-order eEects. A pole model with no free parameters
contributes the major portion of the second-order effect; 6nal-state scattering and other corrections are
argued to be small. The second-order mass shifts are found to be 200 MeV or more. Since the second-order
mass shifts are as large as the 6rst-order shifts, the conclusion is that derivations of the mass splittings based
on erst-order perturbation theory must be considered as little more than restatements of the pure group-
theoretic derivation.

I. DI'TRODUCTION
' ~VER since the development of unitary symmetry, '

& the Gell-Mann —Okubo (GMO) sum rule" for the
masses of the baryon octet has been cited as a success of
the theory. In fact, the sum rule is almost embarass-
ingly successful. In the equation

rnN+rn = ,ms+-„.,rn-z, -3 1

the difference between the right- and left-hand sides is
about 13 MeV when the average mass of each isotopic
multiplet is used. This difference should be compared
with the average octet mass of 1150 MeV and the
average mass splitting within the multiplet of 173 MeV.
Up to this time there has been no satisfactory dyeamical
derivation of this sum rule. The group-theoretic
derivation simply involves taking the appropriate
matrix elements of a mass operator containing both an
invariant term and a term transforming as the I'=0,

~Work supported in part by the University of Wisconsin
Research Committee with funds granted by the %isconsin Alumni
Research Foundation, and in part by the U. S. Atomic Energy
Commission under Contract AT {11-1)-881,No. COO-88k-93.' M. Gell-Mann, Phys. Rev. 125, 1067 (1962).' S. Okubo, Progr. Theoret. Phys, (Kyoto) 27, 949 (1962).

T=O member of an octet. %hy the mass operator
should have this form is left unexplained.

There are three basically diBerent ways of justifying
the group-theoretic approach. The 6rst argument states
that the really strong interactions are invariant under
SU(3), but that there are a class of medium-strong
interactions which are not invariant. In analogy with
electrodynamics, the interactions are supposed to
violate SU(3) in a particular way corresponding to the
F=O, T=O member of an octet. This component of the
octet is uniquely determined by the requirement that
the violation conserve hypercharge and isospin. The
noninvariant part of the strong-interaction Hamiltonian
will give the mass formula as a 6rst-order eGect in a
perturbation expansion of the mass. This approa|. h may
involve tadpole or bubble-diagram contributions to
self-energies, but. it is basically an application of Grst-
order perturbation theory. ' The second approach

' There are many models that fall into this category. Tadpole
diagrams were used by S. Coleman and S. Glashow, l Phys. Rev.
134, 13671 (1964)g; while J. J. Sakuraii, )ibid 132, 434 (1963.)j
used bubble diagrams. Other perturbative calculations have been
done by J.Arafune, Y. Iwasaki, K. Kikkawa, S. Matsuda, and K.
Nakamura, ibid. HB, 1220 (1966);Y. Ne'eman, ibid. 134, 31355
(1964);and S. L. Cohen and C. R. Hagen, ihid 149, 1138 (1.966).
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regards the octet mass splitting as resulting from the
sum total of all dynamics. Concepts such as a Hamil-
tonian or 6rst-order CGccts are done away with. This
approach, usually based on bootstrap methods, is
favored by 5-matrix theorists. 4 The third approach to
the mass formula does not attempt to provide a dynam-
ical basis for the observed mass splittings; rather the
physical masses are taken as given, and the problem is
one of finding corrections to the mass formula itself in
order to bring it into agreement with the physical
situation. In other words, the difference in the two
sides of the GMO sum rule should not be zero, but
rather it should be a small quantity which can be
calculated. These corrections have been evaluated using
current algebra ideas or field theory and have been
found to be small. ' Since it avoids all discussion of the
dynamical origins of the mass splittings or symmetry
violations, this approach is less ambitious than thc
other two; and its results have been more satisfactory
for that reason.

In this paper the perturbative approach to the mass
formula is examined in detail. In such a theory, the
success obtained by treating to first order an interaction
whose strength can be measured in terms of the average
mass splitting, is explained by saying that, for some
reason, second-order effects are small. However, no one
has calculated these second-order contributions. Some
work has been done on second-order mass corrections
foI' rcsonRnccs

q
thc Rssumption 18 IQadc that thc

splittings are generated by mass di6erences among the
particles interacting to form the resonance. The masses
of the fundamental particles are treated as given,
somewhd, t in thc aI:lilt, of the 5-IQRtrix approach to
octet enhancement. The second-order effects found. are
quite large. This result supports the conclusions reached
in this paper, but the technique used is totally diferent
and does not constitute a test of the conventional
calculations of the octet mass formula. Within the
framework of the strict perturbative approach to be
tested here, if second-order corrections are found to be
as large or larger than the first-order terms, derivations
of the mass splittings based on first order alone must be
considered as little more than restatements of the pure
group-theoretic derivation.

Starting with conventional time-independent per-
turbation theory, we calculate the masses of an origi-

4The Dashen-Frautschi theory of octet enhancement LR. F.
Dashen and S. C. Frautschi, Phys. Rev. 137, 81331 (1965)g is in
this category; however, its validity has been a matter of some
controversy. Other bootstrap or dispersion relation calculations
have been performed by Y. Hara, ibid. 144, 1241 {1.966); F. J.
Gilman, ibu1. 147, 1094 (1966); and F. J. Ernst, R. L. Warnock,
and K. C. Wa», ga. 14I, 13S4 (&966).' The current algebra method of calculating corrections to the
mass formula was developed by S. Fubini, G. Furlan, and C.
Rossetti [Nuovo Ciroento 40k, 1171 (1965)];it was iirst applied
to the baryon octet by M. Boiti and C. Rebbi, ibid. 43A, 214
(1966). An entirely different approach to the same problem eras
developed by J. %. Moffat, Phys. Rev. 145, 1177 (1966). Both
methods lead to corrections on the order of 10 MeV or less.

6 F. J. Krnst {to be published).

nally degenerate octet of baryon states. The total
Hamlltonlan coIltmlls two tel'Ills. The SU(3)-lnvar1ant
piece IIO, when acting on an unperturbed state a,t rest,
gives the central octet mass. The noninvariant term
Hl transforms as the I'=0, T=O member of an octet.
Corrections to the central mass are calculated to second.
order. (The procedure, with some minor revisions, could
be app1ied to a, calculation of seH-energies. ) Since the
states which appear in all equations are ahvays un-

perturbed, there is no ambiguity as to where the
symmetry-breaking efkcts should be inserted. To first.
ordci this RppioRch yields thc GMO DlRss foI'IQulR. Thc
parameters which appear in this formula are chosen to
give the best fit to the experimental masses. The masses
are then calculated to second order. Only two-particle
states consisting of a baryon and a meson are retained.
Other states will be higher in mass. Since all second-
order contributions have the same sign, the restriction
to two-particle states will underestimate the corrections.
The problem thus reduces to one of calculating matrix
elements of Hq between states of a single particle at rest
and a two-particle state. For second-order contributions
to be finite, this matrix element must vanish in the
limit that the energy of the intermediate two-particle
state becomes in6nitc. Conventional reduction tech-
niques are used to determine the nearby singularities of
the amplitude as a function of this energy. The result is
a pole mod. el modified. by final-state scattering. The
pole residues are given uniquely in terms of the first-
order parameters. The integral equation so obtained is
solved formally; in the resonance approximation for the
final-state scattering amplitude, the equation is ex-

plicitly solved. The solution, in the limit of no scatter-
ing, depends only on the known meson-baryon coupling
constants. In this limit, the second-order contributions
to the masses are on the order of 200 MeV. The sur-

prising erst-order agreement with both the GMO mass
formula and the ™-Eand Z-A. mass differences is de-

stroyed. Nonresonant scattering is sho~n to be in-

capable of improving the situation. A resonance 3n the
scattering amplitude will only serve in general to make
the CGcct larger; however, a delicate cancellation that
almost completely suppresscs the second-order cor-
rections can occur for special values of the resonant
parameters. Ke conclude that the medium-strong
interactions are too strong; a perturbation expansion
does not converge rapidly, if at all.

In the next section, the necessary perturbation
formulas are stated; the SU(3) and spin reduction of
the appropriate amplitudes is treated. The integral
equation for transition amplitude is derived and solved.
Since the techniques used are quite standard, the
development is only outlined. In Sec. III, the equations
are evaluated numerically, and the results compared
with the experimental situation. Scattering corrections
are considered in detail. . Various proposals for avoiding
the obvious conclusion about the inadequacy of pertur-
bation theory are discussed and rejected. Appendix A
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gives a detailed expansion of the pole residues used in

the text. Appendix 8 is used to develop a model to
estimate the eRect of a slowly varying scattering
amplitude.

II. THEORY OF THE SECOND-ORDER
MASS CORRECTION

If we assume the existence of a total Hamiltonian H
which can be written in the form

IV =Ho+Hi)&,

the application of time-independent perturbation
theory to the calculation of the masses of a baryon octet
is straightforward. The only diRerence between the
formulas used here and those given in any introductory
quantum mechanics book results from the use of
covariant normalization for the states vectors,

The SU(3) indices n, P label states of definite isospin
and hypercharge; the perturbing Hamiltonian H8& is

diagonal in these states for y corresponding to I'=0,
T= 0. Spin indices are suppressed in (2). Along with the
existence of H, we assume the existence of a degenerate
octet of baryons which are eigenstates of Ho, the SU(3)
invariant portion of H. We consider matrix elements of
H between physical states at rest; the physical states
are expanded in terms of the eigenstates of Ho. The
usual manipulations yield the following expression for
the mass of particle n to second order in Hp:

8 8 8,
m =m+P 8m,

s 1 ~ 'y

8 8 8,
+ P Sm, yX. . (3)

2m s Q p Q

The notation of de Swart' is used for the SU(3) Clebsch-
Gordan coef6cients. The unperturbed mass is m. The
two parameters 5m~, 8m2 in the second term on the right
of (3) are defined by

8 8 8,
(alHs7(0) In')=2m+ sm„

8 Q 7 Q

de6nite. The 6.nal term X contains the transitions to
many-particle states, and it is negative definite. The
purpose of this paper is to estimate its magnitude in

order to judge whether or not it is permissible to limit

(3) to first-order terms alone.
With the assumption that only two-particle states

contribute to X, and that these states comprise an
octet of pseudoscalar mesons of mass p and the octet of
baryons, X becomes

d'pd'q (2ir)'P (p+q)
X.=—

2' p, e spin (2ir) 62E2co ~+E

All parameters labeling the intermediate states are
summed over. The baryon P and meson e have four-
momenta (p,E) and (q,co), respectively. The three-
dimensional delta function indicates that H8 conserves
three-momenta, but not energy. The matrix element has
the kinematic structure of the scattering amplitude for
the process 0~++-,'„+-+ 0, +-',p+, with particle n an.d the
0+ spurion both at rest. Therefore, in analogy with x-E
scattering we can write

X 2'(0) F)„)'— v q v»(P),

where W=o&+E. Upon substituting (6) in (5) and
carrying out the sums over spin and unitary spin, and
integrating over the momenta, we obtain X in the form

8 8 p), 8 8 p,)= 215'G'y»Q IK)'),„(6)
Q 'r 0' p E (T )

where we have taken advantage of our particular
Lorentz frame and momentum conservation to simplify
the matrix element. The amplitude E&z, is given by

K)')„F)')„+$ (W+ m——)/m5G)'), „

where Hsi'(0) is the Hamiltonian density corresponding
to Hp The third and . fourth terms on the right of (3)
are second-order eRects. If they are absent, the GMO
mass formula follows for arbitrary Bm&, 2. We shall
determine 6m& and Sm2 and m by requiring that the
first-order expression give the best possible 6t to the
experimental masses. In other words, we assume at this
stage that second-order eRects are small. The third term
in (3) is a kinematical correction which results from the
covariant normalization; it is small and positive

' J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

X
2 (2m)'

Conservation of angular momentum and parity re-
stricts the intermediate states to those having J=-,' and
positive parity. Hence, K is independent of the direction
of the internal momentum. The sum over p includes all
multiplets formed by a product of two octets.

In order to calculate X we need to determine E.
Since the amplitude of interest is a function of W, we
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assume it is an analytic function with no singularities
other than the ones we determine directly. Moreover,
E must vanish at infinite 8' in order for X to be finite.

As the erst step in enumerating the singularities of E
we contract out the pseudoscalar meson in the matrix
element (nIEEp(0)lp, e), and obtain the following ex-
pression for the absorptive part of the matrix element:

»n(~l &"(o) IP, ~) = —(~/v2) (2~)'

+(2 ~'(s.-~-~) &-,~. l
j'.(0) I~)(.IIf. (0) IP,~)

—P y(p+ q
—~)(~,P, le,~(0) l~)(~l j+,(0) IPP)) . (9)

In a similar fashion we obtain another one-particle
contribution from the second term of (9).

Irn(E')„)R=ir()(IV —m)g, )(m ).

This term contributes only to the octet channels. There
is a third one-particle absorptive part which can be
obtained by contracting out the baryon in the initial
state instead of the meson. It involves a one-meson
intermediate state.

Im(E&)„)„= irt')—(W m)— Q I'(p, h, r).(g.r)p'~. (14)
2@2 at

The coefficient F( p, hr), (is given by

In the 6rst term on the right, the initial contribution in 8 8 p 8 8 ppx pr
the sum over intermediate states will come from a single F(p,h, r)„=
baryon state; it is given by P ~& Y "Q ''y'0' p 6 0

Im(ul H()7(0)
I pe)i ———ir(2ir)3 ~'(a —n)

2eo (2m)'

7 p+m
&&8(Ho+co m) (2m)'u(0)y~ —u

2m

The meson matrix element which enters (14) is

8 8 8t
&i. leg(0) I

e)=g 2~@ tp
S

and the meson masses are

8 8 8,—(nl j+,(0) I e) =2mup(;uP g. (11)
v2 s

are known quantities. Symmetry violations in the
coupling constants would Grst aBect the masses in third
order. When the integrations are performed, Ny~u

projected out, and the SU(S) indices summed over, we

And

ir5 (W—m) 8 8 p), 8 8 p,
Im(E&)„)i———' =, .„....., .(. . .)(, , ;)

ir() (W—m)
P G(p, h, r).(g,(')mi

1—p'/2nP s, ~

(12)

Every parameter in (12) is known. The energy of the
intermediate state is evaluated for H/'=m,

The momentum delta function constrains the state to
have four-momentum (y,E). The meson-baryon cou-

pling constants g, defined by
If this last formula is squared and only the leading
terms retained, the usual quadratic GMO mass formula
for mesons' is obtained.

The three one-particle contributions to the imaginary
part of E are just the result of inserting the mass-
splitting operator Hp into each leg of the basic strong
interaction vertex. When used in a dispersion relation
for E, each of these leads to a pole at S'= m.

Next we consider two-particle intermediate states.
Since only two-particle states are retained in (5), it is
consistent to retain only those singularities in E which
correspond to the two-particle intermediate states
alone. There is only one such contribution. This arises
from the second term on the right of (9).A two-particle
state in the first term would amount to including a
baryon —two-meson intermediate state in the total
amplitude as would the two-particle part of the baryon-
contracted representation of ImK. The two-particle
contribution which we shall retain leads to the following

imaginary part in K:

1 P(E,—m)
(ImÃ; ) = ——P K~), H*~ (18)

4z ~ 4t4~m

2E= 2m(1 —p'/2m') . The J==,'-+ portion of the total scattering amplitude is
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When (23) is used in (21), we 6nd the integral
equation for the nonoctet amplitudes to be a standard.
type. '

H&&, . If the matrix element for meson-baryon scattering
1S

8 8 pg (8 8 p,
!(P'1', ~'a'IP1, q)= &

p e (r ~p e 0 C& 1 " dS"
+— ICI'e "~ sin8, . (25)

lV—m g ~„W—t/t/"

then

H= A 8

1(v (~+V'))
The coupled equations in the octet channel, by virtue
of Eq. (24), may be decoupled by choosing a particular
linear combination of the amplitudes. Specifically we

(20) And that

The meson momenta are q and q'.
When Eqs. (12), (13), (14), and (18) are used to

write a dispersion relation for E, the following ex-
pression results:

+—
8'—m

dW'p'(8' m) 1——Q K&g,II*&„. (21)
„+„4W'm(W' —W) 4s- '

The residue at the pole C&)„ is equal to

(IC'q~ sin8+KqP cos8) =
C'q~ sine+C'q2 cos8

8"—m

and

(IC $1 sine+E'$2 cos8)e '
8 sin8& (26)„5"—5'

E yj, cos8—E'q2 sin8=
C'qy cos8—C'q2 sin8

8"—m
(27)

Equation (26) is identical in type to Eq. (25). For real
values of the phase shift, these equations can be
formally solved. '

C&g, = (g,bm), ),~— P G(&,X,.)g,~m,
1—p'/2m2 ei

g I"(p,k,r),~g,lp'~. (22)
2p2 a4

C Q(W)E=
W—m Q(m)

1 " 8(W')
0 (W) = exp — dB")

~„W'—W

(28)

(29)

C&~, is given for each of the channels in Appendix A.
Equation (21) is a singular integral equation for E&z,.
For p&8, the equations are uncoupled, while for p=8
there are two sets of two coupled equations. If H&„ is
replaced by

165'm
(e 'sin5) ~)„,

p(E, m)—(23)

sin'8 sin8 cos8
(e" sinb)')„—— e"s sinbs. (24)

sin8 cos8 cos'8

The angle 8 constitutes an unknown parameter of the
theory. If a resonance is present in one of the channels,
it is possible to estimate its value; however, the results
are insensitive to 8.

the equations take on a more familiar appearance. For
the octet channels we make the simplifying assumption
that there is only one octet phase shift and the various
octet couplings can be described by a parameter equiv-
alent to an I'/D ratio. Speci6cally we write the octet
scattering amplitude as a 2X2 matrix times an octet
phase shift; in order to preserve unitarity the matrix
is restricted so that

This solution has both the pole and the correct phase
along the cut. A possible polynomial in the numerator
of the solution has been set equal to a constant by the
requirements that IC vanish as S' becomes infinite and
that the solution become just the pole term in the limit
of zero scattering, or 0=1. We assume that the phase
shift vanishes at infinity. All that remains is to evaluate
E for various values of 8 and substitute it into the
expression for X . This is done in the next section.

III. NUMERICAL EVALUATION

In order to evaluate the second-order masses it is
necessary to assign values to all the parameters appear-
ing in Eqs. (8), (22), (27), and (28). The 6rst-order
splittings are determined by fitting the experimental
masses to the first-order mass formulas. The results are

m = 1150, bmoc =39+5, bm2 ———379;

p = 413 bye = —(+5)14.4X 104, 8p22 0.
All masses in this section are expressed in MeV. The
meson-baryon coupling constants g& and g2 are dis-
cussed by de Swart, ~ who writes them in terms of the

G. Barton, Dispersion Techniques in Field Theory (KV. A.
Benjamin, Inc. , New York, 1965), Chaps. 9 and 10.
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(30)

renorlIlallzed ploll-llilcleoll collpllllg constallt g, and f
The relative strengths of the antisymmetric and sym-
metric SU(3) couplings are given by f and 1 f-

gl= 2(5/3)'"g(1 f)—,

gs=2V3gf

We first evaluate Eq. (31) in the approximation of
zero scattering and then look at the scattering correc-
tions. The masses in this pole-model limit are second-
order polynomials in the coupling parameter f Up. on
inserting the residues from Appen. dix A into Eq. (28),
we obtain the following expressions:

We set g'/4 xequal to 14.6. Various theories predict an

f in the range between 0.25 and 0.40.' Our solution will
be written as a polynomial in f to see if there is a best
value in that range. The coeflicients G(p, 'A, r), I and

F(p,X,v)„are elements of the crossing matrix from 8„
in the I or I, channels to 8)„ in the s channel; they are
available in the literature. "In Appendix A we use these
coeScients to explicitly evaluate the pole residues CI'q, .

For each of the physical particles we evaluate the
first three terms on the right of (3) and write X as a
sum of contributions from the various channels:

m~ 33—3—4+1.283 4f .16—89 2f',.
mA= 678.0+1197.3f—1274 4f', .

mx ——782.8+582.6f—1019.5f',
m-. = 1024.6+923.2f—1181.5f'.

For f equal to 0.35, the resulting values are

mlv= 575.7,
my= 941..0,
my= 861.8,
m-. = 1203.0.

(34)

m =961 6—-'X""+(9/20)X"+ (1/20)X',

+5
+4Xsn — (XsIs+Xssi)

20

mI, = 1111.7—(-,'X'+ (27/40) X"+-',X'II),
mz= 1189.7—{4XIs+4X"*+Iso X'I+—,'X'll), (31)

m„-. = 1334.9——'X"+(9/20)X"+ (1/20)X'll

5
+4X'sr+ —— -(Xsrs+X'si)

20

Ke have used X)'q, to represent the coeS.cients of the
two Clebsch-Gordan coeKcients in I.For the octet
X&q, there is a sum over intermediate channels involved,
in the de6nition. In the limit of zero scattering in the
—,
'+ channel Q(W)/Q(m) =1, and X'x, will involve only
the pole portion of E&~„.If the integral with E given by
just a pole is denoted by I,

1 1 " p(E—m)I=— — dW
2 (2rr)' ~„W(W—m)'

then the integrand. of I&q, contains an additional factor

~
Q(W)/Q(m) ~', and II'I, can be written as

I~&„(1+&~)I. ——

In the limit of no scattering o. is equal to zero; in general
it can range from —1 to infinity. The integral I is

equal to 2.127X10 ' MeV ', when the aforementioned
values for fÃ and p aI;e used.

' In the work of A. W. Martin and K. C. Wali )Phys. Rev. 130,
2455 (1963)j, it was found that I=0.25 would explain the observed
properties of the decuplet resonances. SU(6} symmetry predicts
an I=0 40 C. J. Goebel LP. hy.s. Rev. Letters 16, 1130 (1966)g
6nds f to be 0.36 in strong-coupling theory, and he gives references
to",. other values of f between 029 and 039.

'0 M. M. Nieto, Phys. Rev. 140, 3434 (j.965}.

Not only are the magnitudes of the calculated masses
wrong, but also the mass diQerences mg —mg and
ns= —m~ are wrong. The Z-A. mass di6erence even has
the wrong sign. In addition, we 6nd that the error in the
GMO mass formula is equal to —63.7 MeV, compared
with the experimental value of —13 MeV. By varying

f we find that the minimum error of —42.4 MeV occurs
for f equal to 0.13. This error is still smaHer than that
which would be expected in first order on the basis of a
realistic estimate of the strength of the medium-strong
interactions. As a, function of f, the maximum value of

mg is 577.2 MeV and that of m~ is 866.6 MeV. The
maximum values for all the masses occur for f's between
0.24 and 0.45, and these values are between 100 and
375 MeV below the physical values. The masses are
quite insensitive to the value of f in this region.

If the unphysical assumption is made that the mesons
are degenerate in mass (5pls=0), the situation is
altered. For an f of 0.35, we would find the pole ap-
proximation masses to be

m~= 930.0,
nsg= 1,081.3,
~&——1150.0,
m= = 131.3.4.

The second-order mass shifts are small compared with
6rst order but the error in the GMO formula is +46.4
MeV. If the 6rst-order baryon mass shifts are set equal
to zero, and the second-order e6ect is generated by the
meson splitting alone, we 6nd mass shifts ranging from
250 to 400 MeV for the same value of f The er.ror in the
GMO formula is 118 MeV. These unphysical choices of
the parameters may lead to smaller or larger second-

order corrections, but the agreement with the GMO
mass formula is not improved. . These choices do. show,

however, that the dominant'contribution to the second. -

order baryon mass shifts comes from the large 6rst
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order meson mass splitting, Obviously a real under-
standing of the baryon masses will involve solving the
problem of the origin of the meson mass splitting. The
simple pole model with no free parameters leads to very
large second-order corrections to the octet masses. The
corrections are suKciently large to render perturbation
theory meaningless. The question is whether this con-
clusion can be avoided either by invoking scattering
eGects to suppress the pole model results or by objecting
to some fundamental aspect of the whole model.

Before considering scattering effects, we note that in
the pole model, the error in the GMO mass formula is
substantially less than the error in the magnitudes of
either the individual masses or the mass differences
between pairs of particles. This indicates that the GMO
formula is not a sensitive test of the correctness of a
dynamical calculation of mass shifts. Most of the
perturbative' and bootstrap' calculations of mass
splittings concentrate on satisfying this sum rule; the
actual magnitudes of the masses are not calculated, and
often they are infinite. One or two parameters are
adjusted to make the "calculated" masses fit the
physical ones in some approximation. A successful
dynamical calculation of mass shifts must predict the
correct magnitudes of the individual masses and mass
differences as well as satisfy the weak requirements of
the GMO sum rule.

The pole model is the result of solving (25) in the
limit that the phase shifts are identically zero for each
channel. For a nonzero phase shift, the problem is more
complicated. There are the correction factors propor-
tional to the n&. For f equal to 0.35 the masses, including
these factors, are

mg =575.7—43.3n'~ —260.2o,"*
—n'(45. 9 sin'8+36. 4 cos'8+81.8 sin8 cos8),

~,=941.0—65.0~'~—67.2~»

—n'(28.0 sin'8+10. 5 cos'8 —34.3 sin8 cos8),

TABLE I. The parametrization of a slowly varying phase shift
discussed in Appendix 3 is used to generate bounds on 0. for
various values of the maximum phase shift 5 . These bounds are
n +, v here the superscript indicates the sign of 8 .

~/32
~/16
~/8
~/4

3~/8
x/2

0.063
0.13
0.28
0.63
1.08
1.65

—0.059—0.115
—0.22
—0.39—0.52—0.62

(negative) phase shifts the n&'s are positive (negative).
In Table I we list bounds on n for various values of the
maximum value of the phase shift. For a phase shift
which has a maximum magnitude of s/4, n would be
bounded by +0.63 or —0.39 depending on the sign of
the phase shift. Even if the phase shifts reached ~/2, n
would be 1.65 or —0.62. If all the n's were equal to
—0.39 and the most advantageous'~. '.value of 0 were
chosen, the nucleon mass would still be 200 MeV too
low. Also it is unlikely that all the channels would have
the same behavior. Hence, a slowly varying phase shift
will not substantially reduce the second-order effect.

The only experimentally known —,'+ phase shift comes
from pion-nucleon scattering where there is evidence
for a highly inelastic T= ~ resonance at about 1480 MeV
center-of-mass energy. " Such a resonance could be a
member of a 27, 10*,or 8, and arguments have been put
forth to favor either the 10~" or 8" assignments. The
inelasticity could be due to other SU(3) allowed chan-
nels. Since the actual resonance occurs below threshold
in terms of the unperturbed baryon and the meson
masses, there is some ambiguity in assigning a position
and width to the resonance multiplet. Neglecting this
problem for the moment, we examine the effect of a
resonance on the n. For a E-wave resonance with a
width factor I'(W) and position a„, Q(W) is given by"

m~ =861.8—28.9n' —0.3n"—260.2n"*
—ns(28.0 sin'8+10. 5 cos'8 —34.3 sin8 cos8), where

Q(W) =
L~„—W —ir(W)/2]

'

m„-. = 1203.0—43 3o.2' —0.3a"
—n'(2. 2 sin'8+86. 1 cos'8+27.6 sin8 cos8) . (35)

r(W) (PP/I )'

1+(PP/I )'
(37)

The angle 8 was introduced in Eq. (26). Clearly values
of n& near —1, or

~
Q(W)/Q(m) ~' near zero, are needed

to suppress the second-order effects. (The second-order
corrections will not vanish even for all the n's equal
to —1 because of the parametrization of the octet
channel in terms of 8.) Moreover, such values of n are
needed in the 1, 8, 10~, and 27 channels simultaneously.
The 10 channel can be neglected for this value of f
If the phase shifts are small and slowly varying it
seems obvious that the n&'s will be near zero. In Ap-
pendix B we check this explicitly by using a simple
parametrization of the phase shift that has the correct
threshold and asymptotic behavior. For small positive

In Eq. (36) and (37) e is an arbitrary constant, P/p is
the range of interaction for mesons and baryons, p' is
the reduced width, and p is the c.rn. momentum. The
arbitrary constant cancels out of the ratio Q(W)/Q(m).

» L. D. Roper, Phys. Rev. Letters 12, 340 (1964)."J.J. Brehm and G. L. Inane, Phys. Rev. Letters 17, 764
(1966).

13 V. Barger (private communication) argued that the resonance
must be an octet since it is strongly produced in proton-proton
scattering, and the exchange of an SU(3) singlet Pomeranchul-
Regge trajectory is expected to dominate the production process.

'4The functional form of Q(W) for a resonance is derived in
Ref. 8. The parametrization of the resonance width is suggested
by K. Nishijima, FNndanzemtal I'articles (W. A. Benjamin, Inc. ,
New York, 1963},pp. 100, 101.
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Tax,E II. The parameter o. is displayed for various values of the
resonance position a„and observed width F. Two values of the
range parameter P are tested. The position, width, and reduced
width y' are all given in MeV.

caused by coupling to the other SU (3) allowed channels,
an estimate of sino can be made in the limit of all other
phase shifts vanishing at the resonance energy. " For
x-S scattering the T=-,' 5 matrix is

400
400
400
400
200
200
200
200
100
100
800
800

200
200
390
100
200
200

75
75
50
50

300
300

0.88
0.50
0.88
0.50
0.88
0.50
0.88
0.50
0.88
0.50
0.88
0.50

72

139
442
236
236
255
942
117
464
184
828
106.5
274

1.23
5.25—0.77

12.84—0.97
1.31
1.33
6.33—0.97
2.98
4.55
7.91

ge"'=—e""'+-,' exp2i8"*
20

3+5 1
+ — — sine+ —cose e"". (38)

10 2

Experimentally g is about 0.2."If the resonance belongs
to a decuplet, we have in the limit of degenerate
thresholds

Equation (37) is analytically continued in W to give
Q(m) a real quantity. The two-meson state is the lowest
mass system that can be exchanged in meson-baryon
scattering; this would indicate that p is 0.5. On the
other hand, when a similar resonance formula is 6tted
to the 1V*(1238),P is found to be 0.88."Since Q depends
sensitively on p, both values will be tested.

The integral in Eq. (32) with the additional factor of

~
Q(W)/Q(m)

~

' is evaluated numerically for a variety of
resonance positions and widths, as well as for the tw'o

values of p. In Table II we present some typical results.
We give what would be the observed width and position
of the resonance. The reduced width y' is calculated
from the observed width. For P=0.5 the resonance
always acts to give positive n's, with narrow resonances
giving larger n's. However, we find that for p= 0.88, the
experimentally favored value, it is possible to obtain
negative values as well as positive ones. Negative n's

result from cancellations occurring when Q(W) is
continued to Q(m). The position and reduced width of
the resonance must be properly matched for this
cancellation to occur; it is necessary that the resonance
have a width comparable to its distance above thresh-
old. Although this cancellation depends on continuing
the resonance approximation away from the region
where it is most valid, similar extrapolations of the
resonance formula have been found to be valid. in other
processes. "Hence, we 6nd that although a resonance is
most likely to enhance the second-order effects in the
mass formulas, the opposite situation is possible. We
would need either several multiplets of such resonances,
or a single 10* resonance with the rest of the phase
shifts moderately negative. It might then be possible to
reduce the second-order mass shifts to 50 MeV or less,
but only at the expense of invoking unknown dynamics
and an improbable concellation.

There is one parameter in Eq. (35) which has yet to
be discussed. The octet mixing angle 0 has heretofore
been arbitrary. However, if the -', + resonance is assigned
to a particular multiplet and its observed inelasticity is

"L. Durand, III (private communication).

3+5+-—sine+ —cos8 = —0.2,
20 4 10 2

or sin8= —3j(14)'t2. If the resonance belongs to an
octet, we would have sine=0. 2i or 0.997; there is no
solution if the resonance belongs to the 27. In any case,
our parametrization of the octet channel is consistent
with the assignment of the resonance to either 8 or 10*
multiplets, and with the observed inelasticity. There is
no point in inserting these values into Eq. (35); the
second-order mass shift is large in any case.

There is one further dynamical possibility that should
be mentioned. It may be that in the symmetry limit the
—,'+ resonance should be treated as a bound state. This
will mean there is another pole in E&),„and interference
effects between the two poles could produce almost any
result. Since the sign of the meson-baryon coupling is
unknown, constructive or d.estructive interference would
be possible. However, again this would occur in only one
channel and would, therefore, have the same effect as a
resonance.

Iv. SUMMARY

We have calculated the mass of the baryon octet to
second ord. er in the symmetry-breaking Hamiltonian
by a straightforward application of perturbation theory.
Kith the restriction to two-particle intermediate states,
the second-ord. er mass shifts are as large or larger than
the erst-order shifts. In the limit of no scattering in the
J=-,'+ channel, the predictions are unambiguous. Ke
have also discussed the scattering corrections to the
pole model. Except under very special circumstances,
these scattering corrections will not reduce the magni-
tudes of the second-order mass shifts obtained from the
pure pole model, but are more likely to lead to larger
eGects. Although a mechanism has been found whereby
a resonance can strongly suppress the second-order
corrections, delicate cancellations are involved, and any
arguments based on this mechanism are suspect. Several
multiplets of —,

'-+ resonances would be needed to reduce

' This determination of sin8 is suggested by some of the dis-
cussion in D. Atkinson and M. B.Halpern, Phys. Rev. 150, 1377
(1966).
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the second-order effects suKciently to make a 6rst-order
derivation of the GMO mass formula believable. These
resonances would necessarily be very broad if well above
threshoM; there is no evidence for the existence of more
than one —,

'+ resonance.
Since dynamics seems to be incapable of explaining

the success of the 6rst-order mass formulas, perhaps the
manner in which perturbation theory has been applied
can be questioned. For one thing, perhaps the param-
eters 8m~ and 8m2 should not have been determined in
the way they were. (The GMO mass formula is satisfied
fol alhltlaly vallles of 'tllcse palaIIlc'tcls. ) Howcvcl 'tllls

is tantamount to saying that first-order perturbation
theory is inadequate to explain the mass splittings even
approximately and a fortiori to assuming that per-
turbatlon theory is meaningless from the stal t,. A
similar objection could be raised to the choice of the
unperturbed mass, and the same argument made
against the objection. It may be that the pole approxi-
mation to E&)„has the wrong asymptotic behavior,
leading to a large high-energy contribution to the
integral in Eq. (32). However, looking at the integral
equation for E, we see that, for a scattering amplitude
that vanishes at infinite 8', EC indeed goes asymp-
totically as 8" '. Possibly perturbation theory is all
right, but first- and second-order effects ought to be
calculated together and the parameters adjusted in some
self-consistent fashion. However, if second-order effects
are so large as to necessitate consideration in this

fashion, third- and higher-order terms generated from
the first- and second-order terms should also be con-
sidered. On a diferent level, it is conceivable that the
inclusion of multiparticle intermediate states in the
determination of E would reduce its magnitude.
Consistency then requires that multiparticle states be
included in X„aswell. If these states strongly aGect E,
then they should also contribute strongly to X . These
contributions would all have the same sign. Hence, we
believe that multiparticle e6ects will increase rather
than decrease the magnitude of the second-order masses.
%e therefore state our 6nal conclusion: The reason for
the success of the GMO mass formula when applied to
the octet of baryons does not lie in the relative weakness
of the symmetry-breaking interaction and the conse-
quent applicability of perturbation theory. The ex-
planation must come from a nonperturbative S-matrix
approach.
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APPENMX A

When Eq. (22) is evaluated for the various choices of
the following expressions for C&q„are obtained:

m 1
-(gIbmI+g25m2) — -(gay I'),

1—11'/2m2 5 2p 5

C10
l m 1

—(2g]smI+ (/5)gIsm2+ (/5) g25mI) — —(—2g15pI + (/5) g25p I'),
1 p'/2r~' 5— 2p 5

w 1
-(2gI&mI —(v'5)gI&m2 —(v'5)g2~mI) —— -(—2gI&~I' —(45)g 241'),

1—p'/2m' 5 2p' 5

Pl'

(g18m1—ggbm1) — (gIby12),
1—p'/2m2 211'

m
C'gg ——gg&wg— —(—3gIbmI —Sg2bm2) — ( ,', gIbp, ——

1—p'/2m' 10 2p'

C'~2= gA~x—
I m 1

( gl~m2+g2~ml) (g2~91 )
1—p'/2m' 2p 2

m 1
C 21—g15S1 (g18m2 gP5mI) (g2'5PI ) y

1—11'/2m2 2 2p~ 2

m 1
—(—g1hm1+g25m2) — —(gay P}.

1—p'/2m' 2 2p
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X(./2)'~'(Xy. ) XX»2
~(X)= +i

X2+ ~2 X2+ ~2

We have set 5@2' equal to zero. In the zero-scattering
limit X&q, is

X~&,——Ig, C~„C~...
with I defrned in (32). The X~q, are combined according F r 'mpl'c'ty we take X"
to Eq. (31) to give Eq. (34). simple analytic continuation of (8.3) we obtain

(8 3)

APPENDIX jal 6(—p) =- X/2p'('. (8.4)

( (X+~)
(8.1) ~Q(X)/0( —p) ~'=exp (-,')'"8 — —— . (8.&)

X'+p.
' v2

5=X[X'"/(X'+ e')]

Here we estimate the effect of a small, slowly varying Equations (8.3) and (8.4) are combined to give
phase shift on the o.'s. I et the phase shift 5 be given by

where X=8'—m —p. Such a phase shift has correct
threshold dependence and vanishes at infinite energy.
The parameters X and e can be written in terms of 6,
the maximum value of 5, and I„,the position of that
maximum.

e= X„/&3,
X=2&3 (8 2)

Then, if Q(X) is written as exp'(X), we find that'r

Tables of Integral Transforms, edited by A. Erdelyi (Mcoraw-
Hill Book Company, Inc. , New York, 1954), Vol. II, p. 216.

The maximum magnitude of the exponent occurs for
X=p (C2 —1). If in Eqs. (32) and (33)

~
Q(X)/Q(p)

~

' is
replaced by its value at this point, an upper or lower
bound n can be obtained for n depending on the sign
of8 .

n = —1+exp[-', (-;)3(48 j. (8.6)

The signs of 0. and 5 are the same. In Table I we list
some values of n and 5 obtained from Eq. (II.6). The
actual values of o. may differ substantially from these
bounds, though they will have the same sign.
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Some Consequences of SU(3) and Charge-Conjugation Invariance
for X-Meson Resonances*

G. L. KANK

University of Michigan, Ann Arbor, Michigan

(Received 31 October 1966)

Implications of invariance of strong interactions under SU(3) and charge conjugation are investigated for
E-meson resonances (i.e., systems which are not eigenstates of C). It is pointed out that the charge-con-
jugation eigenvalue of the neutral nonstrange members of multiplets is determined by the decays (mesonic
or electromagnetic) of the strange members. The E'(1320), I~'(1420), and E'(1800) are considered as
examples. Possibilities for study of symmetry breaking and particle mixing in kaon resonance decays are
mentioned; they may provide practical methods for studying symmetry breaking.

w E would like to point out some simple, but
apparently not well-known, properties of mesons

wkth nonzero strangeness. These properties follow
whenever charge-conjugation invariance and SU(3)
invariance are supposed to hoM. They may prove
useful in the study of symmetry-breaking e6ects in
SU(3).

Assume that all the kaons we will consider are to be
assigned to SU(3) octets, and, throughout, let C be
the charge-conjugation eigenvalue of the neutral, non-
strange (NNS) members of the octet. It is then possible
to show quite simply that:

Research supported in part by the U. S. Atomic Energy
CoInmigsion and by the National Science 1'ogndation,

(a) Two kaons belonging to multiplets whose NNS
members have opposite C cannot mix in the limit of
SU(3) symmetry, but they can mix whenever sym-
metry breaking is present.

(b) From the decay branching ratios of kaon reso-
nances, it is possible to determine the C eigenvalue of
the NXS members which can be placed in the same
multiplet as the kaons. It should almost always be
possible to do this in practice, with considerable
restriction on one's freedom in making up meson

multiplets.

(c) From the electromagnetic decays of kaon reso-

nances it is also possible to determine the C eigenvalue

gf the NXS members w'hich can be placed in the same


