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The sects of charge exchange in collisions of high-energy particles of isotopic spin —, with deuterons are
investigated. The diBraction approximation is used to express the deuteron charge-exchange cross section
in terms of the elastic-scattering amplitudes of the neutron and proton and the deuteron ground-state wave
function. Examinations are also made of the influence of the charge-exchange mechanism on the total cross
section of the deuteron, the elastic differential cross section, and the summed angular distribution of scatter-
ing {elastic plus inelastic scattering with initial charges preserved). The important role played by double-
scattering processes in shaping the differential cross sections of the deuteron is illustrated in a discussion
of proton-deuteron elastic scattering at 2 BeV. Double scattering is shown to be the dominant collision
mechanism at scattering angles which are not too close to the forward direction. The e8ect of the double
charge-exchange process on the elastic differential cross section is shown to be small but of some significance
in the angular range which is dominated by double scattering. The theory developed for charge-exchange
reactions is applied to the E' angular distribution which has been observed from E+-deuteron collisions at
2.27 BeV/c. Estimates are found for the differential and integrated X+-neutron charge-exchange cross
sections, and for some related parameters. The sects of double collisions on these cross sections are rela-
tively small and easily evaluated. The eGect of the charge-exchange mechanism on the values of the pn,
pn, and X+n total cross sections which are reached indirectly via measurements on the deuteron is shown
to be exceedingly small for momenta above ~2 BeV/c.

I. INTRODUCTION

INCE most varieties of elementary particles are
both scarce and short lived, no direct method is

available for measuring their cross sections for collisions
with neutrons. An alternative procedure which has
been widely applied at high energies involves measuring
deuteron cross sections and subtracting from them the
measured cross sections of the free proton. It has been
important in applying this method to recognize that
the deuteron cross section may deviate appreciably
from the sum of the free neutron and proton cross
sections. The principal source of this deviation lies in
double-collision processes and shadowing effects to
which the incident particle is subject when passing
through the two-nucleon system. Ke have given a
detailed discussion of these effects in an earlier paper'
in which we have assumed that the charges of all
particles remain 6xed during the collisions.

It is clear that double-collision and shadowing effects
may play an analogous role in the determination of
charge-exchange cross sections of the neutron from the
corresponding measurements made upon the deuteron.

* Supported in part by the U. S. Atomic Energy Commission.
and by the U. S. Air Force Of5ce of Scientific Research.' V. Franco and R. J. Glauber, Phys. Rev. 142, 1195 (1966).
We shall refer to this paper as I. Earlier papers on the cross-
section correction are: R. J. Glauber, Phys. Rev. 100, 242 (1955);
in Proceedings of the Conference on Nuclear Forces and the Fem-
1Vucleon Problem, edited by T. C. GriKth and E. A. Power
(Pergamon Press, Inc. , London, 1960), Vol. I, p. 233; in Lectures

in Theoretical Physics, edited by %.E. Brittin et al. (Interscience
Publishers, Inc. , New York, 1959), Vol. I, p. 315; V. Franco,
Ph.D. thesis, Harvard University, 1963 (unpublished); D. R.
Harrington, Phys. Rev. 135, B358 {1964);137 AB3 (E) (1965).
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Ke shall therefore extend the analysis of the previous
paper to include the effects of charge exchange. Since
scattering takes place predominantly near the forward
direction at high energies whether charge is exchanged
or not, the dynamical considerations presented in I
remain essentially unaltered. All of the approximations
introduced earlier apply equally well when the charge
state of the incident particle is changed in the collision
process.

Charge-exchange processes also have a certain
bearing on deuteron cross sections for collisions in which
there is no net transfer of charge. This effect, which
has been noted by Kilkin, ' is due to a pair of successive
collisions in which two cancelling charge exchanges
occur. For charge-independent particle interactions, the
effect may be seen to depend quadratically on the
difference of the elastic-scattering amplitudes of the
neutron and proton. It tends therefore to be a small
effect relative to the other cross-section corrections,
as we shall show explicitly for the cases of incident
nucleons, antinucleons and E mesons.

The kinds of collision processes which lead to charge-
exchange scattering by the deuteron are illustrated
schematically in Fig. 1 for an incident positive particle
which is the I3=-,' member of a charge doublet. Only
one type of single-collision charge-exchange process can
take place, that shown by Fig. 1(a), but two varieties
of double-collision processes may occur as shown by
Figs. 1(b) and 1(c).s All three processes lead to identical

' C. Wilkin, Phys. Rev. Letters 17, 561 (1966).
'Triple- and higher-order multiple collision processes have

negligibly small amplitudes when the scattering takes place
predominantly at small angles.
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anal states and are experimentally indistinguishable;
the amplitudes they contribute add together coherently.
In the place of the initial deuteron the charge-exchange
process leaves either two protons or two neutrons, and
the states accessible to these particles are significantly
restricted by the exclusion principle. In particular, since
the 6nal nucleons cannot remain bound, charge-
exchange collisions with the deuteron must be inelastic
in character.

The types of collision processes which may take place
with no net transfer of charge are illustrated in Fig. 2.
The charges of all particles remain fixed in the two
single-collision processes shown in Figs. 2(a) and 2(b)
and the two double-collision processes indicated in
Figs. 2 (c) and 2(d). Shown in Fig. 2(e) is the additional
process, mentioned earlier, which is introduced by
allowing for the possibility of two compensating charge
exchanges. The amplitudes for all five processes add
coherently and contribute both to elastic and inelastic
scattering by the deuteron.

We derive expressions for the va, rious deuteron cross
sections in terms of charge-independent scattering
amplitudes in Sec. II and express them in terms of the
more directly observable neutron and proton scattering
a,mplitudes in Sec. III. The angular distribution of
elastic proton-deuteron scattering is discussed in
Sec. IV. The theory suggests that the scattering ob-
served at angles which are not too close to the forward
direction is contributed predominantly by double-
collision processes. We discuss the effect of charge ex-

change on this angular distribution and note that a
recent calculation4 of the distribution is in approximate
agreement with its observed form. ' In particular the
shape of the observed angular distribution seems to give

(o)

FIG. 2. Schematic representation
of colbsion processes which contri-
bute to scattering by the deuteron
with no net transfer of charge. 'I"he

incident particle is again the I3= -,

mernber of a charge doublet.

(d)

o
+
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fairly direct evidence for the detection of double-

collision processes.
In Sec. V we illustrate the way in which our results

can be used to analyze charge-exchange processes by
considering the reaction E++d ~ X'+p+p. We derive

the di8erential cross section for E+-neutron charge
exchange scattering and several related parameters from

the data of Butterworth et ul. ' Finally, we indica, te in

Sec. VI the quantitative effect which charge-exchange

scattering has on the total cross section of the deuteron
for collisions with incident protons, antiprotons, and
E mesons.

FIG. i. Schematic representa-
tion of collision processes which
contribute to charge-exchange
scattering by the deuteron.
The incident positively charged
particle is assumed to be the
I3= 2 member of a charge
doublet.

The high-energy approximation technique we use

permits us to express the amplitudes and cross sections
for various kinds of scattering by the deuteron directly
in terms of the individual amplitudes for scattering by
the neutron and proton. We shall assume that the

particles of the incident beam have isotopic spin —,

without specifying their nature further. They may thus

be nucleons, antinucleons, E mesons, etc. XVe shall

furthermore assume, for simplicity, that all of the
interactions considered are precisely charge-independent
and omit the effects of spin dependence (some of which

are discussed in detail in I).

' V. I'raneo and E. Coleman, Phys. Rev. Letters 17, 827 (1966}.
5 E. Coleman, R. M. Heinz, O. E. Overseth, and D. E. Pellet,

Phys. Rev. Letters 16, /61 I'1966}.

'I. Butterworth, J. L. Brown, G. Goldhaber, S. Goldhaber,
A. A. Hirata, J. A. Kadyk, B. M. Schwarzschild, and G. H.
Trilling, Phys. Rev. Letters 15, 734 I', 1965};also B.M. Schwarzs-
child (private communication).
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8+(s) =1 for s&0
=0 for a&0 (2.4)

In the experiments we are considering, incident

particles of either of two charge states (I3——+2) collide

with neutrons and protons. The scattering amplitudes
which describe such collisions may be dealt with most
compactly by defining an isotopic spin-dependent
scattering amplitude operator. With the assumptions
noted earlier we may write the amplitude operator for
scattering by a nucleon labeled by the index 1 in the
general form

ai(q) =f(«)+~ ~ig(«), (2.1)

where kg is the momentum transferred to the target
nucleon, and g and ~~ are the isotopic spin operators for
the incident particle and target nucleon, respectively.
We shall always take the functions f and g to have the
values characteristic of the laboratory system, which is

the initial rest frame of the nucleon.
If we take the initial state of the incident particle and

deuteron to be
~
i) and the final state to be

~ f), we may
write the corresponding amplitude for scattering by the
deuteron as Fr;(q). In the diffraction-type approxi-
mation which we use, the amplitude Fr, (q) may be
regarded as the matrix element of an operator F which

contains terms which are linear or bilinear in the
scattering amplitude operators u;, i.e., we may write

Ff, (q) = (f ~ F(q, r, ~,~i,~2)
~
i), (2.2)

where the indices 1 and 2 label the two nucleons of the
deuteron and r is the internal coordinate of the deuteron,
r=r~ —r2. The operator Ii which we require is an im-

mediate generalization of the one derived in I, Eq. (3.6),
for the case in which charge exchange is neglected. The
only change necessary stems from the fact that the
scattering amplitudes are now represented by operators
rather than c numbers. Since a~ and a2 do not commute
in general, the order in which they occur is an important
feature of the term which describes double scattering.
To express the operator F most conveniently, we

separate the internal deuteron coordinate r into two

orthogonal components. We Iet s be the component of r
in the direction of the propagation vector k for the
incident particle and let s be the component of r in the
plane perpendicular to k. The operator F is then given

by

F(q, r,~,~i,~2) =ai(q)e'l&'+a2(q)e

Z

+ e"'Lai(l q+ «')a~(2» —«')8+(z)
2+k

+a2(lq —«')ai(lq+«')8-(s) j&"'«', (2.3)

in which the integral over d"'q' is an integration over
the plane of momentum transfers perpendicular to k,
and the functions 8~(s) are de6ned by

The first two terms of F describe single-scattering
processes by each of the two nucleons. The third term
describes the effect of double interactions. Since our
basic approximation assumes that scattering processes
take place predominantly through small angles, the
order in which the two interactions take place is deter-
mined by the instantaneous configuration of the
deuteron. For s)0, the incident particle must first
strike nucleon 2 and then 1. This requirement explains
the presence of the function 8+(s) in the double-
scattering term of Eq. (2.3). The function 8 (s) plays
a corresponding role for the reverse ordering.

An alternative way of writing the ordered operator
product which occurs in Eq. (2.3) is based on the
identity

where
4(&)= 2L&+e(s)],

e (s) =s/I s
I

(2.5)

(2.6)

By substituting the identity in Eq. (2.3) we see that
the double-scattering term may also be expressed as

[{a&( q+«) a ( q q))

F(q,r,~,~i,~2) =A (q, s)

+%(q,s)~ ~i+A(q, s)~ ~2

+C(«,s)L i +i ( X ) (s)1, (2.8)

where the functions A, B~, 82, and C are defined as

A(q, s) =2f(q) cos(x2« s)+
2irk

exp(iq' s)

Xf(l«+q')f(-'q —q')d'"q', (2.9)

Z

Bl(q, s) =g(q) exp (i,q s)+ exp(iq' s)
2xk

xg(2«+« )f(2'« « )—d"''q ('2. Io)

a, (q,s) =g(q) exp( —i-', q s)+2' exp(iq' s)

=Bi(q, —s),

Xf(-'q+«')g(k» —«')&"'«' (2.»)

'In the analysis of the eRects of spin dependence on the
deuteron elastic-scattering amplitude and total cross sections
presented in I the term analogous to the latter of the two in the
expression (2.7) has been dropped. This term, which is propor-
tional to c(s), has no eRect on either the elastic-scattering ampli-
tude or the total cross section. It does contribute, however, to the
cross sections for breakup of the deuteron and must be included
when these are calculated.

+La&(2«+q'), a2(-', q—q') je(s)]d &~»' (2.7)

in which the brackets L, j designate the commutator
and (, ) the anticommutator. 7

The charge dependence of the operator Il can be made
more evident by writing it in the form
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C(q,s) =
2%k

exp(iq' s)

&g(lq+q')g(kq —q')d'"q' (2.12)

way wc And

(d /dQ). i=41f(q) I'~'(lq)

~(q) = o"'l4 (r) I'« (2.13)

=~(—q).

Since the deuteron ground state is an isotopic singlet
state, the diagonal matrix element of I' evidently
reduces to

The amplitude for elastic scattering by the deuteron
is obtained by ending the diagonal matrix element of
the operator F in the state

I i). For this purpose, let us
write the deuteron ground-state wave function as @(r)
and introduce the deuteron form factor S(q) which is
de6ncd as

—~(kq) Im f'(q) ~(q')&(q, q')d"'q'
~k

'

+
(2mk)'

~(q')h(q, q')d"'q' . (2.»)

The total angular distribution of scattering, which
includes inelastically scattered particles as well as
elastically scattered ones, can be found by summing

I Fr, (q) I' over a complete set of possible final states f.
Since the final states f include all possible charge states
of the particles considered, the angular distribution we
And in this way is the sum of the differential cross
section for charge-exchange scattering, (do/dQ), , and
the differential cross section for scattering with charges
preserved, (do/dQ), . We thus have

F,,(q) =(~Id —3cli&,

which may be written more explicitly as

(2.14) (do/dQ), „+(do/dQ)„= Jr I F~;(q) I

2

= &ilF'(q)F(q) I'&. (2.22)

F;;(q)=2f(q)&(-'. q)+ — ~(q')l (q, q')d"'q', (2»)
2xk

where Ji(q q ) ls tile fllllctlon

&(q,q') =f(l q+q')f(-'q —q')
—3g{oq+q')g{kq—q') (2 16)

The total cross section of the deuteron, o.q, is easily

found from the elastic forward scattering amplitude by
means of the optical theorem,

o.g= (4'/k) ImF, ,(0). (2.17)

To evaluate this expression, we note tha, t the average

of the neutron and proton total cross sections, O.„and g„,
is given similarly by

—;( „+.,)={4/~) I f{O). (2.18)

Ke may therefore write the deuteron total cross section

in the form

(2.19)

x (ri3+r25) j(1+ri3r23) . (2.24)

Hence the differential cross section for charge exchange
scattering alone is

(d /dQ& *=l('IF'(q)(1+. .')F(q) I'& (2.25)

=2&iI I&i—B2I'+4I CI'li&. (2.26)

If we substitute the form (2.8) for F(q) in this expres-
sion and evaluate the expectation values of the isotopic
spin operators which occur in it, we find

(do./dQ), + (do/dQ)„

= &il I
~—3CI'+3

I
Bi—B2I'+»

I
~l'li& (2 23)

To separate the contributions of the charge-exchange
and charge-retention scattering we must consider the
corresponding varieties of Anal states separately, The
deuteron is initially in an isotopic singlet state and
therefore the third component of its isotopic spin
I3= ~~ {ri3+r23), has initially the eigenvalue zero. If the
incident particle exchanges one unit of charge with the
two nucleons, their IIinal value of I3 must be +I. A
projection operator, corresponding to those states
with Is=+I is clearly

where thc cross section defect 80. is given by

2
ho= ——Re S(q')h(0, q')d"'q'.

k2
(2.20)

By subtracting these equations from Eqs. (2.22) and
(2.23), we find the differential cross section for charge
retention scattering

(do/dQ). ,=-', &ilF"(q)(1—ri, rp, )F(q) li& (2.27)

%e shall look. further into the structure of this term

in Sec. III.
The difkrcntial cross section for elastic scattering is

obtained by squaring the modulus of F;;(q). In this

=('I
I
~—3cl'+

I
Bi—B21'+4I &I'l~& (2»)

%hen wc cxpl css thc chai ge exchange angulal
distribution in terms of the scattering amplitudes f
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and g by means of Eqs. (2.10)—(2.12) and (2.13), we find

(doj«).*=4
I g(q) I'0-S(»)3

——I g*(q) S(-,'q —q') j(q,q')d"'q'
%-k

m(q, q') =2g(l»+»')g(l»-»'). (2.31)

The exclusion principle has an important bearing on
the final states available for the charge-exchange
reaction. When charge exchange has taken place, the
two nucleons of the deuteron are left in identical charge
states and can not remain in their original even-parity
orbital state. Charge exchange thus can not be an
elastic-scattering process, and, in particular, it can not
take place in collisions with zero momentum transfer.
This conclusion is not altered by the introduction of
spin variables since the on1y bound state of the two-
nucleon system is the deuteron ground state.

The 6rst term of the charge-exchange angular
distribution (2.29) clearly vanishes a,s q —+ 0 since

S(0)=1. Furthermore, two of the remaining terms also
vanish in the forward direction since j(0,q') =0. The
double-scattering term which contains the function
m(q, q')m*(q, q"), however, does not vanish for q=0,
and the cross section. (do jdQ),„therefore does take on a
nonvanishing value in the forward direction. The
apparent contradiction between this statement and the
requirement of the exclusion principle is easily resolved.

The term containing the function m in Eq. (2.29) has
its origin in the term proportional to e(s) in the ex-
pression for the scattering amplitude operator F given
by Eq. (2.8). Since the expectation value of e(s) = s/

~
s~

vanishes in the ground state of the deuteron, it is clear
that this term contributes only to inelastic scattering;
in particular, the momentum transferred to the deuteron
must have a longitudinal component if the matrix
element for scattering is not to vanish. The approxi-
mations we have made in summing over 6nal states, on
the other hand, have assumed the energy transfer to
be negligible and have thus omitted the longitudinal
component of the momentum transfer. The charge-
exch.ange scattering which is described as having q=0
is, therefore, scattering in the forward direction which
is slightly inelastic; the transverse component of its
momentum transfer vanishes but a small longitudinal
component remains.

+ S(q' —q")Lj(q, q') j*(q,q")
(2mk)'

+m (q, q') m*(q, q")]d &'& q'd &'& q", (2.29)

where we have written

j(q, q') =g(i»+»')f(lq —»')
—f(l q+ q') g(l q- q') (2 3o)

2——I»i g*(») S(k» q—')j (qq',)d"'q'
mk

+- S(»' —q")L&(»,»')~*(»,»")
(2irk)'

+j(q, q') j*(q,q")+m(q, q')m*(q, q")jd"'q'd"'q".
(2.32)

The angular distribution which corresponds to inelastic
scattering with charge retention, i.e., simple dissociation
of the deuteron, is given by

(do/dQ)g;. = (do/dQ)„—(do/dQ), i, (2.33)

which is found by subtracting Eq. (2.21) from
Eq. (2.32).

The diffraction approximation, as we have noted
earlier, assumes that all scattered intensities are heavily
concentrated near the forward direction. ' To Gnd the
integrated cross section, it is therefore sufficiently
accurate to replace the differential element of solid
angle dQ by the nearly equivalent element d&'&q/k' and
to integrate over a plane in momentum space perpen-
dicular to the incident momentum Ak. We may then
write

(2.34)

and similar expressions hold for the integrated cross
sections for scattering and dissociation. The absorption
cross section, which is the cross section for all incoherent
processes including particle production, is

&abs =&d &ex 0 ac ~ (2.35)

III. CROSS SECTIONS IN TERMS OF NEUTRON
AND PROTON SCATTEMNG AMPLITUDES

In order to compare the cross sections we have
derived with experimental results, it is convenient to

8 Neutron-proton charge-exchange scattering is frequently
described as backward scattering in the center-of-mass system.
The definition of the scattering angle implicit in this terminology
is not the convenient one, however, for use with the isotopic spin
description of nucleon states. In the isotopic spin formalism we
regard all nucleon-nucleon elastic scattering amplitudes as defined
for scattering angles x/2 &0&0.Both charge-exchange and charge-
retention scattering then tend to be concentrated near the forward
direction at high energies.

The differential cross section (do jdQ)„ is the sum of
the intensities of both elastically and inelastically scat-
tered particles which retain their original charge state.
We may use Eqs. (2.9)—(2.12) and (2.13) to write
Eq. (2.28) in the form

«./dQ)-= 2 If(») I'Ll+S«) j+2I g(») I'L1—S(»)j
2——Im f*(q) S(-,'q —q')h(q, q')d"'q'

mk
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express them in terms of the experimentally measured
amplitudes for scattering by neutrons and protons. Let
us assume for de6niteness that the incident particle has
the charge state I3=&. Then no charge exchange can
take place when the particle is scattered by a proton.
The amplitude for elastic scattering by the proton,
according to Eq. (2.1), is

f.(q) =f(q)+g(q). (3.1)

The wave scattered by the neutron, on the other hand,
contains a charge exchanged I3= —-,'component as well
as one for I3———,'. To separate these components we may
introduce the charge-exchange operator

E~———',(1+~ ~~) (3.2)

and use it to write the scattering amplitude operator
a, (q) of Eq. (2.1) in the form

~i(q) = f(q) —g(q)+2g(q)~ (3 3)

It is evident from this expression that the amplitude
for scattering by the neutron without alteration of
charge states is

(3.4)f„(q)=f(q) —g(q),

while the charge exchange amplitude is

f.(q) = 2g(q) (3.5)

If the incident particle has I&————,', the same charge-
exchange amplitude is associated with charge-exchange
scattering by the proton while the signs of g are inter-
changed in the elastic-scattering amplitudes (3.1)
and (3.4).

The amplitudes f and g which we have used to con-
struct the cross sections are therefore related to the
directly observable amplitudes f„, f„, and f, via the
three equations

preserving collisions with both the neutron and proton
in the two possible orders. The third term corresponds
to double charge exchange. The two steps of the latter
process only take place in a predetermined order, i.e.,
the incident particle can only exchange charge initially
with one of the two nucleons. The sign of the double
charge-exchange term, which is the term disregarded
in the analysis of I, is negative since it corresponds to
the exchange of two nucleons in an antisymmetric
state.

Ke may alternatively write the cross-section defect
completely in terms of the scattering amplitude fol
charge-preserving processes. If we note that these
amplitudes can only depend on the magnitude, and
not on the direction of g, we may write

2
5'(C) [2f-(C)f.(q)k'

&(g)&"'q=-2~(r—')„, (3.11)

where (r ')~ is the mean inverse squared neutron-proton
separation in the deuteron ground state. Thus when the
force range is small the cross section defect may be
approximated as

2f,—'(q) ',f.—'(q—)]«"q (3..10)

If the range of the forces between tbe incident
particle and the nucleons is small in comparison to the
size of the deuteron, the scattering amplitudes f„(q)
and f (q) will tend to decrease in magnitude more
slowly with increasing q than the deuteron form factor
5(q). The integral in Eq. (3.10) may then be approxi-
mated by evaluating the scattering amplitudes at q=0.
The integral of the form factor which remains is seen
to be

f(q) = l[f.(q)+f-(q) j
&(q) =-,'(—1)-'"Lf.(q)-f.(q)3,

g(q) =if.(q). (3.8)
If we make use of the optical theorem in the form

o,= (4m/k) Imf, (0), i=n, , p (3.13)

(3.6) 8o = —(4'/0') Re( f„(0)f„(0)
—k[f.(0)-f.(0)7&(~ ')' (3 12)(3.7)

The possibility of 6nding the amplitude g in two ways,
either through direct measurement of the charge-
exchange amplitude or by taking the difference of the
proton and neutron elastic amplitudes, leads to a
variety of useful ways of expressing our results.

We may, for example, write the cross-section defect
of the deuteron, given by Eqs. (2.19) and (2.20), in

terms of the observable amplitudes in the form'

2
go = ——Re ~(q)-,'[f„(q)f.(—q)

k2

+f„(q)f„(—q) —f.(q)f'( —q) j&"'q.

The three terms of this expression correspond. to the
three possible varieties of elastic double-collision
processes. The erst two terms correspond to charge-

where O.„and. g„are total cross sections, and define the
ratios

p, =- Ref, (0)/Imf, (0), i = n, p (3.14)

of the real and imaginary parts of the scattering ampli-
tudes, we may write the expression (3.12) in the form

ha=(1/4~)((1 —p p„)o o.„—-'[( -—.)'—(p-'- —p. .)'3)( ')' (315)
If the scattering amplitudes are purely imaginary
(p„=p~=0), the effect of the double charge-exchange
correction is always to decrease the cross-section defect,
i.e., to increase the total cross section of the deuteron.
While the expression (3.15) makes the sign and magni-
tude of the cross-section defect clear, its use for detailed



H I GH —EN E RGY 0 EUTE RON C ROSS SECTIONS 1691

comparisons of cross sections requires some caution. In
particular when the incident particles are nucleons or
antinucleons the force range is not particularly small
compared with the radius of the deuteron or the
dimension ((r ')d} '". For such cases, as we have noted
in I, Sec. IV, the cross-section defect can only be esti-
mated accurately by returning to more general ex-

pressions for it, such as that in Eq. (3.10), and approxi-
mating the required integrals more closely.

The angular distribution of elastic scattering may be
written in terms of the neutron and proton scattering
amplitudes by substituting Eqs. (3.6)—(3.8) into
Eq. (2.21). In this way we find the differential cross
section

1
(do/dQ), i

——f I f„(q) I
2+

I f~(q) I'+2 Re[f„*(q)f„(q)]}S'(-',q)
——S(-,'q) Im[f„*(q)+f~*(q)] S(q')

xk

&&-'[f.(-'q+ «')f.(l q —«')+f-(l «+ q') f.(l q—«') —f.(-'«+ q') f.(l q —q')]d"'q'

1

(2m.k)'
S(q')-', [f„(-'q+q')f (-', q—q')+f (-',-q+q')f (-', q—q') —f, (-', q+q')f, (-', q—q')]d&'&q' . (3.16)

The first term of this expression represents the e6ects
of single scattering processes. Within it, we see the
squared amplitudes of the waves scattered individually

by the neutron and proton and the interference term
for these amplitudes. The last term is the squared
amplitude for double-collision processes. The two
charge-preserving processes of the type illustrated in
Figs. 2(c) and 2(d), and the double-charge-exchange
process illustrated in Fig. 2(e) all contribute coherently
to the double-collision amplitude. The middle term of
the expression (3.16) represents the interference of the
amplitudes for single- and double-collision processes.

We may express the differential cross section for
charge-exchange collisions in terms of the neutron and
proton scattering amplitudes by substituting Eqs.
(3.6)—(3.8) into Eqs. (2.29)—(2.31). We then find

(da/do), „=
I f, (q) I'[1—S(q)]

2——Im f.*(q) S(lq —q') j(q, «')d"'q'
~k

+ S(q' —q")Lj(q, q') j*(q,q")
(2irk)'

+m(q, q')m, "'(q, q")]d"'q'd" q", (3.17)

where we have written

j(q, q') =Hf. (k«+«')[f. (l«—«')+f. (k« —q')]
—f.(l«—«')[f.(l«+«')+f. (l«+«')]} (3 18)

m(q, q') =lf.(l«+«')f. (l«—q')

=l(—1) "(f.(l«+«')
x[f (2«—q') —f (k« —«')]+f.(l«—q')

&&[f (l«+«') —f (k«+«')]}. (3 1~)

The first term of the expression (3.17) represents the
effect of charge exchange in single collisions such as the
one illustrated in Fig. 1(a). The last term of the cross
section represents the squared amplitude for double-
collision processes in which a single charge exchange
takes place. Two different pairs of collision processes
contribute coherently to this term. If the incident
particle has Ia ——-'„ the process illustrated in Fig. 1(b),
in which the proton is struck before the neutron,
contributes terms containing the product f,f~. On the
other hand, the process in which the neutron is struck
first, as in Fig. 1(c), contributes a different product of
scattering amplitudes. The charge-exchange collision
with the neutron is again represented by the amplitude
f„but when the I3= —

~ particle which results collides
subsequently with the proton, its amplitude for elastic
scattering by the proton may be seen through charge
refiection to be equal to f„. The process shown in
Fig. 1(c) thus contributes terms containing the product
f,f„. The middle term of Eq. (3.17) represents the
interference of the amplitudes for the single-col1. ision
and double-collision charge-exchange processes.

The scattering cross section (do/dD)„has been de-
fined as the summed angular distribution of particles
scattered both elastically and inelastically in their
original charge state. The form given by Eq. (2.32) for

this cross section may be written in terms of the neutron and proton scattering amplitudes as

(d~/d11)-=
I f.(q) I'+

I f.(q) I'+2S(q) «[f-*(q)f.(q)]—Im [f-*(q)+f.*(q)] S(2«—«')»(q, q')d"'«' —»n f.*(«) S(2«—q') j(q q')d"'q'
xk mk

1
+ — S(q' —q")[»(q, q')»*(q, q")+j(q, q') j*(q,q")+ (q q') *(q q")]d ' q'd ' q" (3.2O)

(2mk)'
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properties of the angu1ar distribution were first pointed
out.

The differential cross section for p-d elastic scattering
is given by Eq. (3.16). The charge-exchange amplitude

f, (q) which occurs in the expression may be written in
terms of the pp and prb elastic-scattering amplitudes,
according to Eqs. (3.7) and. (3.8), as

f.(q) =f.(q) —f-(q). (4.1)

&
—lbtv Oossb 0 [1 it+1) ( ttt) 1/s costtt]tEQ

(4.3)

where t)+(1) is the unit step function defined in Eq. (2.4)
and the complex constant D is given by

D=~.o.(i+p-) (i+p.)
,'[o „(i+p—„)—tr,(i+p„)$—' (4.4).

The effect of the double charge-exchange process is felt
entirely through the second term of this expression. If
charge exchange were neglected, the constant D would
reduce to o„o„(i+p„)(i+p„)

Following notation used elsewhere, we shall write the

square of the four-momentum transferred in a collision
as 1. In the region 0& 3&1—.5 (BeV/c)', which will

concern us most, the nucleon-nucleon scattering ampli-

tudes which have been measured are fairly well repre-
sented by expressions of the form

f;= (i+p;)(ktr/4tr)stat+&b" j =n p (4.2)

where 0; is the proton-nucleon cross section and p, is

the ratio of the real part of the proton-nucleon forward-

scattering amplitude to its imaginary part. Within the

range of momentum transfers mentioned earlier, the
magnitude of the amplitudes f; decreases quite rapidly
as the negative squared four-momentum transfer —t

increases. Since the parameter b is found to be positive,
however, the magnitudes of the f; will begin to increase

without bound at some larger value of —t. Such un-

physical behavior of the functions (4.2) must be ex-

cluded from the integrations over all momentum
transfers q which occur in Eq. (3.16). Since collisions in

which the arguments (-', q+q')' exceed 2 (BeV/Ac)' may
be shown to contribute negligibly to the integrals, we

have applied a cutoff to the functions f, (q) at
q'=2 (BeV/fic)'—= —tsk '.

Hy making use of the truncated forms of the ampli-

tudes f; and introducing units in which 5=1, we may
write the elastic differential cross section given by
Eq. (3.16) in the form

dfT k—&(lV' &)o"""'[(i+—p-)o-+ (i+ps)o.3
ken „ 4~

The parameters 0~, p„, e, and b which occur in the
amplitudes f; have been found from proton-proton
scattering measurements" " to have the approximate
values 45.1 mb, —0.12, 7.62 (BeV/c) ', and 1.88
(BeV/c) b, respectively, at the laboratory energy of
2 BeV. The parameters O„and p have been obtained
indirectly from Pp and pd measurements" "which have
yielded the values 43.0 and 0.20 mb, respectively. The
deuteron form factor S has been obtained analytically
from the ground-state wave function referred to as tt 4

in I, Eq. (4.23).'s

The elastic differential cross section for p-d scattering
to which these data lead has been calculated by Franco
and Coleman4 and is plotted as the solid curve in
Fig. 3. We note that the curve has all of the qualitative
features mentioned earlier, the rapid dropout in the
single-scattering region, i.e., at small angles, the inter-
ference dip at intermediate angles, and the much slower
rate of decrease at larger angles. The values of the cross
section measured by Zolin et al."are confined to small
momentum transfers but may be seen to fit the curve
well. The values of the cross section found by Coleman
et al. ' lie at much larger momentum transfers, but seven
of the eight measured points again lie quite close to the
calculated curve.

Also shown in Fig. 3 is the contribution made to the
cross section by the single-scattering terms alone. While
this contribution might be adjusted through parameter
changes to fit the measurements at small momentum
transfers, it clearly could not be adjusted in addition
to 6t the measurements at large momentum transfers.
The single-scattering contribution is some two or three
orders of magnitude smaller than the cross sections
measured at the larger momentum transfers. The un-
certainty of this ratio, which is due to our uncertainty
of the deuteron form factor at large momentum trans-
fers, does not seem great enough to influence the
conclusion that the scattering observed at the larger

I' D. V. Bugg, D. C. Salter, G. H. Stafford, R. F. George, K. F.
Riley, and R.J.Tapper, Phys. Rev. 146, 980 (j.966).

I' L. F. Kirillova, V. A. Nikitin, V. A. Sviridov, L. N. Strunov,
M. G. Shafranova, Z. Korbel, L. Rob, A. Zlateva, P. K. Markov,
T. Todorov, L. Khristov, Kh. Chernev, ¹ Dalkhazhav, and D.
Tuvdendorzh, Zh. Eksperim. i Teor. Fiz. 50, 76 (1966) t English
transl. :Soviet Phys. —JETP 23, 52 (1966)]."L.F. Kirillova, V. A. Nikitin, V. S. Pantuev, V. A. Sviridov,
L. N. Strunov, M. N. Khachaturyan, L. G. Khristov, M. G.
Shafranova, Z. Korbel, L. Rob, S. Damyanov, A. Zlateva, Z.
Zlatanov, V. Iordanov, Kh. Kanazirski, P. Markov, T. Todorov,
Kh. Chernev, N. Dalkhazhav, and T. Tuvdendorzh, Yadern. Fiz.
1, 533 (1965) (English transl. : Soviet J. NucL Phys. 1, 379
(1965)g; L. F. Kirillova (private communication); A. R. Clyde,
University of California R adiation Laboratory Report No. UCRL-
16275, 1966 (unpublished). To obtain the value for b we analyzed
the data of Clyde, which was taken at 2.2 BeV/c, in the laboratory
system."L.S. Zolin, L. F. Kirillova, Lu Ch'ing-ch'iang, V. A. Nikitin,
V. S. Pantuev, V. A. Sviridov, L. N. Strunov, M. N.
Khachaturyan, M. G. Shafranova, Z. Korbel, L.Rob, P. Devinski,
Z. Zlatanov, P. Markov, L. Khristov, Kh. Chernev, N.
Dalkhazhav, and D. Tuvdendorzh, JKTP Pis'ma Redaktsiyn 3,
15 (1966) /English transl. :JETP Letters 3, g (1966)j."A factor r ' has been omitted from p4 as written there,
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momentum transfers is almost entirely double scatter-
ing. Calculations done for other plausible representa-
tions of the deuteron ground state yield, as shown in

Ref. 4, differential cross sections which are quantita-
tively fairly similar to the solid curve of Fig. 3. As an
additional example, we have investigated the inAuence

on the cross section of a hard core in the neutron-proton
interaction. We find that while the presence of a hard
core may increase the deuteron form factor and raise

the contribution of single scattering in the angular

region we have considered, this contribution still drops
off much too rapidly to approximate the scattering
observed at the larger angles. At ~= —0.88 (BeV/c)'
and at ~= —1.54 (BeV/c)', for example, the single-

scattering contribution for a hard-core potential yields
cross sections which are smaller than those observed by
factors of 50 and 500, respectively. The double

scattering calculation for a hard-core potential, on the

other hand, agrees approximately as well as the other
calculation we have reported.

Although the representation of charge-exchange
scattering which is implicit in the amplitudes f; is

rather crude, it is adequate to establish the magnitude

of the double-charge-exchange contribution to elastic
scattering. Ke have shown as the dashed curve in

Fig. 3, the differential cross section obtained by drop-

ping the charge-exchange term in the constant D given

by Eq. (4.4). The double-charge-exchange contribution

evidently does not alter the shape of the diRerential

cross section materially and, relative to the single-

scattering contribution, is quite insignificant in magni-

tude for small momentum transfers. In the double-

scattering region, however, it does raise the cross section

perceptibly. It increases the double-scattering cross

section by about 12% near the secondary maximum

at —f 0.6 (BeV/c)'.
No measurements of the diRerential cross section

appear to have been made to date in the interference

region 0.2 (BeV/c)'& —3&0.4 (BeV/c)'. Observations

within this range would be highly desirable as a check

of the theory and of the parameters used in it. The

precise behavior of the cross section within the inter-

ference dip is quite sensitive, for example, to the phases

of the nucleon scattering amplitudes. Variations of p„
and p„within the quoted experimental errors" '4 are

found to change the value of the cross section at the

minimum by an order of magnitude or more without

changing it appreciably in the other ranges of t. It is

evident that the curve shown in Fig. 3 gives at best

only a qualitative indication of the behavior of the

cross section within the interference region. Observation
of the shape of the cross section in the interference
region may be a useful means of securing information
about the phases of the nucleon-nucleon scattering
amplitudes.

V. X+-DEUTERON CHARGE-EXCHANGE
COLLISIONS

We shall apply our description of deuteron charge-
exchange processes to the reaction

(5.1)

at 2.27 BeV/c, and illustrate the way in which the cross
section for the E+n charge-exchange reaction

E++e—& E'+p (5.2)

may be estimated from observations of the reaction
(5.1) and of E+p collisions. In so doing we shall obtain
estimates for the ratio of the real part of the forward
E+e elastic-scattering amplitude to its imaginary part
and for the slope of the forward diGraction peak in E+e
elastic scattering.

The differential cross section for the reaction (5.1)
may be expressed in terms of the E+p and X+rs elastic-
scattering amphtudes, f„and f„,bymeans of Eq. (3.17).
The charge-exchange amplitude f, in this expression is
related to f~ and f„by Eqs. (3.7) and (3.8) which may
be written as

(5.3)

We shall simplify the evaluation of the integrals in
Eq. (3.17) by taking advantage of the fact that the
E+p scattering amplitude varies much more slowly
with increasing momentum transfer than does the
deuteron form factor. To state this relationship in
diferent terms, the rms radius of the E+p interaction
near 2 BeV/c, as estimated from the E+p elastic-
scattering angular distribution, is approximately 0.5 F,"
which is appreciably smaller than the average radius
of the deuteron. Ke are evidently justified, therefore,
in making use of the approximation already mentioned
in connection with the derivation of Eq. (3.12). It cor-
responds to replacing S(q), in the integrals in Eq.
(3.17) by

S(q) =~~'~(q)2x(r —')g, (5.4)

where ~&"(q) is a two-dimensional delta function in the
momentum-transfer variable. In this way we reduce

, the expression for the charge-exchange cross section to
the form

(d~/«). .-= [1—~(q) j I f.(q) I'—2u '(r ')"™(f.*(q)[f.(q)f. (o)—f.(q)f, (0)j)
2

d

+ [If.(lq+q')f-(2q —q') —f.(-'q+q')f. (2q —q') I'+ lf.(kq+ q')f. (kq q') I'jd"—'q' (5.5)
4mk'

&6 ~. Chinp~s~zy, G. Goldhaber, S. Goldhaber, T. O'Halloran, and B. Schwarzschild, Phys. Rev. 139, 31411 (1965).
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The error of the approximation (5.4) may be estimated,
by using a Gaussian form factor, to be less than 0.3%
for the integrated cross section for the reaction (5.1)
at 2.27 BeV/c.

We shall assume that the E+-nucleon elastic-
scattering amplitudes have the form

IO I I I

2.27 BeV / c
K+4 ~ K pp.'

at small angles, where 0; is the E+—j total cross section
and p; is the ratio of the real part of the forward E+—j
elastic-scattering amplitude to its imaginary part. This
form is consistent with the available high-energy E+-
nucleon scattering data. The integral in Eq. (5.5) may
then be evaluated analytically and the differential cross
section may be expressed in terms of S(q) and Gaussian
functions of q.

We shall consider the E+d charge-exchange reaction
E+d —+ E'pp at 2.27 BeU/c where measurements have
been made by Butterworth et u/. ' In order to calculate
the differential cross section for this reaction, we need to
know the values of 0„, 0-„, o,„', o.„', p„, and p which are
used to parametrize the E+-nucleon scattering ampli-
tudes (5.6). The E+p total cross section has been
measured" to be 17.3 mb, and the E+n total cross
section has been deduced from E+p and E+d measure-
ments" tn be 18.5 mb. A measurement of o.„' has been
made by Chinowsky et al.rs at 1.96 BeV/c and yields
the value 3.1 (BeV/c) '. The magnitude of p„has been
measured" to be 0.34 at 1.96 BeV/c, and theoretical
calculations'8 for this energy region indicate that p„ is
negative. We shall therefore assume the value —0.34
for p„. In the absence of E+e elastic-scattering data,
we shall allow u„' and p to be adjustable parameters
and fit Eq. (5.5) to the E+d +E'pp data, .—In so doing,
we shall obtain estimates for o. ' and p„. Having ob-
tained these, we will be in a position to predict the
differential and integrated cross sections for the charge-
exchange reaction E+n—+ IPp., In our calculations we
will use the deuteron wave function referred to as
P4 in I."With this wave function, we find (r ')c to be
0.299 F '.

The observed angular distribution of the E meson
in the laboratory system is shown in Fig. 4 for
cos8~,b&0.85. A least-squares fit to the logarithm of the
measured angular distribution, using Kqs. (5.5) and
(5.6), is shown by the solid curve in Fig. 4. The value
of rr„' obtained from this 6t is 2.66 (BeV/c) '. This is
somewhat smaller than the value 3.1 (BeV/c) ' meas-
ured" for n„' at the somewhat lower momentum of
1.96 BeV/c. The value of p„obtained from this fit
is —0.76.

To illustrate the magnitude of the double-scattering
correction in reaction (5.1), we have calculated

' R. L. Cool, G. Giacomelli, T. F. Kycia, A. B.Leontic, K. K.
Li, A. Lundby, and J. Teiger, Phys. Rev. Letters 17, 102 (1966)."M. Lusignoli, M. Restignoli, G. Violini, and G. A. Snorer,
Nuovo Cimento 4SA, 792 (1966); N. M. Queen, University of
Birmingham Report, 1966 (unpublished).

2
E

C)
O

Cs

b

0.5

0.2
I.O 0.95

Cos 8[p

0.90 0.85

FIG. 4. Differential cross sections in the laboratory system for
J'+d and X+I charge-exchange scattering at 2.27 BeV/c as a
function of cosei,b the cosine of the E' scattering angle. The data
for E+d -+ J 0pp are from Ref. 6. The solid curve is calculated
for E+d ~ K pp with double scattering taken into account. The
broken curve is calculated for E+d —+ E pp with double scattering
neglected and coincides with the solid curve for cos8~,b&0.98. The
dotted curve, which coincides with the broken curve for cosPI,b
&0.96, is the calculated angular distribution for E+n ~E p.

(da/dQ), „with double-scattering effects neglected. The
results, shown by the broken curve in Fig. 4, indicate
that double-scattering eGects are rather small within
the angular region O~,b&30'. For example, the e6'ect of
including double scattering is to decrease the differential
cross section by approximately 0.2%%uo near Hi,b=7',
where the intensity is near its maximum, and by
approximately 4% near 8&,b= 30'. The effect of includ-
ing double scattering is to decrease the integrated
charge-exchange cross section by approximately 2%.

The differential cross section (dc/dQ), „for E+d charge
exchange may be analyzed in terms of single scattering,
interference between single and double scattering, and
pure double scattering. In Fig. 5 we show the angular
distributions of these three components of the diGer-
ential cross section. The contribution arising from the
interference term is negative; the curve shown corre-
sponds to its absolute value. The magnitude of the
interference term is always considerably smaller than
the single-scattering term and for cos8~,b&0.9 has an
angular distribution rather similar in form to the
single-scattering term. As we have noted in Sec. III,
the pure double-scattering term gives the only nonzero
contribution in the forward direction. Near cos8j,b
=0.995, however, the other two terms each have
become greater in magnitude than the double-scattering
term. Nevertheless, at larger angles the double-scatter-
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0
lO

integrated cross section for E+e charge exchange
corresponding to the data over the interval 1.&cosoi,b

&0.85 is calculated to be 1..54 mb.

IO
E

EA

O

C1

IO

"U

lO

lO
I.O O.9 0.7

Cos el

FIG. 5. Angular distributions of the components of the E+d
charge-exchange intensity as a function of cos8&,b. The incident
Z+-meson laboratory momentum is 2.27 BeV/c. The curve labeled
A represents the single scattering contribution and curve B the
double-scattering contribution. The curve labeled C represents the
contribution from the interference between the single- and double-
scattering processes, and is negative in sign.

ing term decreases less rapidly than the magnitudes of
each of the other two contributions, becoming equal
to the absolute value of the interference term near
costi, b

——0.74. At still )arger angles, i.e., cosei,b&0.5, it
seems possible that double scattering may be the
dominant mechanism of charge exchange.

We may now use Eq. (5.3) to study the charge
exchange reaction E+e —&E'p. Using the value

p = —0.76, we find that the ratio of the real part of
the forward E+e charge-exchange amplitude to its
imaginary part, which we may write as

p, = Ref,(0)/Imf, (0), (5 7)

"P. Astbury, G. Finocchiaro, A. Michelini, C. Verkerk, D,
Kebsdale, C. H. West, W. Beusch, B. Gobbi, M. Pepin, M, A,
Pouchon, and K. Polgar, Phys. Letters 16, 328 (1966).

is —6.8 at 2.27 BeV/c. This result is in contrast with
the ratio for high-energy E p charge exchange which
has a predominantly imaginary amplitude. "

The differential cross section for the reaction
E+I +E'p is simply —

~ f, ~s. Over the angular range
~&,b&10', where ~5(q)t«1, the form of

~ f,~'is very
close to the angular distribution for IC+d~ E'pp given
mitholt treating double-scattering eGects and is there-
fore represented by the broken curve in I'ig. 4. At
smaller angles the effects of the exclusion principle must
be accounted for and the E+n charge-exchange angular
distribution extrapolates to 0' along the dotted curve.
We find a value of 5.7 mb/sr for the E+m —+E'p
difterential cross section in the forward direction. The

VI. EFFECT OF CHARGE EXCHANGE QN
DEUTERON TOTAL CROSS SECTIONS

5.=(1/4 )(".-l(.-—.)')(r-')' (6.1)

The term proportional to (a —o„)' is the charge-
exchange correction to the formula used in the analysis
of the experiment.

Typical values of the neutron total cross sections,
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Recent measurements have lent support to the
conjecture of Pomeranchuk" that charge-exchange cross
sections vanish in the high-energy limit. The neutron-
proton charge-exchange cross section, for example, has
been measured to be 0.65 mb at 2.83 BeV/c" and 0.06
mb at 8 BeV/c's' whereas the corresponding neutron-
proton total cross sections are approximately 43 and
41 mb. " Additional evidence occurs, for example, in
measurements of the antiproton-proton charge-exchange
cross sections which yield values of 5 mb at1.7 BeV/c"
and 0.28 mb at 9 BeV/c's' whereas the corresponding
antiproton-proton total cross sections are approximately
96 and 55 mb.""It is reasonable to expect, therefore,
that the e feet of charge-exchange processes on the
total cross section of the deuteron becomes negligibly
small at very high energies. We shall estimate the effect
quantitatively in this section in order to determine its
bearing on a number of indirectlymeasuredneutroncross
sections.

Let us 6rst consider the measurements made by
Galbraith et ul."using incident beams of protons, anti-
protons, and E+ mesons in the range from 6 to 22
BeV/c. Their measurements of deuteron cross sections
were analyzed by assuming the ranges of the strong
interactions to be small in comparison to the deuteron
radius, and by neglecting the real parts of the forward-
scattering amplitudes. The first of these assumptions
leads to Eq. (3.15) for the cross-section defect and the
second reduces it to the form
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derived by Galbraith et a/." from their data without
the charge-exchange correction, are

o (Pe) =42.6&1.7 mb, 0 (pe) =59.5+4.0 mb,

o (K+I)= 17.5+0.4 mb, o (K n) = 21.9+0.4 mb,

at 6 BeV/c, and

0 (Pn) =39.2+1.7 mb, 0 (pm) =44.4+9.0 mb,

0 (K+I)=17.6+0.4 mb, o (K e) =20.3+1.1 mb,

at 18 BeV/c.
When the experimental data for the cross sections

are reanalyzed by taking the charge-exchange correction
in Eq. (6.1) into account, we f'md that six of the eight
cross sections quoted remain unaltered to three signifi-
cant figures. The two cross sections which are changed
are 0 (K+e) at 6 BeV/c which is decreased to 17.4 mb
and o (pe) at 18 BeV/c which is decreased to 44.3 mb.
The corrections to the neutron cross sections due to
charge-exchange effects are generally smaller than
0.1 mb in this momentum range, and thus a good deal
smaller than the quoted errors of the measurements.

We consider next the proton-deuteron and proton-
proton total cross-section measurements of Bugg et al."
between 1.1 and 8 BeV/c. Since these measurements
were performed at a considerably lower range of
incident momenta than those noted earlier, their
analysis was carried out differently in two respects. The
real parts of the neutron and proton forward-scattering
amplitudes were retained in the formula for the cross-
section defect, and an attempt was made to correct for
the eGects of the internal motion of the nucleons in the
deuteron. The details of the latter correction are given
in Ref. 11. For our present purposes we need only use

their values for the averages of the proton-proton and
proton-neutron total cross sections taken over the
internal motion, which they have referred to as
"o (P—P)" and "0 (P—e)," respectively. Typical values
of "o (p—e)" which have been reached without taking
account of the charge-exchange correction are"

"0 (p—e)"=35.72+0.26 rnb at 1.111 BeV/c
=42.255+0.069 mb at 4.552 BeV/c
=41.328&0.080 mb at 7.835 BeV/c.

By following the same procedure as is used in Ref. 11,
but taking charge-exchange corrections into account by
using Eq. (3.15) to represent the cross-section defect,
we find the altered cross sections

"0(P—n)"=36.50 mb at 1.111 BeV/c
=42.305 mb at 4.552 BeV/c
=41.349 mb at 7.835 BeV/c.

Only at the lowest momentum does the change exceed
the quoted experimental error.

The fact that the charge-exchange corrections tend
to increase the neutron cross sections in these measure-
ments rather than decreasing them very slightly, as in
the earlier discussion, is due to the fact that the real
parts of the scattering amplitudes have not been
neglected in the analysis. The charge-exchange correc-
tion which is proportional to (p„o„—p„o„)' in Eq. (3.15)
dominates the one proportional to (o„—0~)' at low
incident momenta.
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